JPS63183151A - Low-expansion cast iron having excellent machinability - Google Patents
Low-expansion cast iron having excellent machinabilityInfo
- Publication number
- JPS63183151A JPS63183151A JP1128187A JP1128187A JPS63183151A JP S63183151 A JPS63183151 A JP S63183151A JP 1128187 A JP1128187 A JP 1128187A JP 1128187 A JP1128187 A JP 1128187A JP S63183151 A JPS63183151 A JP S63183151A
- Authority
- JP
- Japan
- Prior art keywords
- cast iron
- low
- thermal expansion
- machinability
- coefficient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は低熱膨張性を要求され、かつ高い被削性を必要
とする機械部品に適した共晶黒鉛鋳鉄に関するものであ
る。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to eutectic graphite cast iron suitable for machine parts that require low thermal expansion and high machinability. be.
(従来の技術)
ニッケルを34.0〜36.0%含宵させてオーステナ
イト基地としだ片状黒鉛あるいは球状黒鉛鋳鉄は耐熱、
耐食耐摩耗性に優れているうえ低熱膨張であることから
化学工業及、科学機器、部材ガラス成形型などに使用さ
れている。(Prior art) Flake graphite or spheroidal graphite cast iron containing 34.0 to 36.0% nickel and having an austenite base is heat resistant.
Because it has excellent corrosion and abrasion resistance and low thermal expansion, it is used in the chemical industry, scientific equipment, and molds for glass components.
しかし、この鋳鉄はオーステナイト基地であることから
、切削性が悪く要求寸法精度に合致した平滑な平面を得
難いことや、切、削工具の工具寿命を縮めることなどに
より、精密機械部品への適用が困難であると言う問題点
があった。However, since this cast iron has an austenite base, it has poor machinability, making it difficult to obtain a smooth flat surface that meets the required dimensional accuracy, and shortening the tool life of cutting tools, making it difficult to apply to precision machine parts. There was a problem that it was difficult.
(発明が解決しようとする問題点)
本発明は、上記問題点を解消するためになされたもので
低熱膨張性、機械的特性、特に引張強さは従来品と同程
度であり、被削性を著しく改善したオーステナイト共品
性黒鉛鋳鉄を提供することを目的としたものである。(Problems to be Solved by the Invention) The present invention was made to solve the above problems, and has low thermal expansion, mechanical properties, especially tensile strength, which are comparable to conventional products, and machinability. The purpose of this invention is to provide graphite cast iron with austenitic properties that have significantly improved properties.
[発明の構成コ
(問題点を解決するための手段と作用)すなわち本発明
は、炭素1.0〜2.4%、シリコン1.0〜2.4%
、マンガン0.1〜1.0%、ニッケル30.0〜34
.0%、コバルト2.0〜6.0%、リン0.2%以下
、残部鉄からなる組成を有するオーステナイト鋳鉄に微
細な共晶型黒鉛を晶出させてなることを特徴とする特
これより、従来のオーステナイト鋳鉄と比較して工具寿
命、仕上面あらさが飛曜的に向上し被削性の著しく向上
した低膨張鋳鉄を得ることができる。[Constitution of the Invention (Means and Actions for Solving Problems) That is, the present invention consists of 1.0 to 2.4% carbon and 1.0 to 2.4% silicon.
, manganese 0.1-1.0%, nickel 30.0-34
.. 0% cobalt, 2.0 to 6.0% cobalt, 0.2% or less phosphorus, and the balance is iron. Compared to conventional austenitic cast iron, it is possible to obtain a low expansion cast iron that has dramatically improved tool life and finished surface roughness, and has significantly improved machinability.
この発明の快削性低膨張鋳て鉄の成分組成範囲を上記の
ように限定した理由について以下に説明する。The reason why the composition range of the free-cutting, low-expansion cast iron of the present invention is limited as described above will be explained below.
まず炭素は、その含有率が2.4%をこえると熱膨張係
数が増大し、1.0%未満ではひけ巣やチル等が発生し
やすく、その結果鋳造性が悪化するので好ましくない。First, if the carbon content exceeds 2.4%, the coefficient of thermal expansion increases, and if it is less than 1.0%, shrinkage cavities, chills, etc. are likely to occur, and as a result, castability deteriorates, which is not preferable.
よって炭素は1.0〜2,4%の範囲に限定される。ま
たシリコンが2.4%をこえると熱膨張係数が増大し、
1.0%未満では黒鉛化作用が不十分になリチルが生成
しやす、く鋳造性が悪化する。よってシリコンは1.0
〜2.4%の範囲に限定される。Therefore, carbon is limited to a range of 1.0 to 2.4%. Moreover, when silicon exceeds 2.4%, the coefficient of thermal expansion increases,
If it is less than 1.0%, the graphitization effect is insufficient and lithyl is likely to be generated, resulting in poor castability. Therefore, silicon is 1.0
~2.4%.
そしてマンガンの含有量が1.0%をこえるとマンガン
の偏析が生じ、熱膨張係数も大きくなる。また、0.1
%未満でも熱膨張係数は大きくなる。よってマンガンは
0.1〜1.0%の範囲に限定される。さらにニッケル
の含有量が34.0%をこえるか、あるいは30.0%
未満で(よ熱膨張係数が増大するため、ニッケルの含有
量は30.0%〜34,0%に限定される。When the manganese content exceeds 1.0%, manganese segregation occurs and the coefficient of thermal expansion increases. Also, 0.1
%, the coefficient of thermal expansion becomes large. Therefore, manganese is limited to a range of 0.1 to 1.0%. Furthermore, the nickel content exceeds 34.0% or 30.0%
The nickel content is limited to 30.0% to 34.0% because the thermal expansion coefficient increases with less than 30%.
次いでコバルトの含有量が6.0%をこえるか、あるい
は2.0%未満では、やはり熱膨張係数が増大するため
、コバルトの含有量は2.0〜6.0%に限定される。Next, if the cobalt content exceeds 6.0% or is less than 2.0%, the coefficient of thermal expansion also increases, so the cobalt content is limited to 2.0 to 6.0%.
また、リンの含有量が0.2%をこえると高硬度のステ
ダイトが結晶粒界に析出し、被削性を害する。このため
リンの含有量は0.2%以下に限定される。そして、以
上のような組成を有するオーステナイト鋳鉄に微細な共
晶型黒鉛を晶出させるとこれが切削時に潤滑剤、ミクロ
クラック発生源として作用し、オーステナイト基地を見
かけ上腹化させる。このため従来からオーステナイト切
削の問題とされていた工具への溶着、高延性による仕上
面あらさの劣化を解決することができ、工具寿命、仕上
面あらさからみた被削性を著しく改善することができる
。Furthermore, if the phosphorus content exceeds 0.2%, highly hard steadite precipitates at grain boundaries, impairing machinability. Therefore, the phosphorus content is limited to 0.2% or less. When fine eutectic graphite is crystallized in the austenitic cast iron having the above composition, it acts as a lubricant and a source of microcracks during cutting, causing the austenite base to become superficial in appearance. As a result, it is possible to solve the conventional problems of austenite cutting, such as welding to tools and deterioration of finished surface roughness due to high ductility, and significantly improve tool life and machinability in terms of finished surface roughness. .
この共晶型黒鉛を晶出させる方法としては金型に鋳造す
る方法、砂型に冷し金を埋め込んで鋳造する方法、イオ
ウ、チタンなどの特殊元素を添加する方法を用いること
ができる。Methods for crystallizing this eutectic graphite include casting in a mold, casting by embedding chilled metal in a sand mold, and adding special elements such as sulfur and titanium.
(実施例)
以下のような組成の鋳造棒A−G(φ100×N 40
0)を鋳造し、0〜50℃、0〜100℃の熱膨張係数
を測定した結果を第1表に示す。(Example) Cast rods A-G (φ100×N 40
Table 1 shows the results of casting 0) and measuring the coefficient of thermal expansion at 0 to 50°C and 0 to 100°C.
第1表
第1表から炭素1.0%未満、シリコン1.0%未満、
および炭素2.4%以上をこえた場合、シリコン2.4
%をこえた場合ではいずれも熱膨張係数が増大すること
がわかる。Table 1 From Table 1, less than 1.0% carbon, less than 1.0% silicon,
and if carbon exceeds 2.4%, silicon 2.4%
%, it can be seen that the coefficient of thermal expansion increases in all cases.
次にいずれも炭素2.2%、シリコン2.0%、マンガ
ン0.5%、リン0.07%を含み、ニッケルとコバル
トと鉄の3成分の含量を変化させた鋳鉄棒(φ100×
β400)H−Rをつくり常温〜100°Cにおける熱
膨張係数を測定した結果を第2表に示す。Next, cast iron rods (φ100×
Table 2 shows the results of preparing β400)HR and measuring the thermal expansion coefficient at room temperature to 100°C.
第 2 表
第2表からニッケル30.0%未満、または34.0%
をこえた場合、コバルト2.0%未満、または6,0%
をこえた場合になると熱膨張係数が増大することがわか
る。Table 2 From Table 2, nickel is less than 30.0% or 34.0%
If it exceeds, cobalt is less than 2.0% or 6.0%
It can be seen that the coefficient of thermal expansion increases when the temperature exceeds .
先の結果にもとづいて、熱膨張係数がもっと小さくなる
組成E(炭素2.2%、シリコン2.1%、マンガン1
.0%、ニッケル32.0%、コバルト4.2%、リン
0.07%)を用いて、片状黒鉛(a)、球状黒鉛(b
)、共晶型黒鉛(c、d)の計4本の鋳鉄棒(φ100
×N 400)をつくり、それぞれについて常温〜10
0℃の熱膨張係数、引張強さを測定した結果を第3表に
示す。Based on the previous results, composition E (2.2% carbon, 2.1% silicon, 1 manganese) has a smaller thermal expansion coefficient.
.. 0%, nickel 32.0%, cobalt 4.2%, phosphorus 0.07%).
), a total of four cast iron rods (φ100) made of eutectic graphite (c, d)
×N 400) and each at room temperature to 10
Table 3 shows the results of measuring the thermal expansion coefficient and tensile strength at 0°C.
第 3 表
(b)はFe−SFe−5if%Mg)合金2.7%添
加で球状化処理を行ない、(C)、(d)は冷し金を用
いて。Table 3 (b) shows the spheroidization treatment performed with the addition of 2.7% of the Fe-SFe-5if%Mg) alloy, and (C) and (d) use a chilled metal.
共晶型黒鉛組織を得た。A eutectic graphite structure was obtained.
第3表から本発明鋳鉄(C,d)は従来品(a、b)に
比べで熱膨張係数、引張強さはほとんど変わらないこと
がわかる。Table 3 shows that the cast irons of the present invention (C, d) have almost no difference in coefficient of thermal expansion and tensile strength compared to the conventional products (a, b).
これらの各鋳鉄棒について下記条件で切削試験を行なっ
た結果、切削時間と工具摩擦量の関係を第1図に、各鋳
鉄棒の一定切削面積の工具摩耗量を第2図に、表面あら
さ曲線を第3図にそれぞれ示す。As a result of conducting cutting tests on each of these cast iron bars under the following conditions, Figure 1 shows the relationship between cutting time and tool friction, Figure 2 shows the amount of tool wear for a constant cutting area of each cast iron bar, and the surface roughness curve. are shown in Figure 3.
切削条件 工 具 K 20 (WC−Co系超硬
材)切削速度 200 m/min
送 リ 0.4 mm/rev
切込み 2.0mm
この第3図においては、■が本発明に係る鋳鉄棒(C)
、■が従来の鋳鉄棒(b)の場合をそれぞれ示している
。Cutting conditions Tool K 20 (WC-Co based carbide material) Cutting speed 200 m/min Feed rate 0.4 mm/rev
Depth of cut: 2.0 mm In this Fig. 3, ■ is the cast iron rod (C) according to the present invention.
, ■ respectively show the case of the conventional cast iron bar (b).
これらの図より本発明鋳鉄が従来品と比べて彼 ゛削性
が著しく向上していることは明らかである。From these figures, it is clear that the cast iron of the present invention has significantly improved machinability compared to conventional products.
[発明の効果]
実施例からも明らかなようにオーステナイト低膨張鋳鉄
に共晶型黒鉛を晶出させることにより引張強さ、低熱膨
張性を低下せずに被削性を著しく向上させることができ
る。[Effect of the invention] As is clear from the examples, by crystallizing eutectic graphite in austenitic low expansion cast iron, machinability can be significantly improved without reducing tensile strength and low thermal expansion. .
4、図の簡単な説明
第1図は本発明及び従来例の切削時間と工具摩耗量の関
係を表わした特性図、第2図は一定切削面積(650c
J)削ったときの各鋳鉄棒における工具摩耗量を示した
図、第3図は本発明及び従来例の表面あらさ曲線を示し
た図である。4. Brief explanation of the figures Figure 1 is a characteristic diagram showing the relationship between cutting time and tool wear amount for the present invention and the conventional example, and Figure 2 is for a constant cutting area (650cm).
J) A diagram showing the amount of tool wear on each cast iron bar when shaved. FIG. 3 is a diagram showing the surface roughness curves of the present invention and the conventional example.
Claims (1)
マンガン0.1〜1.0%、ニッケル30.0〜34.
0%、コバルト2.0〜6.0%、リン0.2%以下残
部鉄からなる組成を有し、共晶型黒鉛組織をもつことを
特徴とする被削性の優れた低膨張鋳鉄。Carbon 1.0-2.4%, Silicon 1.0-2.4%,
Manganese 0.1-1.0%, nickel 30.0-34.
0% cobalt, 2.0 to 6.0% cobalt, 0.2% or less phosphorus, the balance iron, and is characterized by having a eutectic graphite structure and having excellent machinability.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1128187A JP2590079B2 (en) | 1987-01-22 | 1987-01-22 | Low expansion cast iron with excellent machinability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1128187A JP2590079B2 (en) | 1987-01-22 | 1987-01-22 | Low expansion cast iron with excellent machinability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63183151A true JPS63183151A (en) | 1988-07-28 |
JP2590079B2 JP2590079B2 (en) | 1997-03-12 |
Family
ID=11773610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1128187A Expired - Lifetime JP2590079B2 (en) | 1987-01-22 | 1987-01-22 | Low expansion cast iron with excellent machinability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2590079B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02125837A (en) * | 1988-11-02 | 1990-05-14 | Toshiba Corp | Low thermal expansion cast iron |
US5030299A (en) * | 1987-10-26 | 1991-07-09 | Kabushiki Kaisha Toshiba | Low expansion cast iron lapping tool |
US5173253A (en) * | 1987-10-26 | 1992-12-22 | Kabushiki Kaisha Toshiba | Low expansion cast iron |
-
1987
- 1987-01-22 JP JP1128187A patent/JP2590079B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5030299A (en) * | 1987-10-26 | 1991-07-09 | Kabushiki Kaisha Toshiba | Low expansion cast iron lapping tool |
US5173253A (en) * | 1987-10-26 | 1992-12-22 | Kabushiki Kaisha Toshiba | Low expansion cast iron |
JPH02125837A (en) * | 1988-11-02 | 1990-05-14 | Toshiba Corp | Low thermal expansion cast iron |
Also Published As
Publication number | Publication date |
---|---|
JP2590079B2 (en) | 1997-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9994946B2 (en) | High strength, homogeneous copper-nickel-tin alloy and production process | |
EP0343292B1 (en) | Low thermal expansion casting alloy | |
US20140000832A1 (en) | High rigidity, high damping capcity cast iron | |
Patel et al. | Effect of Ca and Ba Containing Ferrosilicon Inoculants on Microstructure and Tensile Properties of IS-210, and IS-1862 Cast Irons | |
JPS63183151A (en) | Low-expansion cast iron having excellent machinability | |
JP2745646B2 (en) | Method for producing high-temperature wear-resistant Co-based alloy with excellent hot workability | |
JPH02298236A (en) | Low thermal expansion alloy | |
JPS62142744A (en) | Cast iron for glass forming | |
JP2778891B2 (en) | High-strength low-expansion cast iron, method for producing the same, and sliding parts and machine parts using the same | |
JP3829177B2 (en) | Aluminum-containing damping cast iron | |
US2438221A (en) | Method of making a hard facing alloy | |
JP4278060B2 (en) | Spherical vanadium carbide-containing low thermal expansion material excellent in wear resistance and method for producing the same | |
JPS61143554A (en) | Cast iron material for surface hardening | |
JPH07179984A (en) | Cast iron of high strength and low expansion and its production | |
RU2751391C1 (en) | Foundry invar alloy based on iron | |
JPH08120396A (en) | Pearlitic spheroidal graphite cast iron as cast and its production | |
JPS62146232A (en) | Dental Co-based casting alloy | |
JP2659352B2 (en) | Manufacturing method of Bamikiura graphite cast iron | |
JPS6126739A (en) | Heat resistant co alloy for metallic mold for molding | |
JPS6341977B2 (en) | ||
JP2745647B2 (en) | Method for producing high-temperature wear-resistant Co-based alloy with excellent hot workability | |
JPS6341975B2 (en) | ||
JPS6393840A (en) | Low-thermal expansion cast iron | |
JPS6330379B2 (en) | ||
JPS63114936A (en) | Low thermal expansion cast iron and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |