JPS6317553A - Semiconductor memory storage and its manufacture - Google Patents
Semiconductor memory storage and its manufactureInfo
- Publication number
- JPS6317553A JPS6317553A JP61163025A JP16302586A JPS6317553A JP S6317553 A JPS6317553 A JP S6317553A JP 61163025 A JP61163025 A JP 61163025A JP 16302586 A JP16302586 A JP 16302586A JP S6317553 A JPS6317553 A JP S6317553A
- Authority
- JP
- Japan
- Prior art keywords
- insulating film
- columnar region
- semiconductor
- layer
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/39—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench
- H10B12/395—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench the transistor being vertical
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体記憶装置およびその製造方法に関し、特
に絶縁ゲート型電界効果トランジスタを含む半導体記憶
装置およびその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor memory device and a method of manufacturing the same, and more particularly to a semiconductor memory device including an insulated gate field effect transistor and a method of manufacturing the same.
電荷の形で二進情報を貯蔵する半導体のメモリセルはセ
ル面積が小さいため、高集積、大容量メモリセルとして
優れている。特にメモリセルとして一つのトランジスタ
と一つのキャパシタとからなるメモリセル(以下、1ト
ランジスタ型メモリセルと称す)は、構成要素も少なく
メモリセル面積も小さいため高集積記憶装置用のメモリ
として重要である。ところで、最近では、メモリ□セル
の高集積化によるメモルセルサイズの縮小に伴い。Semiconductor memory cells that store binary information in the form of charges have a small cell area, making them excellent as highly integrated and large-capacity memory cells. In particular, a memory cell consisting of one transistor and one capacitor (hereinafter referred to as a one-transistor type memory cell) is important as a memory for highly integrated storage devices because it has few components and has a small memory cell area. . By the way, recently, the size of memory cells has been reduced due to higher integration of memory cells.
1トランジスタ型メモリセル構造における容量部面積が
減少してきている。そのため容量部面積の減少による記
憶電荷量の減少は、耐α粒子問題、センスアンプの感度
不足の問題等を引き起している。The area of a capacitive part in a one-transistor type memory cell structure is decreasing. Therefore, a decrease in the amount of storage charge due to a decrease in the area of the capacitor section causes problems such as resistance to alpha particles and insufficient sensitivity of the sense amplifier.
従来、このような問題点を解決するため、メモリセル面
積の縮小にもかかわらず大きな記憶容量部を形成する方
法として次のようなものが知られている。Conventionally, in order to solve such problems, the following method has been known as a method of forming a large storage capacity section despite the reduction of the memory cell area.
第3図は従来の半導体記憶装置の一例の模式的断面図で
ある。例えば、国際固体素子会議(In−teroat
ional Electron Devices Me
eting) 1982年の806〜808ページに「
ア・コルゲーテッド・キャパシタ・セル・フォア・メガ
ビット・ダイナミック・モス・メモリーズ」 (^Co
rrugated Ca−pacitor Ce1l
(CCC) For Megabit Dyna、mi
c MOSMe+5orics)と題して発表された論
文においては、第3図に示すように、メモリセルの容量
部を半導体基板に埋め込んだ溝型の1トランジスタ型メ
モリセルが提案されている。FIG. 3 is a schematic cross-sectional view of an example of a conventional semiconductor memory device. For example, the International Conference on Solid State Devices (In-teroat
ional Electron Devices Me
eting) 1982, pages 806-808, “
A Corrugated Capacitor Cell for Megabit Dynamic Moss Memories” (^Co
rrugated Ca-pacitor Ce1l
(CCC) For Megabit Dyna,mi
In a paper published under the title MOSMe+5orics), a groove-type one-transistor memory cell in which the capacitive part of the memory cell is buried in a semiconductor substrate is proposed, as shown in FIG.
第3図において、容量電極12は、反転層6″との間に
誘電体膜4′を挟んでキャパシタを構成し、電荷は反転
層6″に蓄積される。ゲート8′がワード線に接続され
たメモリトランジスタは、ビット線に接続された拡散層
3′と、反転層6″に接続された拡散層6′との間の電
荷の移動を制御する。又、絶縁膜9′は隣接する他のメ
モリセルとの分離用の絶縁膜である。この第3図に示し
た溝型の1トランジスタ型メモリセルは、従来の1トラ
ンジスタ型メモリセルのキャパシタ部を半導体基板1′
に形成した溝の深さを十分にとることにより、大きな容
量を確保することが可能となっている。In FIG. 3, the capacitor electrode 12 forms a capacitor with a dielectric film 4' sandwiched between it and the inversion layer 6'', and charges are accumulated in the inversion layer 6''. The memory transistor whose gate 8' is connected to the word line controls charge movement between the diffusion layer 3' connected to the bit line and the diffusion layer 6' connected to the inversion layer 6''. , the insulating film 9' is an insulating film for isolation from other adjacent memory cells.The trench-type one-transistor memory cell shown in FIG. Semiconductor substrate 1'
By making the grooves deep enough, it is possible to secure a large capacity.
しかしながら、従来の溝型メモリセル構造では、メモリ
トランジスタが半導体基板表面上に形成されているため
、まだメモリトランジスタの平面的な面積分がどうして
も必要である。このメモリトランジスタによる平面的な
面積の増加分は、メモリの高集積化に伴うメモリセル面
積微細化の大きな障壁となっている。溝型の1トランジ
スタ型メモリセルでは、メモリトランジスタの微細化を
行ない、メモリセル面積の微細化を行なおうとしている
。しかし、メモリトランジスタの微細化は、ホットエレ
クトロンによるトランジスタ特性の劣化を引起し、メモ
リセルの信頼性を低下するという欠点を有している。又
、溝型の1トランジスタ型メモリセルでは、溝側面に反
転層を形成するため、α線の実効的な衝突断面積が増加
し、ソフトエラーが生じ易くなるという欠点もある。However, in the conventional trench type memory cell structure, since the memory transistor is formed on the surface of the semiconductor substrate, a planar area of the memory transistor is still necessary. This increase in planar area due to the memory transistor is a major barrier to miniaturization of the memory cell area as memory integration becomes higher. In trench type one-transistor type memory cells, efforts are being made to miniaturize the memory transistors and to miniaturize the memory cell area. However, miniaturization of memory transistors has the disadvantage that hot electrons cause deterioration of transistor characteristics, reducing reliability of memory cells. In addition, in the trench type one-transistor memory cell, since an inversion layer is formed on the side surface of the trench, the effective collision cross section of α rays increases, and soft errors are more likely to occur.
本発明の目的は、高信頼度でα線等によるソフトエラー
がなく高集積化に適した、微細化されたメモリセルを蒼
する半導体記憶装置およびその製造方法を提供すること
にある。SUMMARY OF THE INVENTION An object of the present invention is to provide a highly reliable semiconductor memory device that is free from soft errors caused by alpha rays, etc., and that is suitable for high integration, and that has miniaturized memory cells, and a method for manufacturing the same.
本発明の半導体記憶装置は、一導電型の半導体基板表面
に設けた所定の深さの第1の溝によって囲まれた前記半
導体基板の柱状領域の上部と、該柱状領域の上部側面に
沿って前記第1の溝の底面に設けた前記第1の溝の幅よ
りも狭い所定の深さの第2の溝によって囲まれた前記半
導体基板の柱状領域の下部と、前記柱状領域の上部表面
上に絶縁膜を介して設けた反対導電型の拡散層と、前記
絶縁膜直下の前記柱状領域の上部側面を所定の幅で帯状
に一周して開口する窓の部分を残して前記柱状領域の上
部及び下部側面と前記第2の溝の側面及び底面とを覆う
誘電体膜と、前記窓と前記絶縁膜との側面を覆って所定
の幅で前記柱状領域の上部側面を囲み前記窓を通して前
記半導体基板と接続しかつPN接合を介して前記拡散層
と接続した一導電型の半導体層と、前記第2の溝を埋込
む姿態に前記誘電体膜を覆いかつPN接合を介して前記
半導体層下面と接続した反対導電型の容量電極と、前記
半導体層の側面をゲート絶縁膜を介して覆い所定の幅で
前記柱状領域の上部側面を囲むゲートとを含んで構成さ
れる。The semiconductor memory device of the present invention includes an upper part of a columnar region of the semiconductor substrate surrounded by a first groove of a predetermined depth provided in the surface of a semiconductor substrate of one conductivity type, and along an upper side surface of the columnar region. A lower part of the columnar region of the semiconductor substrate surrounded by a second groove having a predetermined depth narrower than the width of the first groove provided on the bottom surface of the first groove, and an upper surface of the columnar region. a diffusion layer of the opposite conductivity type provided through an insulating film, and an upper part of the columnar region leaving a window opening opening in a strip shape with a predetermined width around the upper side surface of the columnar region directly under the insulating film. and a dielectric film covering a lower side surface and a side surface and a bottom surface of the second groove, and a dielectric film covering the side surface of the window and the insulating film, surrounding the upper side surface of the columnar region with a predetermined width, and transmitting the semiconductor through the window. a semiconductor layer of one conductivity type connected to the substrate and connected to the diffusion layer via a PN junction; and a gate that covers the side surface of the semiconductor layer via a gate insulating film and surrounds the upper side surface of the columnar region with a predetermined width.
本発明の半導体記憶装置の製造方法は、一導電型の半導
体基板表面上に絶縁膜と反対導電型の第1の不純物層と
を順次形成する工程と、所定のパターンで前記第1の不
純物層、前記絶縁膜及び前記半導体基板を順次除去して
所定の深さの溝に囲まれた上部表面に前記絶縁膜と前記
第1の不純物層とを積層した前記半導体基板の柱状領域
を形成する工程と、前記絶縁膜直下の前記柱状領域の上
部側面を所定の幅で帯状に一周する窓を開口して前記柱
状領域の側面及び前記溝の底面に選択的に第1の誘電帯
膜を形成する工程と、前記半導体基板の表面全体に一導
電型の半導体層を形成する工程と、該半導体層の前記窓
よりも低い所定の部分に選択的に反対導電型の不純物を
導入して反対導電型の第2の不純物層を形成する工程と
、前記柱状領域、前記絶縁膜及び前記第1の不純物層の
側面の前記半導体層並びに前記柱状領域側面の前記第2
の不純物層を残して前記柱状領域の上部表面の前記半導
体層と前記溝の底面上の前記第2の不純物層及び前記第
1の誘電体膜とを除去する工程と、前記第1の半導体層
及び前記第1の不純物層の上部表面に反対導電型の高濃
度不純物を導入して前記絶縁膜上に反対導電型の領域層
を形成すると共に前記第2の不純物層側面に選択的に第
2の誘電体膜を形成する工程と、前記溝の底面の前記半
導体基板表面から前記第2の不純物層と前記半導体層と
の接合面より低い所定の高さまで一導電型の半導体領域
で前記溝の一部を充填して前記第1及び第2の誘電体膜
によって囲まれた前記第2の不純物層を容量電極とする
キャパシタを形成する工程と、前記半導体領域上部表面
に選択的に他の絶縁膜を形成する工程と、前記半導体層
の側面にゲート絶縁膜を形成する工程と、前記半導体層
の側面をゲート絶縁膜を介して覆い所定の幅で前記柱状
領域の側面を囲むゲートを形成する工程とを含んで構成
される。The method for manufacturing a semiconductor memory device of the present invention includes the steps of sequentially forming an insulating film and a first impurity layer of an opposite conductivity type on the surface of a semiconductor substrate of one conductivity type, and forming the first impurity layer in a predetermined pattern. , a step of sequentially removing the insulating film and the semiconductor substrate to form a columnar region of the semiconductor substrate in which the insulating film and the first impurity layer are laminated on the upper surface surrounded by a groove of a predetermined depth; and forming a first dielectric band film selectively on the side surface of the columnar region and the bottom surface of the groove by opening a window that goes around the upper side surface of the columnar region directly under the insulating film in a band shape with a predetermined width. forming a semiconductor layer of one conductivity type over the entire surface of the semiconductor substrate; and selectively introducing impurities of the opposite conductivity type into a predetermined portion of the semiconductor layer lower than the window to form a semiconductor layer of the opposite conductivity type. forming a second impurity layer on a side surface of the columnar region, the insulating film, and the first impurity layer;
removing the semiconductor layer on the upper surface of the columnar region, the second impurity layer and the first dielectric film on the bottom surface of the groove, leaving an impurity layer of the first semiconductor layer; and introducing a high concentration impurity of the opposite conductivity type into the upper surface of the first impurity layer to form a region layer of the opposite conductivity type on the insulating film, and selectively introducing a second impurity into the side surface of the second impurity layer. forming a dielectric film of one conductivity type in the groove from the surface of the semiconductor substrate at the bottom of the groove to a predetermined height lower than the junction surface between the second impurity layer and the semiconductor layer; forming a capacitor using the second impurity layer surrounded by the first and second dielectric films as a capacitance electrode; and selectively forming another insulating layer on the upper surface of the semiconductor region. a step of forming a gate insulating film on a side surface of the semiconductor layer; and a step of forming a gate that covers the side surface of the semiconductor layer via a gate insulating film and surrounds the side surface of the columnar region with a predetermined width. It consists of a process.
次に、本発明の実施例について図面を参照して説明する
。Next, embodiments of the present invention will be described with reference to the drawings.
第1図(a)、(b)及び(c)はそれぞれ本発明の半
導体記憶装置の一実施例の平面図、A−A線断面図及び
B−B線断面図である。FIGS. 1(a), 1(b) and 1(c) are a plan view, a sectional view taken along the line AA, and a sectional view taken along the line BB, respectively, of an embodiment of the semiconductor memory device of the present invention.
この実施例は、P型のシリコン基板1の柱状領域のシリ
コン基板1aの上にビット線用の配線10と接続したN
型の拡散層3のドレインを絶縁膜2を介して設け、柱状
領域のシリコン基板1aの上部側面を囲むようにシリコ
ン基板1aと接続しかつ拡散層3のドレインとPN接合
を介して接続したP型の半導体層5を設け、半導体基板
1a及び1bとの間で誘電体膜4を介してメモリセルの
キャパシタを構成する容量電極と半導体層5との間でP
N接合を介して接続したソースとを兼ねたN型の拡散層
6を設け、半導体層5の側面にゲート絶縁膜7を介して
柱状領域の上部のシリコン基板1aを囲むようにゲート
8を設けた構造をしている。又、このゲート8は、第1
図(a>に示すように、行方向(横方向)に共通に接続
することによってワード線をも構成している。In this embodiment, an N
The drain of the diffusion layer 3 of the mold is provided through the insulating film 2, and connected to the silicon substrate 1a so as to surround the upper side surface of the silicon substrate 1a in the columnar region, and connected to the drain of the diffusion layer 3 through a PN junction. A type semiconductor layer 5 is provided between the semiconductor substrates 1a and 1b, and a dielectric film 4 is interposed between the semiconductor layer 5 and a capacitive electrode constituting the capacitor of the memory cell.
An N-type diffusion layer 6 that also serves as a source is provided, which is connected via an N junction, and a gate 8 is provided on the side surface of the semiconductor layer 5 so as to surround the silicon substrate 1a above the columnar region with a gate insulating film 7 interposed therebetween. It has a similar structure. Moreover, this gate 8
As shown in the figure (a>), a word line is also formed by common connection in the row direction (horizontal direction).
即ち、この実施例では、メモリセルのキャパシタばかり
でなくメモリトランジスタも柱状領域のシリコン基板の
側面に設けているため、より微細化されたメモリセルを
容易に得ることができる。That is, in this embodiment, since not only the capacitor of the memory cell but also the memory transistor is provided on the side surface of the silicon substrate in the columnar region, it is possible to easily obtain a more miniaturized memory cell.
第2図(a)〜(りは本発明の半導体記憶装置の製造方
法の一実施例を説明するための工程順に示した半導体チ
ップの断面図である。FIGS. 2(a) to 2(a) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining an embodiment of the method for manufacturing a semiconductor memory device of the present invention.
この実施例は、まず、第2図(a)に示すように、P型
シリコン基板1上に厚い酸化膜2およびN型不純物を含
んだ多結晶シリコン膜3aを順次形成した後、その上に
柱状領域を形成するためのホトレジスト膜11aを所定
のパターンで残す。In this embodiment, as shown in FIG. 2(a), first, a thick oxide film 2 and a polycrystalline silicon film 3a containing N-type impurities are sequentially formed on a P-type silicon substrate 1, and then A photoresist film 11a for forming columnar regions is left in a predetermined pattern.
次に、第2図(b)に示すように、ホトレジスト膜11
aをエツチング用マスクとして、多結晶シリコン膜3a
、酸化膜2及びシリコン基板1を、異方性エツチング法
により順次エツチング除去して、柱状領域のシリコン基
板1aを形成した後、ホトレジスト膜11aを除去して
熱酸化法により柱状領域のシリコン基板1a表面及び多
結晶シリコン膜3a表面にシリコンの酸化膜である誘電
体膜4a及び絶縁膜4a’を形成する。Next, as shown in FIG. 2(b), the photoresist film 11
Using a as an etching mask, polycrystalline silicon film 3a is
, the oxide film 2 and the silicon substrate 1 are sequentially etched away by an anisotropic etching method to form a silicon substrate 1a in a columnar region, and then the photoresist film 11a is removed and the silicon substrate 1a in a columnar region is removed by a thermal oxidation method. A dielectric film 4a, which is a silicon oxide film, and an insulating film 4a' are formed on the surface and the surface of the polycrystalline silicon film 3a.
次に、第2図(c)に示すように、ホトレジストをウェ
ーハ全面に塗布してシリコン基板1の溝を埋めた後、異
方性エツチング技術によりホトレジスト膜表面が柱状領
域のシリコン基板1aの表面位置よりも下にくるように
エツチングしてホトレジスト膜11bを形成し、しがる
後、このホトレジスト膜11bをエツチング用マスクと
して、柱状領域のシリコン基板1aの側面上部の誘電体
膜4aをエツチング除去してシリコン基板上部を一周す
る窓を開孔すると共に多結晶シリコン層3a表面の絶縁
膜4a’も除去する。Next, as shown in FIG. 2(c), after coating the entire surface of the wafer with photoresist to fill the grooves in the silicon substrate 1, the photoresist film surface is etched onto the surface of the silicon substrate 1a in the columnar region using an anisotropic etching technique. A photoresist film 11b is formed by etching so as to be below the position, and then, using this photoresist film 11b as an etching mask, the dielectric film 4a on the upper side of the silicon substrate 1a in the columnar region is etched away. Then, a window is formed that goes around the upper part of the silicon substrate, and the insulating film 4a' on the surface of the polycrystalline silicon layer 3a is also removed.
次に、第21Z(d>に示すように、ホトレジスト膜1
1bを除去した後、ウェーハ全面に薄い多結晶シリコン
膜の半導体層5を形成し、次に、熱処理を行なうことに
より少なくとも柱状領域のシリコン基板1a上部の窓付
近の半導体層らの薄い多結晶シリコン膜を単結晶化させ
、更に、N型不純物を含んだ絶縁膜9aをウェーハ全面
に形成し、しかる後ホトレジストをウェーハ全面に塗布
してシリコン基板の溝を埋めこれを異方性エツチング技
術により表面が柱状領域のシリコン基板1aの下部にく
るようにエツチングして、ホトレジスト膜11cを形成
する。Next, as shown in the 21st Z(d>), the photoresist film 1
After removing the semiconductor layer 1b, a thin polycrystalline silicon film semiconductor layer 5 is formed on the entire surface of the wafer, and then heat treatment is performed to remove the thin polycrystalline silicon film of the semiconductor layer near the window on the top of the silicon substrate 1a at least in the columnar region. The film is made into a single crystal, and an insulating film 9a containing N-type impurities is formed on the entire surface of the wafer, and then photoresist is applied to the entire surface of the wafer to fill the grooves in the silicon substrate. A photoresist film 11c is formed by etching so that the photoresist film 11c is located under the columnar region of the silicon substrate 1a.
次に、第2図(e)に示すように、ホトレジスト膜11
cをエツチング用マスクとしてn型不純物を含んだ絶縁
膜9aをエツチングした後、ホトレジスト膜11cを除
去し、しかる後熱処理を行なって絶縁膜9aよりn型不
純物を半導体層5の薄い多結晶シリコン膜中に拡散して
拡散層6を形成する。Next, as shown in FIG. 2(e), the photoresist film 11
After etching the insulating film 9a containing n-type impurities using etching mask c as an etching mask, the photoresist film 11c is removed, and then heat treatment is performed to remove the n-type impurities from the insulating film 9a into the thin polycrystalline silicon film of the semiconductor layer 5. It diffuses into the interior to form a diffusion layer 6.
次に、第2図(f>に示すように、絶縁膜9aをエツチ
ング除去した後、異方性エツチング技術を用いて半導体
層5と拡散層6の薄い多結晶シリコン膜を選択的にエツ
チングして柱状領域のシリコン基板1aの側面にのみ半
導体層5及び拡散層6の薄い多結晶シリコン膜を残し、
ひき続き異方性エツチング技術を用いてシリコン基板1
の溝の底部に形成されている誘電体膜4aのみをエツチ
ング除去する。Next, as shown in FIG. 2 (f>), after removing the insulating film 9a by etching, the thin polycrystalline silicon films of the semiconductor layer 5 and the diffusion layer 6 are selectively etched using an anisotropic etching technique. The thin polycrystalline silicon film of the semiconductor layer 5 and the diffusion layer 6 is left only on the side surface of the silicon substrate 1a in the columnar region.
Subsequently, silicon substrate 1 is etched using anisotropic etching technology.
Only the dielectric film 4a formed at the bottom of the groove is etched away.
次に、第2図(g>に示すように、ホトレジストをウェ
ーハ全面に塗布してシリコン基板の溝を埋めた後、異方
性エツチング技術によりホトレジスト膜の表面が多結晶
シリコン膜3aの表面位置よりも下にくるようにエツチ
ングしてホトレジスト膜lidを形成し、その後このホ
トレジスト膜lidをマスクとしてイオン注入法により
多結晶シリコン膜3a及び薄い多結晶シリコン膜の半導
体層5aの上部表面に高濃度のN型不純物を注入してN
型の拡散層3を形成する。Next, as shown in FIG. 2 (g>), after coating the entire surface of the wafer with photoresist to fill the grooves in the silicon substrate, anisotropic etching techniques are used to align the surface of the photoresist film to the surface position of the polycrystalline silicon film 3a. A photoresist film lid is formed by etching so as to be lower than the polycrystalline silicon film 3a and the upper surface of the thin polycrystalline silicon film semiconductor layer 5a by ion implantation using this photoresist film lid as a mask. By implanting N-type impurities of
A mold diffusion layer 3 is formed.
次に、第2図(h>に示すように、ホトレジスト膜li
dを除去した後、熱酸化法によりウェーハ全面を酸化し
て誘電体膜4b及び絶縁膜7aを形成すると共に多結晶
シリコン膜3a及び薄い多結晶シリコン膜の半導体層5
の上部表面には高濃度のN型不純物が注入されているた
め熱酸化の際増速酸化とn型不純物の拡散が起り他の領
域に比べて厚い絶縁膜9bと絶縁膜2上の拡散層3が形
成される。Next, as shown in FIG. 2 (h>), a photoresist film li
After removing d, the entire surface of the wafer is oxidized by a thermal oxidation method to form a dielectric film 4b and an insulating film 7a, as well as a polycrystalline silicon film 3a and a semiconductor layer 5 of a thin polycrystalline silicon film.
Because a high concentration of N-type impurity is implanted into the upper surface of the insulating film 9b and the diffusion layer on the insulating film 2, which is thicker than other regions, enhanced oxidation and diffusion of the n-type impurity occur during thermal oxidation. 3 is formed.
次に、第2図(i)に示すように、異方性エツチング技
術によりシリコン基板1の溝の底面に形成されている誘
電体M4bのみをエツチング除去した後、選択エピタキ
シャル成長技術によりシリコン基板lの溝の底面よりP
型不純物を含んだシリコン基板1bを形成する。このシ
リコン基板1bの高さは、この表面が拡散層6と半導体
層5とのPN接合面の位置より下にくるようにする。Next, as shown in FIG. 2(i), only the dielectric M4b formed at the bottom of the groove of the silicon substrate 1 is etched away using an anisotropic etching technique, and then the silicon substrate 1 is etched using a selective epitaxial growth technique. P from the bottom of the groove
A silicon substrate 1b containing type impurities is formed. The height of this silicon substrate 1b is such that its surface is below the position of the PN junction surface between the diffusion layer 6 and the semiconductor layer 5.
次に、第2図(j>に示すように、半導体層5の側面上
部に形成されている絶縁膜7aをエツチング除去した後
、再び熱酸化法により半導体層5及びシリコン基板1b
の表面にそれぞれゲート絶縁膜7及び絶縁膜9cを形成
する。Next, as shown in FIG. 2 (j), after removing the insulating film 7a formed on the upper side surface of the semiconductor layer 5 by etching, the semiconductor layer 5 and the silicon substrate 1b are removed by thermal oxidation again.
A gate insulating film 7 and an insulating film 9c are respectively formed on the surfaces of the gate insulating film 7 and the insulating film 9c.
次に、第2図(k>に示すように、ウェーハ全面に多結
晶シリコン膜を成長させ、その後この多結晶シリコン膜
に熱酸化法等によりN型不純物としてリンを拡散し、し
かる後異法性エツチング技術を用いてこの多結晶シリコ
ン膜をエツチングし、柱状領域のシリコン基板1aの周
囲にゲート8を形成する。Next, as shown in FIG. This polycrystalline silicon film is etched using an etching technique to form a gate 8 around the silicon substrate 1a in the columnar region.
次に、第2図(e)に示すように、シリコン基板1の溝
を埋めかつ表面が平坦になるようウェーハ全面に絶縁M
9を成長した後、N型不純物を含む拡散層3上にコンタ
クト用の窓を開孔した後に、アルミニウムの配線10を
成長させこれをバターニングする。かくして、第1図(
a)、(b)及び(c)に示した本発明の半導体記憶装
置が得られる。Next, as shown in FIG. 2(e), an insulating layer is placed over the entire surface of the wafer so as to fill the grooves in the silicon substrate 1 and make the surface flat.
9, a contact window is formed on the diffusion layer 3 containing N-type impurities, and then an aluminum wiring 10 is grown and patterned. Thus, Figure 1 (
The semiconductor memory devices of the present invention shown in a), (b) and (c) are obtained.
以上詳細説明したように、本発明は、メモリセルのキャ
パシタばかりでなくメモリトランジスタをも半導体基板
の柱状領域の側面に形成しているので、微細構造のメモ
リセルが容易に得られ、しかも柱状領域の高さを高く取
ることによりチャネル長の長いメモリトランジスタを容
易に形成できるので、ホットエレクトロンの問題も生ぜ
ずメモリセルの信頼性が向上するという効果がある。更
に又、チャンネル長の長いメモリトランジスタによって
、電源電圧を下げる必要もなく十分な蓄積電荷を容易に
確保できて、その上電荷蓄積部がその周囲を絶縁膜で囲
まれているためα線によるソフトエラーを防止できると
いう効果もある。As described in detail above, in the present invention, not only the capacitor of the memory cell but also the memory transistor is formed on the side surface of the columnar region of the semiconductor substrate, so that a memory cell with a fine structure can be easily obtained. By increasing the height of the memory transistor, a memory transistor with a long channel length can be easily formed, thereby eliminating the problem of hot electrons and improving the reliability of the memory cell. Furthermore, by using a memory transistor with a long channel length, it is possible to easily secure sufficient accumulated charge without lowering the power supply voltage.Furthermore, since the charge accumulation part is surrounded by an insulating film, softness caused by alpha rays can be easily secured. It also has the effect of preventing errors.
第1図(a>、(b)及び(c)はそれぞれ本発明の半
導体記憶装置の一実施例の平面図、A−A線断面図及び
B−B線断面図、第2図(a)〜<e>は本発明の半導
体記憶装置の製造方法の一実施例を説明するための工程
順に示した半導体チップの断面図、第3図は従来の半導
体記憶装置の一例の模式的断面図である。
1.1’ 、la、lb・・・シリコン基板、2・・・
絶縁膜、3.3′・・・拡散層、3a・・・多結晶シリ
コン膜、4.4’ 、4a−・誘電体膜、4a、’、4
b−絶縁膜、5・・・半導体層、6,6′・・・拡散層
、6″・・・反転層、7・・・ゲート絶縁膜、7a・・
・絶縁膜、8.8’−・・ゲート、9.9’ 、9a、
9b、9c・・・絶縁膜、10 ・・・配線、lla、
llb、11c、lid・・・ホトレジスト膜、12・
・・容量電極。
(トノ
((1”)
ムf(1,/b シリコン五本灸、2余色未にハチ、
。
3に萱グツ憑、 4立大1にセ1月箕1.5−半■暢有
ん菅Z 主広散尼、7ケート帽色季1月ψ3.δゲ°斗
79花縁膜、/θ配轍
¥51 面FIGS. 1(a), (b) and (c) are a plan view, a cross-sectional view along the line A-A and a cross-sectional view along the line B-B, respectively, and FIG. ~<e> is a cross-sectional view of a semiconductor chip shown in the order of steps for explaining an embodiment of the method for manufacturing a semiconductor memory device of the present invention, and FIG. 3 is a schematic cross-sectional view of an example of a conventional semiconductor memory device. Yes. 1.1', la, lb...silicon substrate, 2...
Insulating film, 3.3'...Diffusion layer, 3a...Polycrystalline silicon film, 4.4', 4a--Dielectric film, 4a,', 4
b-Insulating film, 5... Semiconductor layer, 6, 6'... Diffusion layer, 6''... Inversion layer, 7... Gate insulating film, 7a...
・Insulating film, 8.8'--Gate, 9.9', 9a,
9b, 9c... Insulating film, 10... Wiring, lla,
llb, 11c, lid... photoresist film, 12.
...Capacitive electrode. (Tono((1”) Muf(1,/b Silicon five moxibustion, 2 extra colors and Hachi,
. 3. Kayagutsu Tsutsui, 4. Ritsudai 1, Se1 month 1.5 - half ■ Nobuan Suga Z Shuko Sanni, 7 Kate hat color season January ψ 3. δge°to 79 flower margin membrane, /θ track arrangement ¥51 surface
Claims (2)
第1の溝によって囲まれた前記半導体基板の柱状領域の
上部と、該柱状領域の上部側面に沿つて前記第1の溝の
底面に設けた前記第1の溝の幅よりも狭い所定の深さの
第2の溝によつて囲まれた前記半導体基板の柱状領域の
下部と、前記柱状領域の上部表面上に絶縁膜を介して設
けた反対導電型の拡散層と、前記絶縁膜直下の前記柱状
領域の上部側面を所定の幅で帯状に一周して開口する窓
の部分を残して前記柱状領域の上部及び下部側面と前記
第2の溝の側面及び底面とを覆う誘電体膜と、前記窓と
前記絶縁膜との側面を覆つて所定の幅で前記柱状領域の
上部側面を囲み前記窓を通して前記半導体基板と接続し
かつPN接合を介して前記拡散層と接続した一導電型の
半導体層と、前記第2の溝を埋込む姿態に前記誘電体膜
を覆いかつPN接合を介して前記半導体層下面と接続し
た反対導電型の容量電極と、前記半導体層の側面をゲー
ト絶縁膜を介して覆い所定の幅で前記柱状領域の上部側
面を囲むゲートとを含むことを特徴とする半導体記憶装
置。(1) The upper part of the columnar region of the semiconductor substrate surrounded by the first groove of a predetermined depth provided on the surface of the semiconductor substrate of one conductivity type, and the first groove along the upper side surface of the columnar region. An insulating film is formed on the lower part of the columnar region of the semiconductor substrate surrounded by a second groove having a predetermined depth narrower than the width of the first groove provided in the bottom surface of the semiconductor substrate, and on the upper surface of the columnar region. a diffusion layer of the opposite conductivity type provided through the insulating film, and the upper and lower side surfaces of the columnar region, leaving a window portion opening in a band shape with a predetermined width around the upper side surface of the columnar region directly under the insulating film. and a dielectric film covering side surfaces and bottom surfaces of the second groove, and a dielectric film covering the side surfaces of the window and the insulating film, surrounding the upper side surface of the columnar region with a predetermined width, and connecting to the semiconductor substrate through the window. and a semiconductor layer of one conductivity type connected to the diffusion layer via a PN junction, covering the dielectric film in such a manner as to bury the second groove and connecting to the lower surface of the semiconductor layer via a PN junction. 1. A semiconductor memory device comprising: a capacitor electrode of an opposite conductivity type; and a gate that covers the side surface of the semiconductor layer via a gate insulating film and surrounds the upper side surface of the columnar region with a predetermined width.
型の第1の不純物層とを順次形成する工程と、所定のパ
ターンで前記第1の不純物層、前記絶縁膜及び前記半導
体基板を順次除去して所定の深さの溝に囲まれた上部表
面に前記絶縁膜と前記第1の不純物層とを積層した前記
半導体基板の柱状領域を形成する工程と、前記絶縁膜直
下の前記柱状領域の上部側面を所定の幅で帯状に一周す
る窓を開口して前記柱状領域の側面及び前記溝の底面に
選択的に第1の誘電帯膜を形成する工程と、前記半導体
基板の表面全体に一導電型の半導体層を形成する工程と
、該半導体層の前記窓よりも低い所定の部分に選択的に
反対導電型の不純物を導入して反対導電型の第2の不純
物層を形成する工程と、前記柱状領域、前記絶縁膜及び
前記第1の不純物層の側面の前記半導体層並びに前記柱
状領域側面の前記第2の不純物層を残して前記柱状領域
の上部表面の前記半導体層と前記溝の底面上の前記第2
の不純物層及び前記第1の誘電体膜とを除去する工程と
、前記第1の半導体層及び前記第1の不純物層の上部表
面に反対導電型の高濃度不純物を導入して前記絶縁膜上
に反対導電型の領域層を形成すると共に前記第2の不純
物層側面に選択的に第2の誘電体膜を形成する工程と、
前記溝の底面の前記半導体基板表面から前記第2の不純
物層と前記半導体層との接合面より低い所定の高さまで
一導電型の半導体領域で前記溝の一部を充填して前記第
1及び第2の誘電体膜によって囲まれた前記第2の不純
物層を容量電極とするキャパシタを形成する工程と、前
記半導体領域上部表面に選択的に他の絶縁膜を形成する
工程と、前記半導体層の側面にゲート絶縁膜を形成する
工程と、前記半導体層の側面をゲート絶縁膜を介して覆
い所定の幅で前記柱状領域の側面を囲むゲートを形成す
る工程とを含むことを特徴とする半導体記憶装置の製造
方法。(2) A step of sequentially forming an insulating film and a first impurity layer of an opposite conductivity type on the surface of a semiconductor substrate of one conductivity type, and forming the first impurity layer, the insulating film, and the semiconductor substrate in a predetermined pattern. forming a columnar region of the semiconductor substrate in which the insulating film and the first impurity layer are laminated on the upper surface surrounded by a groove of a predetermined depth by sequentially removing the insulating film; forming a first dielectric band film selectively on the side surface of the columnar region and the bottom surface of the groove by opening a window that goes around the upper side surface of the columnar region in a band shape with a predetermined width; and the surface of the semiconductor substrate. forming a semiconductor layer of one conductivity type over the entire semiconductor layer; and forming a second impurity layer of the opposite conductivity type by selectively introducing impurities of the opposite conductivity type into a predetermined portion of the semiconductor layer lower than the window; and forming the semiconductor layer on the upper surface of the columnar region while leaving the semiconductor layer on the side surface of the columnar region, the insulating film, and the first impurity layer, and the second impurity layer on the side surface of the columnar region. the second on the bottom surface of the groove;
a step of removing the impurity layer and the first dielectric film; and introducing high concentration impurities of opposite conductivity type into the upper surfaces of the first semiconductor layer and the first impurity layer so as to remove the impurity layer and the first dielectric film. forming a region layer of opposite conductivity type and selectively forming a second dielectric film on the side surface of the second impurity layer;
A part of the trench is filled with a semiconductor region of one conductivity type from the surface of the semiconductor substrate at the bottom of the trench to a predetermined height lower than the junction surface between the second impurity layer and the semiconductor layer. forming a capacitor using the second impurity layer surrounded by a second dielectric film as a capacitance electrode; selectively forming another insulating film on the upper surface of the semiconductor region; a step of forming a gate insulating film on the side surface of the semiconductor layer; and a step of forming a gate that covers the side surface of the semiconductor layer via a gate insulating film and surrounds the side surface of the columnar region with a predetermined width. A method for manufacturing a storage device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61163025A JPH0795585B2 (en) | 1986-07-10 | 1986-07-10 | Semiconductor memory device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61163025A JPH0795585B2 (en) | 1986-07-10 | 1986-07-10 | Semiconductor memory device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6317553A true JPS6317553A (en) | 1988-01-25 |
JPH0795585B2 JPH0795585B2 (en) | 1995-10-11 |
Family
ID=15765755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61163025A Expired - Lifetime JPH0795585B2 (en) | 1986-07-10 | 1986-07-10 | Semiconductor memory device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0795585B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02100358A (en) * | 1988-10-07 | 1990-04-12 | Toshiba Corp | Semiconductor device and manufacture thereof |
US5034787A (en) * | 1990-06-28 | 1991-07-23 | International Business Machines Corporation | Structure and fabrication method for a double trench memory cell device |
US5064777A (en) * | 1990-06-28 | 1991-11-12 | International Business Machines Corporation | Fabrication method for a double trench memory cell device |
US5177576A (en) * | 1990-05-09 | 1993-01-05 | Hitachi, Ltd. | Dynamic random access memory having trench capacitors and vertical transistors |
US5731609A (en) * | 1992-03-19 | 1998-03-24 | Kabushiki Kaisha Toshiba | MOS random access memory having array of trench type one-capacitor/one-transistor memory cells |
US5838055A (en) * | 1997-05-29 | 1998-11-17 | International Business Machines Corporation | Trench sidewall patterned by vapor phase etching |
-
1986
- 1986-07-10 JP JP61163025A patent/JPH0795585B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02100358A (en) * | 1988-10-07 | 1990-04-12 | Toshiba Corp | Semiconductor device and manufacture thereof |
US5177576A (en) * | 1990-05-09 | 1993-01-05 | Hitachi, Ltd. | Dynamic random access memory having trench capacitors and vertical transistors |
US5034787A (en) * | 1990-06-28 | 1991-07-23 | International Business Machines Corporation | Structure and fabrication method for a double trench memory cell device |
US5064777A (en) * | 1990-06-28 | 1991-11-12 | International Business Machines Corporation | Fabrication method for a double trench memory cell device |
US5731609A (en) * | 1992-03-19 | 1998-03-24 | Kabushiki Kaisha Toshiba | MOS random access memory having array of trench type one-capacitor/one-transistor memory cells |
US5895946A (en) * | 1992-03-19 | 1999-04-20 | Kabushiki Kaisha Toshiba | MOS random access memory having array of trench type one-capacitor/one-transistor memory cells |
US5838055A (en) * | 1997-05-29 | 1998-11-17 | International Business Machines Corporation | Trench sidewall patterned by vapor phase etching |
Also Published As
Publication number | Publication date |
---|---|
JPH0795585B2 (en) | 1995-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910009786B1 (en) | Semiconductor memory device and fabricating method therefor | |
US5460994A (en) | Semiconductor device having vertical conduction transistors and cylindrical cell gates | |
US5057888A (en) | Double DRAM cell | |
EP0302204A2 (en) | Vertical trench transistor/capacitor memory cell structure and fabrication method therefor | |
JPS61239658A (en) | Semiconductor memory device | |
JP2002222873A (en) | Improved vertical MOSFET | |
JPH0365905B2 (en) | ||
JPH0793372B2 (en) | Semiconductor memory device | |
JPS6317553A (en) | Semiconductor memory storage and its manufacture | |
US5942778A (en) | Switching transistor and capacitor for memory cell | |
JPS62200759A (en) | Semiconductor memory | |
KR19990006541A (en) | DRAM cell device with dynamic gain memory cell and method of manufacturing the same | |
JPH0575059A (en) | Semiconductor storage device and its manufacture | |
JPS6324657A (en) | Manufacture of semiconductor memory | |
JP2583123B2 (en) | Method of forming memory cell | |
JPS62200758A (en) | Semiconductor memory | |
JPH05167031A (en) | Semiconductor device and manufacture thereof | |
JP3095450B2 (en) | Dynamic semiconductor memory device and method of manufacturing the same | |
JPH0536930A (en) | Semiconductor storage device | |
JPH0434831B2 (en) | ||
JPH0620118B2 (en) | Semiconductor memory device and manufacturing method thereof | |
JPH0621388A (en) | Semiconductor memory and manufacture thereof | |
JPH0480540B2 (en) | ||
JPS61229351A (en) | Semiconductor memory device and manufacture thereof | |
JP2846306B2 (en) | Semiconductor memory device and method of manufacturing the same |