JPS62142744A - Cast iron for glass forming - Google Patents
Cast iron for glass formingInfo
- Publication number
- JPS62142744A JPS62142744A JP28308285A JP28308285A JPS62142744A JP S62142744 A JPS62142744 A JP S62142744A JP 28308285 A JP28308285 A JP 28308285A JP 28308285 A JP28308285 A JP 28308285A JP S62142744 A JPS62142744 A JP S62142744A
- Authority
- JP
- Japan
- Prior art keywords
- cast iron
- glass
- glass forming
- mold
- thermal conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001018 Cast iron Inorganic materials 0.000 title claims abstract description 35
- 238000007496 glass forming Methods 0.000 title claims abstract description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 25
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 229910052802 copper Inorganic materials 0.000 claims abstract description 4
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 229910052782 aluminium Inorganic materials 0.000 claims abstract 3
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract 3
- 229910002804 graphite Inorganic materials 0.000 claims description 12
- 239000010439 graphite Substances 0.000 claims description 12
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 239000011521 glass Substances 0.000 abstract description 29
- 229910001060 Gray iron Inorganic materials 0.000 abstract description 26
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 4
- 229910052799 carbon Inorganic materials 0.000 abstract 2
- 239000000463 material Substances 0.000 description 20
- 238000000465 moulding Methods 0.000 description 14
- 230000003647 oxidation Effects 0.000 description 13
- 238000007254 oxidation reaction Methods 0.000 description 13
- 230000009466 transformation Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000008646 thermal stress Effects 0.000 description 7
- 239000010953 base metal Substances 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 208000025599 Heat Stress disease Diseases 0.000 description 1
- 206010019332 Heat exhaustion Diseases 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Glass Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はガラス成形用鋳鉄に係り、 4.Sにガラス金
型材として要求される優れた被削性および熱伝導度を備
えると共に改みされた金型使用ノi命をIj−える前記
ガラス成形用鋳鉄に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to cast iron for glass forming. 4. The present invention relates to the above-mentioned cast iron for glass molding, which has excellent machinability and thermal conductivity required as a glass mold material, and also has improved mold usage.
(従来の技術)
ガラス成形用金型材しては被削性、熱伝導度、l1fF
#酸化性および耐ぼう硝性、高温強度および耐熱疲れ性
に優れた材料が要求され、これらの要件をほぼ充足する
ちととして従来上としてねずみ鋳鉄が用いられている。(Conventional technology) Mold materials for glass molding are characterized by machinability, thermal conductivity, and l1fF.
# Materials with excellent oxidation and oxidation resistance, high-temperature strength, and heat fatigue resistance are required, and gray cast iron has conventionally been used as a material that almost satisfies these requirements.
一般にガラス成形用金型の内面の隅角部にはガラス成形
時に空気が残留するので、この空気を金型外部へ逃がし
てやる必要があり、このためこの隅角部に約φIIIm
の金型外部へ通じる長い穴をあける却下が施される。こ
の加r]には細いドリル等を用いるので深い穴を穿孔す
る際にドリルに#えみが生じ作業が困難となる。また被
却下部が隅角部であることもこの作業の困難さを倍加さ
せる。Generally, air remains in the corner of the inner surface of a glass molding mold during glass molding, so it is necessary to release this air to the outside of the mold.
A long hole leading to the outside of the mold is drilled. Since a thin drill or the like is used for this drilling, when drilling a deep hole, the drill becomes engorged, making the work difficult. Furthermore, the fact that the rejected portion is a corner portion also increases the difficulty of this work.
以1−4のような加F:1:の理由からカラス成形用金
型材はまず被削性に溌れていることが必要条件となる。For the reason of the addition F: 1 as described in 1-4 below, it is first necessary that the mold material for crow molding has good machinability.
ここでねずみ#)1鉄中には片状黒鉛組織が存イ1し、
これが切削加工のさいに生じる切屑を連続させることな
く分断するためその被削性が極めて良い。Here, there is a flaky graphite structure in the iron of the mouse #1.
Since this breaks up the chips generated during cutting without making them continuous, the machinability is extremely good.
次にねずみ鋳鉄は鉄系材料の中では最も熱伝導度に優れ
ている。比較のため表1にねずみ鋳鉄、曹=通鋼材およ
びステンレス鋼の室温での熱伝導度を示す。Next, gray cast iron has the highest thermal conductivity among ferrous materials. For comparison, Table 1 shows the thermal conductivity at room temperature of gray cast iron, copper alloy steel, and stainless steel.
表1.鉄系材料の熱伝導度
材質 熱伝導度(cat/cm、sec、”0
)fT通ねずみ鋳鉄 0.14 〜0.18f
イ通鋼材 0.08 〜0.09ステンレ
スw40.038〜0.04
このようにねずみ鋳鉄の熱伝導度は佇通鋼の約2 (r
jであり、ステンレス鋼の約4倍に相当する。Table 1. Thermal conductivity of iron-based materials Materials Thermal conductivity (cat/cm, sec, ”0
) fT through gray cast iron 0.14 ~ 0.18f
Itsu steel material 0.08 ~ 0.09 Stainless steel w4 0.038 ~ 0.04 In this way, the thermal conductivity of gray cast iron is about 2 (r
j, which corresponds to about 4 times that of stainless steel.
かかる優れた熱伝導度のため、ガラス成形操業117、
に金型全体に生じる温度の不均性は鉄系材料中ではねず
み鋳鉄の場合がM小となり、ガラス成形直後の徐冷1程
でガラス製品中に生じる熱ひすみによる破損率が最も少
ない。Due to such excellent thermal conductivity, glass forming operations 117,
Among ferrous materials, gray cast iron has the smallest temperature non-uniformity throughout the mold, and the breakage rate due to thermal strain that occurs in glass products is the lowest in the first stage of slow cooling immediately after glass molding.
またこの金型の優れた熱伝導度によりガラス成形のさい
に高温のガラスより金型への熱移動速度が大きく、ガラ
スが速やかに冷却されて金型より取出されるので生産性
が高められる。Furthermore, due to the excellent thermal conductivity of this mold, during glass molding, the rate of heat transfer to the mold is greater than that of high-temperature glass, and the glass is quickly cooled and removed from the mold, increasing productivity.
(発明が解決しようとする問題点)
このようにねずみ鋳鉄はガラス成形用金型材してはお−
むね主要な条件を備えているので現在一般に用いられて
いるが、実用上は必ずしも未だ充足に満足なものではな
い。(Problems to be solved by the invention) As described above, gray cast iron is not suitable for use as a mold material for glass molding.
Although it is generally used at present because it satisfies most of the major conditions, it is not necessarily fully satisfied in practice.
ねずみ鋳鉄製の金型に伴なう欠点は以下に述べるように
使用寿命が比較的短いことである。A disadvantage associated with gray cast iron molds is their relatively short service life, as discussed below.
(+)ねずみ鋳鉄中に存在する片状黒鉛の先端部は第2
図の顕微鏡断面写真(倍率140倍)に示されるように
先鋭な形状であり、この部分にガラス製造時の熱応力が
集中して亀裂が発生しやすい。(+) The tip of flaky graphite that exists in gray cast iron is the second
As shown in the microscopic cross-sectional photograph (140x magnification) in the figure, it has a sharp shape, and thermal stress during glass manufacturing is concentrated in this part, making it easy for cracks to occur.
またこの亀裂の伝播により金型表面が劣化ないしは破壊
される。Furthermore, the mold surface deteriorates or is destroyed due to the propagation of this crack.
(2)侍通ねずみ鋳鉄のSiI&分は約2%であり、体
積変化の生しるA1変i点は約750℃と低い、一方こ
れに対して、溶融カラスの金型への投入温度は約800
°Cでありまたガラス製品の取出温度は約500°Cで
ある。このため金型表面は操業巾約500〜800℃の
温度区間の繰返しの熱サイクルの影響を受ける。したが
って金型表面は毎回のガラス成形時に約750℃のAI
変態にともなう体積変化が生じ、このため極めて大きい
熱応力が繰返し発生して金Jlj1表面が急速に劣化し
破壊に至る。(2) The SiI & min of Samurai-dong gray cast iron is approximately 2%, and the A1 inflection point at which volume changes occur is as low as approximately 750°C.On the other hand, the temperature at which molten glass is charged into the mold is Approximately 800
°C, and the temperature at which the glass product is taken out is approximately 500 °C. For this reason, the mold surface is subjected to repeated thermal cycles in the temperature range of approximately 500 to 800 DEG C. over an operating range. Therefore, the mold surface is heated to approximately 750°C during each glass molding process.
A volume change occurs due to the transformation, and as a result, an extremely large thermal stress is generated repeatedly, causing rapid deterioration of the gold Jlj1 surface, leading to destruction.
(3)また、fIt通ねずみ鋳鉄はSi成分が約2%で
あるので耐酸化性と耐ぼう信性の点で劣っている。(3) In addition, fIt gray cast iron has a Si content of about 2%, so it is inferior in terms of oxidation resistance and corrosion resistance.
このようにねずみ鋳鉄製のガラス成形用金型は使用寿命
が短いため、従来生産現場では連続操作中にガラス製品
の表面あうさを連続的に観察し。As described above, glass molds made of gray cast iron have a short service life, so conventional production sites continuously observe the surface roughness of glass products during continuous operation.
カラス製品の表面あらさが規定限度を越えた場合に直ち
に金型を交換していた。When the surface roughness of a glass product exceeded a specified limit, the mold was immediately replaced.
本発明の目的は前記従来のねずみ鋳鉄にみられるような
優れた被削性および熱伝導度を保持しつつ、その欠点で
ある比較的高い熱亀裂感受性および耐酸化性、耐ぼう信
性、高温強度等を改廊したガラス成形用鋳鉄を提供する
ことにある。The purpose of the present invention is to maintain the excellent machinability and thermal conductivity found in the conventional gray cast iron, while avoiding the disadvantages of relatively high thermal cracking susceptibility, oxidation resistance, bubble resistance, and high temperature. Our objective is to provide cast iron for glass molding with improved strength, etc.
(問題点を解決するための手段)
本発明の前記のし1的は、
C:2.5〜3.5 %、
S i : 3.00 〜6.00 %、Aλ:0
〜2.0%、
MO二〇 〜 2.0%、
Cr:0 〜2.0%、
Ni:0〜 2.0%、
Cu:0 〜3.0%、
残部鉄および通常の不純物成分よりなる組成を看しく前
記成分値はいずれも料量%)、かついも虫状の黒鉛M1
織を有するガラス成形用鋳鉄を用いることによって達成
される。(Means for Solving the Problems) The first aspect of the present invention is as follows: C: 2.5 to 3.5%, Si: 3.00 to 6.00%, Aλ: 0
~2.0%, MO20~2.0%, Cr: 0~2.0%, Ni: 0~2.0%, Cu: 0~3.0%, balance from iron and normal impurity components Note the composition (all the above component values are amount %), and the graphite M1 has a caterpillar shape.
This is achieved by using glass-forming cast iron with a texture.
(作用)
本発明のガラス成形用鋳鉄においては、そのC成分によ
って形成されるはC片状の黒鉛組織により、得られるガ
ラス金型材の被削性および熱伝導度が基本的には従来の
ねずみ鋳鉄によるものと同様に極めてすぐれており、金
型への穿孔等の複雑な加工を容易なものとすると共に、
ガラス製品の熱ひずみによる破損率を低下させかつ製品
の迅速な取出しを可能にして生産性を向上させることが
できる。(Function) In the cast iron for glass forming of the present invention, the machinability and thermal conductivity of the resulting glass mold material are basically higher than that of conventional glass mold materials due to the C flake graphite structure formed by the C component. It is extremely superior, just like cast iron, and not only makes complex machining such as drilling holes in molds easy,
It is possible to reduce the breakage rate of glass products due to thermal strain and to enable quick removal of products, thereby improving productivity.
そして特に本発明のガラス成形用鋳鉄においては、従来
のねずみ鋳鉄に比較して、Si成分を増加させたことに
より耐酸化性が向上されかつAt変態点が上g1シて金
型材に対する熱サイクルの影響を回避することによって
金型の使用寿命が改善される。またC成分およびその他
の成分が前記特定の範囲に@定されているので、片状黒
鉛組織の相当部分がたとえば第1図の顕微鏡断面写真(
倍率140倍)に示すように先端の丸味のあるいも虫状
形態となり、熱応力の集中による亀裂の発生が抑ILさ
れて金型材の表面の劣化ないしは破損が防止される。In particular, the cast iron for glass molding of the present invention has improved oxidation resistance by increasing the Si content compared to conventional gray cast iron, and has an At transformation point higher than g1, which makes it difficult for the mold material to undergo thermal cycles. By avoiding the effects, the service life of the mold is improved. Furthermore, since the C component and other components are fixed within the above-mentioned specific range, a considerable portion of the flaky graphite structure is, for example, shown in the microscopic cross-sectional photograph (
As shown in the figure (140x magnification), it has a caterpillar-like shape with a rounded tip, suppressing the occurrence of cracks due to concentration of thermal stress, and preventing the surface of the mold material from deteriorating or breaking.
その池水発明においてはざらに夫々の所定範囲で複合療
加される前記A見、Xi、 Cr、MOlCu等の合金
化元素により、金型材のIIt酸化性および耐ぼう信性
等が向−ヒし基地金属組織が微細化しかつ強度が増大す
る。In the Ikemi invention, the alloying elements such as A, Xi, Cr, MOlCu, etc., which are combined in predetermined ranges, improve the IIt oxidation resistance and corrosion resistance of the mold material. The base metal structure becomes finer and the strength increases.
本発明のガラス成形用鋳鉄に用いられる前記各成分の作
用およびそれらの数値限定の意義ならびに黒鉛組織の形
状の限定について以下さらに説明する。The effects of the above-mentioned components used in the cast iron for glass forming of the present invention, the significance of their numerical limitations, and the limitations of the shape of the graphite structure will be further explained below.
Cは本発明のガラス成形用鋳鉄中に黒鉛組織を形成する
主元素であり、この縫は直接黒鉛化の度合およびその形
状に′#響を及ぼす0本発明においては良好な熱伝導特
性およびいも去状の黒鉛形態を得るための最適なCの範
囲を2.5〜3.5%(重量%、以下同じ)とした。2
65%以下のC量では黒鉛量が不足し、一方3.5%以
上ではいも虫状黒鉛が得難くなるためである。C is the main element that forms a graphite structure in the cast iron for glass forming of the present invention, and this stitch directly affects the degree of graphitization and its shape. The optimum range of C for obtaining the graphite form was set at 2.5 to 3.5% (weight %, the same applies hereinafter). 2
This is because if the C content is less than 65%, the amount of graphite is insufficient, while if it is more than 3.5%, it becomes difficult to obtain caterpillar-like graphite.
Siは鋳鉄のAt変態点を上昇させかつ耐酸化性を改善
する目的で加えられ、その範囲は3.00〜6.00%
である。 At変態点を800℃以上とするためには3
%以上のSi成分が必要であるが、Siが6%を越える
と基地のフェライト中に脆い金属間化合物力(多く生じ
るため好ましくない。Si is added to raise the At transformation point of cast iron and improve its oxidation resistance, and its content ranges from 3.00 to 6.00%.
It is. In order to make the At transformation point 800℃ or higher, 3
% or more of Si is required, but if Si exceeds 6%, it is not preferable because a large amount of brittle intermetallic compound force (brittle intermetallic compound force) occurs in the base ferrite.
A見は鋳鉄のA1変態点を上昇させまた1耐酸化性を改
善するが、多機の添加は溶湯の鋳造性を阻害するのでそ
の範囲を0〜2%とした。A content increases the A1 transformation point of cast iron and improves its oxidation resistance, but since the addition of multiple components impairs the castability of the molten metal, its range is set at 0 to 2%.
MOは鋳鉄の基地金属部の強度を改善し、とくに熱電g
J感受性を鈍化させるため添加する元素であるが、添加
着が2%を越えると粒界に炭化物を生じ材質を脆くさせ
るのでその範囲を0〜2%とした。MO improves the strength of the base metal part of cast iron, especially for thermoelectric g
This element is added to reduce J sensitivity, but if the amount exceeds 2%, carbides will form at the grain boundaries and make the material brittle, so the range is set to 0 to 2%.
Crは基地金属をwI密化しかつ耐熱性の改善に効果が
ある。しかし、2%以上を添加するとM。Cr is effective in making the base metal more dense and improving heat resistance. However, when 2% or more is added, M.
と同様に粒界に炭化物を生成し材質を脆くさせるのでそ
の範囲を0〜1.5%とした。Similarly, since carbides are generated at grain boundaries and make the material brittle, the range is set to 0 to 1.5%.
Niは基地金属を微細化させ、かつ酸化膜の安定に寄!
トする効果が大である。しかし、この効果はNi2%以
上としてもあまり有効ではないため0〜2%の範囲とし
た。Ni makes the base metal finer and contributes to the stability of the oxide film!
It has a great effect on However, this effect is not so effective even if the Ni content is 2% or more, so the Ni content is set in the range of 0 to 2%.
CuはNiと同様に基地金属を微細化させるために有効
であるが、3%以上添加するとかえって高温強度を低ド
させるためその範囲を0〜3%とした。Cu, like Ni, is effective in making the base metal finer, but if it is added in an amount of 3% or more, the high-temperature strength is reduced, so the range is set to 0 to 3%.
黒鉛組織は金型材としての鋳鉄の被削性と熱伝導度に直
接影響を及ぼし、前記のようになるべく片状に近くかつ
いも去状の形状のものを多く含むことが望ましいが、実
際上の点から厳密な形状および量的な特定は不可能であ
るので、現場実験で良好な結果の得られた金型の黒鉛組
織の観察に基いて決定した。第1図の顕微鏡写真1(倍
率140倍)に示すいも虫状の黒鉛を全黒鉛清の20%
以l二含むものが好ましい。The graphite structure directly affects the machinability and thermal conductivity of cast iron as a mold material, and as mentioned above, it is desirable to include as much of it as possible in the shape of flakes, but in practice Since it is impossible to specify the exact shape and quantity from the point, it was determined based on the observation of the graphite structure of the mold, which yielded good results in field experiments. The caterpillar-shaped graphite shown in micrograph 1 (140x magnification) in Figure 1 was taken as 20% of the total graphite powder.
Those containing the following are preferred.
実施例
本発明のガラス成形用鋳鉄の各成分を前記の各範囲内で
種々に変化させたものを通常の方法によって製造し、そ
れらのガラス金型として必要な品持性を従来のねずみM
鉄と比較して検討した。EXAMPLE Cast iron for glass molding of the present invention with various components within the above ranges was manufactured by a conventional method, and the quality necessary for glass molds was maintained using conventional mouse molds.
A comparison was made with iron.
表2は本発明鋳鉄の試料(A−F)の各成分組成をそれ
らの耐酸化性の尺度としての酸化増賃(IIK/ Cr
n’ )とノζに示す。表中、酸化増殖は85Q°C1
24時間の条件で測定した値である。Table 2 shows the composition of each component of the cast iron samples (A-F) of the present invention in terms of oxidation increment (IIK/Cr) as a measure of their oxidation resistance.
n') and ζ. In the table, oxidative growth is 85Q°C1
This is a value measured under 24 hour conditions.
以ド余白
表2からも明らかなように本発明鋳鉄の酸化の度合はS
従来ねずみ鋳鉄に比較して約115〜1/9に減少しで
おりその1耐酸化性は著しく向にされている。As is clear from Table 2 below, the degree of oxidation of the cast iron of the present invention is S.
Compared to conventional gray cast iron, the oxidation resistance has been reduced to about 115 to 1/9, and its oxidation resistance has been significantly improved.
次に本発明鋳鉄(試料B、E)と従来ねずみ鋳鉄の室温
(20℃)および600℃での1耐力を試験しその結果
を表3に示す。Next, the yield strength of the cast iron of the present invention (Samples B and E) and the conventional gray cast iron was tested at room temperature (20°C) and 600°C, and the results are shown in Table 3.
表3 耐力(0,2%)試験結果
20℃ 600℃
(kg/ c m’ ) (kg/ c m’
)本発明鋳鉄B 15.1 12.5E
13.6 10.3ねずみ鋳鉄
7.8 3.4(耐力においては本発明鋳鉄
は従来ねずみ鋳鉄のほぼ3倍程度の(diとなっている
。Table 3 Proof strength (0.2%) test results 20℃ 600℃ (kg/cm') (kg/cm'
) Invention cast iron B 15.1 12.5E
13.6 10.3 Gray cast iron
7.8 3.4 (In terms of yield strength, the cast iron of the present invention has a di that is approximately three times that of conventional gray cast iron.
すでに述べたように、従来ねずみ鋳鉄のガラス成形用金
型のハサイクルによる急速な劣化のfEな原因は熱つか
れによるものである。すなわち!111のように金型表
面か約500〜800℃の温度範囲で繰返し加熱冷却さ
れるため金型表面はAl変態点(約750℃)を繰返し
通過することとなり、このさい変tムにともなう体積変
化が生じてこれが極めて大きい熱応力に変換される。従
来のねずみ鋳鉄ではこの熱応力が鋭い切欠形状の片状黒
鉛先端部に集中するため多数の亀裂が容易に発生し破壊
に至っていた。本発明鋳鉄においては従来鋳鉄のこのよ
うな欠点を補うためAl f態点E昇効果の強い合金成
分としてSi成分を増大させると共にAiの添加を行な
った。 At変態点のに昇を従来鋳鉄の場合と比較して
表4に示す。As already mentioned, the main cause of rapid deterioration due to high cycles in conventional gray cast iron glass molding molds is due to heat exhaustion. That is! 111, the mold surface is repeatedly heated and cooled in the temperature range of approximately 500 to 800°C, so the mold surface repeatedly passes through the Al transformation point (approximately 750°C), and the volume due to the change in t. Changes occur that translate into extremely large thermal stresses. In conventional gray cast iron, this thermal stress is concentrated at the tip of the flaky graphite, which has a sharp notch shape, so that many cracks easily occur, leading to destruction. In the cast iron of the present invention, in order to compensate for these drawbacks of the conventional cast iron, the Si component was increased and Ai was added as an alloy component having a strong effect of raising the Al f state E. Table 4 shows the rise in the At transformation point in comparison with that of conventional cast iron.
表4
材質種類 Al変yム点(℃)未発11鉄A
912
ねずみp1鉄 743
表4からI!IIらかなように本発明鋳鉄(試料A、C
,F)のA1変態点はいずれも充分に800℃以トとな
り、金型の熱サイクルによる影響を避けることができた
。これはその他の試料B、D、Hについても同様であっ
た。Table 4 Material type Al deformation point (°C) undeveloped 11 iron A
912 Mouse p1 iron 743 From Table 4 I! II. Cast iron of the present invention (Samples A, C)
, F), the A1 transformation points were all sufficiently higher than 800°C, and the effects of thermal cycles of the mold could be avoided. The same was true for other samples B, D, and H.
また金型にはAlz点通過のさいに生じる熱応力以外に
も単純な加熱冷却にともなう熱応力が発生し、これが片
状黒鉛の先端部に集中するのでこれらの応力集中を避け
るため片状黒鉛の先端部形状に丸味を榮え、片状黒鉛形
状をいも去状とした。In addition to the thermal stress generated when passing through the Alz point, the mold also generates thermal stress due to simple heating and cooling, and this concentrates at the tip of the flaky graphite.In order to avoid this stress concentration, the flaky graphite The shape of the tip is rounded, and the shape of flaky graphite is similar to that of potato.
前記第1図の顕微鏡断面写真は本発明鋳鉄の試料Eにお
ける黒鉛組織を示す。The microscopic cross-sectional photograph in FIG. 1 shows the graphite structure of Sample E of the cast iron of the present invention.
写真のように黒鉛形状は先端が丸味を帯びており、適当
に分散しているのでねずみ鋳鉄の優れた切削性や熱伝導
度はそのまま保持されている。As shown in the photo, the graphite shape has rounded tips and is properly dispersed, so the excellent machinability and thermal conductivity of gray cast iron are maintained.
表5に本発明鋳鉄と従ねずみ来鋳鉄を500〜800°
Cに36000回繰返し加熱冷却の熱サイクルを71、
えた場合の結果を示す。Table 5 shows the present invention cast iron and conventional gray cast iron.
71 thermal cycles of heating and cooling repeated 36,000 times to C.
The results are shown below.
表5クラック試験結果
個数 1i均深さ 最大深さ
くm+s) (m)
本発す1#P1鉄B 27 0.043
0.140 38 0.048 0.18E
23 0.025 0.(19ねずみ鋳
鉄 7Ei O,1030,43本発明鋳
鉄のクラック発生個数およびその深さはいずれも従来ぬ
すみ鋳鉄に比較して大幅に減少している。Table 5 Crack test results Number of pieces 1i Uniform depth Maximum depth m+s) (m) Mainly generated 1#P1 iron B 27 0.043
0.140 38 0.048 0.18E
23 0.025 0. (19 Gray cast iron 7Ei O, 1030, 43 Both the number of cracks and their depth in the cast iron of the present invention are significantly reduced compared to the conventional gray cast iron.
(効果)
本発明によるガラス成形用#fiは、ガラス成形用とし
て従来のねずみ鋳鉄の場合と同様に優れた被削性を有し
て加工が容易であると共に、良好な熱伝導度のために製
品ガラスを大きな生産速度でかつ歩留り良く生産するこ
とができる。そして特に本発明のガラス金型成形用鋳鉄
は腐食ならびに熱的および機械的応力に対する耐性に優
れ、その金型使用寿命が著しく増大される。(Effects) The #fi for glass molding according to the present invention has excellent machinability and is easy to process as in the case of conventional gray cast iron, and has good thermal conductivity. Product glass can be produced at high production speed and with good yield. In particular, the cast iron for forming glass molds of the present invention has excellent resistance to corrosion and thermal and mechanical stress, and the service life of the mold is significantly increased.
第1図は本発明ガラス成形用鋳鉄の組織断面を拡大して
示すme鏡写真、m2図は従来技術のガラス成形用鋳鉄
の組織断面を拡大して示す顕微鏡写真である。
特許出願人 東洋鋳工株式会社
□ !
代理人弁理士 小 原 二 部・ ゛(ほか1名)
第1 区
第2図FIG. 1 is a me mirror photograph showing an enlarged cross-section of the structure of the cast iron for glass forming of the present invention, and FIG. Patent applicant: Toyo Chuko Co., Ltd.□! Representative Patent Attorney: Mr. Ohara, 2nd Department (1 other person), District 1, Figure 2
Claims (2)
記成分量はいずれも重量%)、かついも虫状の黒鉛組織
を有することを特徴とするガラス成形用鋳鉄。(1) C: 2.5-3.5%, Si: 3.00-6.00%, Al: 0-2.0%, Mo: 0-2.0%, Cr: 0-2.0 %, Ni: 0 to 2.0%, Cu: 0 to 3.0%, the balance is iron and normal impurity components (all of the above component amounts are weight %), and the graphite is in the form of a caterpillar. A cast iron for glass forming characterized by having a structure.
前記特許請求の範囲第1項記載のガラス成形用鋳鉄。(2) The cast iron for glass forming according to claim 1, wherein the caterpillar-like graphite structure accounts for 20% or more of the total graphite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28308285A JPS62142744A (en) | 1985-12-18 | 1985-12-18 | Cast iron for glass forming |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28308285A JPS62142744A (en) | 1985-12-18 | 1985-12-18 | Cast iron for glass forming |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62142744A true JPS62142744A (en) | 1987-06-26 |
Family
ID=17660978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28308285A Pending JPS62142744A (en) | 1985-12-18 | 1985-12-18 | Cast iron for glass forming |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62142744A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1386976A1 (en) * | 2002-07-24 | 2004-02-04 | Georg Fischer Fahrzeugtechnik AG | Cast iron |
CN100383075C (en) * | 2006-01-10 | 2008-04-23 | 西安理工大学 | A kind of manufacturing method of antirust cast iron glass handicraft |
CN103509992A (en) * | 2013-10-15 | 2014-01-15 | 沈阳工业大学 | Study and preparation of heat-resistant nodular cast iron |
CN105132796A (en) * | 2015-09-14 | 2015-12-09 | 苏州东方模具科技股份有限公司 | Medium silicon molybdenum alloy vermicular graphite cast iron glass mold material and preparation method thereof |
WO2017111720A1 (en) * | 2015-12-25 | 2017-06-29 | Ford Otomotiv Sanayi Anonim Sirketi | Cast iron alloy provided with improved mechanical and thermal properties |
CN110079727A (en) * | 2019-06-12 | 2019-08-02 | 成都新志实业有限公司 | One kind is resistance to hanker chromium vermicular cast iron glass mold material and preparation method thereof |
CN111139397A (en) * | 2019-12-23 | 2020-05-12 | 山东时风(集团)有限责任公司 | Rapid preparation method of vermicular cast iron truck brake disc |
CN111621691A (en) * | 2020-05-12 | 2020-09-04 | 安徽天平机械股份有限公司 | Automobile drive axle housing and casting process thereof |
-
1985
- 1985-12-18 JP JP28308285A patent/JPS62142744A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1386976A1 (en) * | 2002-07-24 | 2004-02-04 | Georg Fischer Fahrzeugtechnik AG | Cast iron |
CN100383075C (en) * | 2006-01-10 | 2008-04-23 | 西安理工大学 | A kind of manufacturing method of antirust cast iron glass handicraft |
CN103509992A (en) * | 2013-10-15 | 2014-01-15 | 沈阳工业大学 | Study and preparation of heat-resistant nodular cast iron |
CN105132796A (en) * | 2015-09-14 | 2015-12-09 | 苏州东方模具科技股份有限公司 | Medium silicon molybdenum alloy vermicular graphite cast iron glass mold material and preparation method thereof |
WO2017111720A1 (en) * | 2015-12-25 | 2017-06-29 | Ford Otomotiv Sanayi Anonim Sirketi | Cast iron alloy provided with improved mechanical and thermal properties |
CN110079727A (en) * | 2019-06-12 | 2019-08-02 | 成都新志实业有限公司 | One kind is resistance to hanker chromium vermicular cast iron glass mold material and preparation method thereof |
CN111139397A (en) * | 2019-12-23 | 2020-05-12 | 山东时风(集团)有限责任公司 | Rapid preparation method of vermicular cast iron truck brake disc |
CN111621691A (en) * | 2020-05-12 | 2020-09-04 | 安徽天平机械股份有限公司 | Automobile drive axle housing and casting process thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
McAndrew et al. | Ti-36 pct Al as a base for high temperature alloys | |
KR101659704B1 (en) | Process for setting the thermal conductivity of a steel and use of tool steel | |
JP3351970B2 (en) | Corrosion resistant high vanadium powder metallurgy tool steel body with improved metal-metal wear resistance and method of making same | |
US3356542A (en) | Cobalt-nickel base alloys containing chromium and molybdenum | |
JPS5837160A (en) | Cast alloy for guide shoe of inclined hot rolling mill for manufacturing seamless steel pipe | |
EP0343292B1 (en) | Low thermal expansion casting alloy | |
CN109943772A (en) | Graphitic steel steel and the graphitic steel for improving machinability | |
JPS62142744A (en) | Cast iron for glass forming | |
Raveendran et al. | Effect of machining parameters on surface roughness for aluminium matrix composite by using Taguchi method with decision tree algorithm | |
JP2001262277A (en) | Low thermal expansion alloy excellent in machinability and its producing method | |
JPS6051547B2 (en) | Low thermal expansion cast iron | |
EP0467857B1 (en) | Powder metallurgy tool steel | |
CN110106420B (en) | Co-based high-temperature alloy and preparation method and application thereof | |
JP2953663B2 (en) | Tool steel for hot working | |
US3712808A (en) | Deep hardening steel | |
JP2590079B2 (en) | Low expansion cast iron with excellent machinability | |
JPS62112761A (en) | Tool steel for warm and hot working | |
JPS5842743A (en) | Cast ni alloy for guide shoe of inclined hot rolling mill for manufacturing seamless steel pipe | |
Meena et al. | Machinability of Austempered Ductile Iron (ADI) Produced by Integrated Green Technology of Continuous Casting‐Heat Treatment Processes | |
US2035393A (en) | Wear resistant cast iron | |
JP2585014B2 (en) | Free-cutting high-strength low-thermal-expansion cast alloy and method for producing the same | |
JP4278060B2 (en) | Spherical vanadium carbide-containing low thermal expansion material excellent in wear resistance and method for producing the same | |
JPS59153871A (en) | High toughness Fe-Cr-Ni casting alloy for guide shoes | |
US2327561A (en) | Silver-containing free-machining die steel | |
JP2642347B2 (en) | Manufacturing method of high hardness member |