[go: up one dir, main page]

JPS63174961A - Manufacture of polyisocyanate having burette structure - Google Patents

Manufacture of polyisocyanate having burette structure

Info

Publication number
JPS63174961A
JPS63174961A JP63000167A JP16788A JPS63174961A JP S63174961 A JPS63174961 A JP S63174961A JP 63000167 A JP63000167 A JP 63000167A JP 16788 A JP16788 A JP 16788A JP S63174961 A JPS63174961 A JP S63174961A
Authority
JP
Japan
Prior art keywords
reaction
temperature
diamine
diisocyanate
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63000167A
Other languages
Japanese (ja)
Other versions
JP2668233B2 (en
Inventor
ヘルムート・ヴオイナール
クラウス・ケーニヒ
ヨゼフ・ペダイン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of JPS63174961A publication Critical patent/JPS63174961A/en
Application granted granted Critical
Publication of JP2668233B2 publication Critical patent/JP2668233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/18Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas
    • C07C273/1809Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas with formation of the N-C(O)-N moiety
    • C07C273/1818Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas with formation of the N-C(O)-N moiety from -N=C=O and XNR'R"
    • C07C273/1827X being H
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7831Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing biuret groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ビウレット構造を有するポリイソシアネート
の改良製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improved method for producing polyisocyanates having a biuret structure.

〔従来の技術〕[Conventional technology]

過剰量の有機ジイソシアネートを高められた温度にて有
機ジアミンと直接反応させる、ビウレット構造を有する
ポリイソシアネートの製造が知られている。たとえばド
イツ公開公[2,261,065号(実施例16)は過
剰量の1.6−ジイツシアナトヘキサンと1.6−ジア
ミツヘキサンとの反応を開示しており、その際反応体は
180℃にて12時間攪拌される。高温度におけるこの
激しい加熱は不経済であるだけでなく、特に大規模の製
造条件下においては反応生成物の変色をも生ずる。した
がって、退色しないラッカーにおけるこの生成物の使用
が制約される。事実、前記ドイツ公開公報の実施例16
における生成物は、再処理した後でさえ、不溶性のゲル
状副生物を全く含まないようなモノマー出発のジイソシ
アネートを含まないビウレットポリイソシアネートを得
ることができなかった。
It is known to produce polyisocyanates with a biuret structure by reacting excess organic diisocyanates directly with organic diamines at elevated temperatures. For example, DE 2,261,065 (Example 16) discloses the reaction of an excess of 1,6-diacyanatohexane with 1,6-diamithexane, in which the reactants are Stir at 180°C for 12 hours. This intense heating at high temperatures is not only uneconomical, but also results in discoloration of the reaction product, especially under large scale manufacturing conditions. This limits the use of this product in non-fading lacquers. In fact, Example 16 of the German publication
Even after reprocessing, it was not possible to obtain a monomer-based diisocyanate-free biuret polyisocyanate free of any insoluble gel-like by-products.

ドイツ公開公報第2,609,995号に開示された方
法においては、ガス状ジアミンを既存のジイソシアネー
ト中へ100〜250℃の温度にて導入する。この工程
の間にポリウレタンの沈殿が生ぜず、反応混合物は全ゆ
る時点で透明な溶液となる。これは、ガス状で導入され
たジアミンの連続希釈によって達成される。この方法は
ビウレット構造を有する高原子価のポリイソシアネート
の製造を可能にするが、多量のガス状ジアミンを必要と
しかつ反応条件を極めて厳密に制御せねばならないため
工業規模で実施するには適していない。
In the process disclosed in DE 2,609,995, gaseous diamines are introduced into existing diisocyanates at temperatures of 100 DEG to 250 DEG C. No precipitation of polyurethane occurs during this step and the reaction mixture becomes a clear solution at all times. This is achieved by serial dilution of the diamine introduced in gaseous form. Although this method allows the production of high-valent polyisocyanates with a biuret structure, it is not suitable for implementation on an industrial scale because it requires large amounts of gaseous diamine and the reaction conditions have to be very tightly controlled. do not have.

ヨーロッパ特許第3,505号公報は、ジアミンを所定
寸法の円滑なジェットノズルを用いて過剰圧力下に既存
のジイソシアネート中へ導入する方法を開示している。
EP 3,505 discloses a method for introducing diamines into existing diisocyanates under excess pressure using a smooth jet nozzle of defined dimensions.

250℃までの反応温度を用いることができる0反応温
度に応じて、尿素分散物がこの従来技術の方法では過剰
の出発ジイソシアネート中に生成する。その後の熱処理
は、この分散物を過剰の出発ジイソシアネートにおける
ビウレットポリイソシアネートの溶液まで変換させる。
Depending on the reaction temperature, reaction temperatures up to 250° C. can be used, a urea dispersion is formed in this prior art process in an excess of starting diisocyanate. A subsequent heat treatment converts this dispersion into a solution of biuret polyisocyanate in excess of starting diisocyanate.

この方法の1つの欠点は、特殊装置(円滑なジェットノ
ズル)の使用を必要とする他に、ビウレット構造を有す
る得られたポリイソシアネートが過剰の出発ジイソシア
ネート(特に1.6−ジイソシアネートヘキサン)の除
去後に相当割合の高級オリゴマーおよび副生物を含有す
ることにある。これは粘度の増大、NGO含有量の望ま
しくない低下、並びに助溶剤に対する悪化した希釈性を
もたらす。
One drawback of this method, besides requiring the use of special equipment (smooth jet nozzle), is that the resulting polyisocyanate with a biuret structure requires the removal of excess starting diisocyanate (particularly 1,6-diisocyanatehexane). The reason is that it subsequently contains a considerable proportion of higher oligomers and by-products. This leads to an increase in viscosity, an undesirable decrease in NGO content, as well as poor dilutability towards co-solvents.

〔発明の要点〕[Key points of the invention]

今回、特殊な混合装置を用いることなく脂肪族もしくは
脂環式ジイソシアネートもしくはジアミンに基づくビウ
レット構造有する高原子価のポリイソシアネートを製造
しうろことが判明した。これは、出発物質を250℃よ
り高い、好ましくは270℃より高い温度にて互いに反
応させれば達成される。この知見は、反応生成物の望ま
しくない変色を防止するには250℃より高い反応温度
をできるだけ回避すべきであるという認められた兇解(
たとえばドイツ公開公報第2.609.995号参照〕
に鑑み、特に驚異的である。
It has now been found that it is possible to produce high-valent polyisocyanates with a biuret structure based on aliphatic or cycloaliphatic diisocyanates or diamines without using special mixing equipment. This is achieved if the starting materials are reacted with each other at temperatures above 250°C, preferably above 270°C. This finding supports the accepted wisdom that reaction temperatures higher than 250°C should be avoided as much as possible to prevent undesirable discoloration of the reaction products.
See for example German Publication No. 2.609.995]
This is especially surprising in light of this.

本発明は、専ら脂肪族および/または脂環式に結合した
イソシアネート基を有する過剰量の有機ジイソシアネー
トを、専ら脂肪族および/または脂環式に結合した第1
7ミノ基を有する有機ジアミンと高められた温度にて連
続反応させることにより、ビウレット構造を有するポリ
イソシアネートの連続製造を可能にする−この方法にお
いては、反応体を250℃より高い温度で反応させる。
The present invention utilizes an excess amount of an organic diisocyanate having exclusively aliphatic and/or cycloaliphatically bonded isocyanate groups to
Continuous reaction at elevated temperatures with organic diamines having 7-mino groups allows the continuous production of polyisocyanates with a biuret structure - in this method the reactants are reacted at temperatures above 250 °C. .

本発明は、ビウレット構造を有するポリイソシアネート
の製造方法に関する。この方法においては、脂肪族およ
び/または脂環式に結合したイソシアネート基を有する
過剰の有機ジイソシアネートを、脂肪族および/または
脂環式に結合したアミノ基を有する有機ジアミンと25
0℃より高い温度で反応させる。
The present invention relates to a method for producing polyisocyanate having a biuret structure. In this method, excess organic diisocyanate having aliphatic and/or cycloaliphatically bonded isocyanate groups is mixed with an organic diamine having aliphatic and/or cycloaliphatically bonded amino groups.
The reaction is carried out at a temperature higher than 0°C.

本発明の方法に対する出発物質は、300未満の分子量
を有する専ら脂肪族および/または脂環式に結合したイ
ソシアネート基を有する有機ジイソシアネートである。
The starting materials for the process of the invention are organic diisocyanates having exclusively aliphatic and/or cycloaliphatically bonded isocyanate groups with a molecular weight of less than 300.

この種のジイソシアネートの例は1.4−ジイソシアナ
ト−ブタン、1.6−ジイツシアナ[ヘキサン、1.6
−ジイソシアナトー2、2.4− )リメチルーヘキサ
ン、1.6−ジイソシアナトー2.4.4−1−リメチ
ルヘキサン、2.6−ジイツシアナトカブロン酸エチル
エステル、l、12−ジイソシアナトドデカン、1.4
−ジイソシアナトシクロヘキサン、1−イソシアナト−
3、3,5−トリメチル−5−イソシアナトメチルシク
ロヘキサン、4.4’−ジイソシアナトジシクロヘキシ
ルメタンおよび6−イツシアナトカブロン酸−2−イソ
シアナトエチルエステルを包含する。これらジイソシア
ネート類の任意の混合物も使用することができる。特に
1.6−ジイソシアナトヘキサンが好適である。
Examples of diisocyanates of this type are 1,4-diisocyanato-butane, 1,6-dicyana[hexane, 1,6
-diisocyanato 2,2.4-)limethyl-hexane, 1,6-diisocyanato 2.4.4-1-limethylhexane, 2,6-diisocyanatocabroic acid ethyl ester, l,12- Diisocyanatododecane, 1.4
-diisocyanatocyclohexane, 1-isocyanato-
Includes 3,3,5-trimethyl-5-isocyanatomethylcyclohexane, 4,4'-diisocyanatodicyclohexylmethane and 6-isocyanatocabroic acid-2-isocyanatoethyl ester. Any mixtures of these diisocyanates can also be used. Particularly suitable is 1,6-diisocyanatohexane.

本発明の方法に対する有機ジアミン出発物質は、300
未満の分子量を有する専ら脂肪族および/または脂環式
に結合した第17ミノ基を有する有機ジアミン類である
。その例は1.2−ジアミノエタン、1,2−ジアミノ
プロパン、1.3−ジアミノプロパン、1.4−ジアミ
ノブタン、1.6−ジアミノヘキサン、1.6−ジアミ
ツー2.2.4− トリメチルヘキサン、1.6−ジア
ミツー2.4.4− トリメチルヘキサン、1.4−ジ
アミノヘキサン、1−アミノ−3,3,5−トリメチル
−5−アミノメチルシクロヘキサンおよび1.4.4−
ジアミノ−ジシクロヘキシルメタンを包含する。これら
ジアミン類の任意の混合物も使用することができる。特
に1.6−ジアミノヘキサンが好適である。
The organic diamine starting material for the process of the invention is 300
organic diamines having exclusively aliphatic and/or cycloaliphatically bonded 17th amino groups having a molecular weight of less than Examples are 1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane, 1,6-diamino-2,2,4-trimethyl. Hexane, 1,6-diami2,4,4-trimethylhexane, 1,4-diaminohexane, 1-amino-3,3,5-trimethyl-5-aminomethylcyclohexane and 1,4,4-
Includes diamino-dicyclohexylmethane. Any mixtures of these diamines can also be used. Particularly suitable is 1,6-diaminohexane.

本発明の方法において、ジアミンは水および/′ また
は500未満の分子量を宵する多価脂肪族アルコールと
混合して使用することもできる0通する多価アルコール
は1.4−ジヒドロキシブタン、ネオペンチルグリコー
ル、1.6−シヒドロキシーヘキサン、1.3−ジヒド
ロキシ−2−エチル−ヘキサン、1.6−シヒドロキシ
ー2.2.4− )リメチルヘキサン、1.6−シヒド
ロキシー2.4.4−トリメチルヘキサン、トリメチロ
ールプロパン、グリセリン、並びにこの種の単純ポリオ
ールと不足量のたとえばアジピン酸、コハク酸およびア
ゼライン酸のような脂肪族ジカルボン酸との短鎖ヒドロ
キシ官能性ポリエーテル類を包含する。これらの例に挙
げられた単純なポリオールから出発する低分子量のヒド
ロキシル基を有するポリカブラフトーンも通している。
In the process of the invention, the diamine can also be used in admixture with water and/or a polyhydric aliphatic alcohol having a molecular weight of less than 500. Glycol, 1,6-cyhydroxy-hexane, 1,3-dihydroxy-2-ethyl-hexane, 1,6-cyhydroxy-2.2.4-)limethylhexane, 1,6-cyhydroxy-2.4.4- These include trimethylhexane, trimethylolpropane, glycerin, and short chain hydroxy-functional polyethers of simple polyols of this type with a minor amount of aliphatic dicarboxylic acids such as adipic acid, succinic acid and azelaic acid. Polycabraftones with low molecular weight hydroxyl groups starting from the simple polyols mentioned in these examples are also passed.

これら多価アルコール類の任意の混合物も使用すること
ができる。
Any mixtures of these polyhydric alcohols can also be used.

しかしながら、水および/または多価アルコールの同時
使用は望ましくない、この種の追加出発物質を使用する
場合、これらはジアミン1モル当り最高0.2モルの水
および/またはジアミン1モル当り最高1モル、好まし
くは0.5モルの多価アルコールの量にて使用すべきで
ある。
However, the simultaneous use of water and/or polyhydric alcohols is undesirable; if additional starting materials of this kind are used, these can be used in amounts of up to 0.2 mol of water per mole of diamine and/or up to 1 mol of water per mole of diamine. , preferably in an amount of 0.5 mol of polyhydric alcohol.

本発明の方法において、出発ジイソシアネートおよびジ
アミン或いはジアミンと水および/または多価アルコー
ルとの混合物は、少なくとも4:l〜25:1、特に好
ましくは7:1〜20:lのイソシアネート基対アミノ
基の当量比に対応する量で連続的に反応させ、第1アミ
ノ基はこの種の計算の目的で一価の基として考慮される
In the process of the invention, the starting diisocyanate and the diamine or the mixture of the diamine and the water and/or the polyhydric alcohol have a ratio of isocyanate groups to amino groups of at least 4:1 to 25:1, particularly preferably 7:1 to 20:1. The primary amino groups are considered as monovalent groups for the purpose of calculations of this type.

本発明には出発物質を互いに250℃より高い、好まし
くは270℃以上、特に十分混合した直後に270℃〜
320℃の間の温度で反応させることが必須である。こ
れらの反応開始時における高反応温度は、ジイソシアネ
ートを180℃より高い、好ましくは220℃より高い
温度まで予備加熱することにより達成することができる
。大過剰のジイソシアネートを使用する場合、ジアミン
またはジアミンと水および/または多価アルコールとの
混合物の予備加熱はしばしば不必要である。
The present invention involves combining the starting materials with each other at a temperature above 250°C, preferably above 270°C, especially immediately after thorough mixing.
It is essential to react at a temperature between 320°C. High reaction temperatures at the start of these reactions can be achieved by preheating the diisocyanate to a temperature above 180°C, preferably above 220°C. If a large excess of diisocyanate is used, preheating of the diamine or the mixture of diamine and water and/or polyhydric alcohol is often unnecessary.

しかしながら、一般にジアミンまたはジアミンと水およ
び/または多価アルコールとの混合物は約50〜200
℃まで予備加熱される。一般に、反応混合物は混合容器
と加熱しない場合にも出発物譬の加熱により予想しうる
温度よりも約20〜70℃高い温度まで加熱することが
予想される。
However, generally diamines or mixtures of diamines with water and/or polyhydric alcohols have a
Preheated to ℃. Generally, it is expected that the reaction mixture will heat to a temperature of about 20-70° C. higher than would be expected due to heating of the starting materials without heating the mixing vessel.

何故なら、一時的に生ずる反応のため高い反応熱が生ず
るからである0本発明に必須の高温度を確保するのに必
要な出発物質の加熱温度は、出発物質の比熱(約0.5
 kcal/kg K)並びに反応エンタルピー(約3
5kca11モル)から良好に概算することができる。
This is because a high heat of reaction is generated due to the reaction that occurs temporarily.
kcal/kg K) and reaction enthalpy (approximately 3
5 kcal, 11 mol).

さらに、これらは必要に応じ単純な予備実験により決定
することもできる。
Furthermore, these can also be determined by simple preliminary experiments if necessary.

ジイソシアネートの加熱はできるだけ短時間内、好まし
くは30秒以内に行なうべきである。何故なら、これら
の化合物は温度感熱性であることが知られているからで
ある。この急速加熱は、従来技術における幻応の熱交換
装置を用いて達成することができる0本発明を実施する
のに有用な熱交換器は、シェル−および−チューブ型交
換器、バンドル型交換器およびプレート型交換器を包含
する。これらは流体加熱媒体にて加熱水蒸気を用いて、
或いは直接的電気加熱によって行なうことができる。3
秒間以内の時間内で初期ジイソシアネートを加熱処理し
うる熱交換器の使用が特に好適である。
Heating of the diisocyanate should take place within as short a time as possible, preferably within 30 seconds. This is because these compounds are known to be temperature sensitive. This rapid heating can be achieved using conventional heat exchange equipment in the prior art. Heat exchangers useful in practicing the invention include shell-and-tube exchangers, bundle exchangers, and plate-type exchangers. These use heated water vapor with a fluid heating medium,
Alternatively, this can be done by direct electrical heating. 3
Particular preference is given to using a heat exchanger which is capable of heat-treating the initial diisocyanate within a time of up to a second.

反応体の連続流を、予備加熱後に混合室で混合する0本
発明の方法においては、各成分の強力混合に関し、混合
室の容積に対して特別の要求は存在しない、当業者に知
られた静的もしくは動的装置を使用することができる。
In the process of the present invention, in which a continuous stream of reactants is mixed in a mixing chamber after preheating, there are no special requirements on the volume of the mixing chamber with respect to intensive mixing of the components, as known to those skilled in the art. Static or dynamic devices can be used.

一般に、反応成分を1端部にて直接に接触させる、邪魔
板を持たない単純な反応管で十分であり、かつこれが好
適でもある。
In general, a simple reaction tube without baffles, with direct contact of the reaction components at one end, is sufficient, and is also preferred.

成分の導入個所は好ましくは有孔スクリーンもしくはノ
ズルの形態であって、その投入は上昇圧力下で行なうこ
とができる。この種の手段は、反応混合物がジイソシア
ネートおよびジアミンの供給jIR料に達しないように
確保する。この目的で断面積は、それぞれの場合供給本
管に対し1.5〜100バール、好ましくは1.5〜4
0バールの圧力となるように選択される。ノズルおよび
/または有孔スクリーンの形態および配置並びに高圧力
は、本発明にとって必須でない。
The point of introduction of the components is preferably in the form of a perforated screen or nozzle, the introduction of which can take place under elevated pressure. Measures of this kind ensure that the reaction mixture does not reach the feed of diisocyanate and diamine. For this purpose the cross-sectional area is in each case between 1.5 and 100 bar, preferably between 1.5 and 4 bar.
A pressure of 0 bar is selected. The form and arrangement of the nozzle and/or perforated screen and the high pressure are not essential to the invention.

混合室および全ゆる冷却領域若しくはチャンバの容積、
並びに冷却領域もしくはチャンバにおける冷却の強さは
、出発成分の組合わせからなる反応混合物を250℃未
満の温度まで低下させる平均滞留時間が最大60秒、好
ましくは3o秒以内、特に好ましくは10秒以内となる
ように選択せねばならない0本発明の方法において、2
70℃以上の好適温度における反応混合物の平均滞留時
間は一般に最高20秒、好ましくは最高10秒、特に好
ましくは最高1秒である。
the volume of the mixing chamber and any cooling areas or chambers;
and the intensity of the cooling in the cooling zone or chamber such that the average residence time for reducing the reaction mixture consisting of the combination of starting components to a temperature below 250° C. is at most 60 seconds, preferably within 30 seconds, particularly preferably within 10 seconds. 0 In the method of the present invention, 2 must be selected so that 2
The average residence time of the reaction mixture at suitable temperatures above 70° C. is generally at most 20 seconds, preferably at most 10 seconds, particularly preferably at most 1 second.

混合室および全ての冷却領域もしくはチャンバを通過し
た後、反応混合物を適当な熱交換器により最高10分間
以内、好ましくは最高5分間以内で徐々にまたは段階的
に80〜220℃(好ましくは120〜200℃)の温
度まで連続的に冷却し、次いでこの温度にて適当な後反
応器により熱後処理を好ましくは5時間以内、より好ま
しくは2時間以内、特に好ましくは30分間までの滞留
時間にわたって行なう0反応混合物は上記した短時間以
内においてのみ250℃以上の温度にがけることが必須
である。しかしながら、熱後処理の時間は広範囲で変化
することができる。一般に、80〜220℃の温度範囲
における低温度にて、比較的長持間の熱後処理が望まし
い、より高い温度においては、比較的短い熱後処理が望
ましい。
After passing through the mixing chamber and all cooling zones or chambers, the reaction mixture is heated gradually or stepwise to 80-220°C (preferably 120-220°C) within a maximum of 10 minutes, preferably within a maximum of 5 minutes, in a suitable heat exchanger. 200°C) and then thermal after-treatment at this temperature in a suitable post-reactor for a residence time of preferably up to 5 hours, more preferably up to 2 hours, particularly preferably up to 30 minutes. It is essential that the reaction mixture carried out is subjected to a temperature above 250° C. only within the short time mentioned above. However, the time of thermal post-treatment can vary within a wide range. Generally, at lower temperatures in the temperature range of 80-220<0>C, relatively long-lasting thermal post-treatments are desired; at higher temperatures, relatively short thermal post-treatments are desired.

熱後処理は、たとえば、カスケード状に配置された反応
器において或いは連続流を存在させる攪拌容器において
行なうことができる。
Thermal aftertreatment can be carried out, for example, in reactors arranged in a cascade or in stirred vessels with continuous flow.

熱後処理の後、反応生成物は過剰の出発ジイソシアネー
トにおけるビウレット基を有するポリイソシアネートの
溶液として存在する。この溶液は、熱後処理の直後に、
或いは蒸留によりもしくはたとえばn−ヘキサンでの抽
出によりその後の時点で過剰の出発ジイソシアネートを
除去することができる。このようにして、ビウレット構
造を有する高原子価のポリイソシアネートを得ることが
でき、過剰の出発ジイソシアネートの最大含有量は0.
7重量%、好ましくは0.3重量%である。
After the thermal work-up, the reaction product is present as a solution of the polyisocyanate containing biuret groups in an excess of the starting diisocyanate. Immediately after thermal post-treatment, this solution
Alternatively, excess starting diisocyanate can be removed by distillation or at a later point, for example by extraction with n-hexane. In this way, high valence polyisocyanates with a biuret structure can be obtained, with a maximum content of excess starting diisocyanate of 0.
7% by weight, preferably 0.3% by weight.

本発明の方法により製造されるビウレット基を有するポ
リイソシアネート、特に1.6−ジイソシアナトヘキサ
ンおよび1.6−ジアミノ−ヘキサンを゛出発物質とし
て専ら使用することにより製造されたポリイソシアネー
トは、2成分ポリウレタンラッカーを製造するための貴
重な出発物質となる。
The polyisocyanates having biuret groups prepared by the process of the invention, in particular the polyisocyanates prepared exclusively by using 1,6-diisocyanatohexane and 1,6-diamino-hexane as starting materials, are It serves as a valuable starting material for producing component polyurethane lacquers.

本発明の生産物はその良好な色価、良好な助溶剤に対す
る希釈性、並びに比較的低い粘度を特徴とする。
The products of the invention are characterized by their good color value, good dilutability to cosolvents and relatively low viscosity.

水および特にたとえば生産物にウレタンもしくはアロフ
ァネート基を組込むべく上記したような低分子量の多価
アルコールを使用すれば、それらから製造されるポリイ
ソシアネートおよびコーティングの柔軟性、結合性、加
水分解安定性、硬度および/または溶剤安定性を改質す
ることが可能となる。
The use of water and especially low molecular weight polyhydric alcohols such as those mentioned above to incorporate urethane or allophanate groups into the product improves the flexibility, bonding properties and hydrolytic stability of polyisocyanates and coatings produced therefrom. It becomes possible to modify the hardness and/or solvent stability.

〔実 施 例〕〔Example〕

以下、実施例により本発明をさらに説明し、これら実施
例において%は全て1量による。
The invention will now be further illustrated by examples, in which all percentages are by weight.

以下の実施例のそれぞれにおいて、第1図に示す装置を
使用した。
In each of the following examples, the apparatus shown in FIG. 1 was used.

第1図において、参照記号は次のものを示す:lはジイ
ソシアネートの攪拌容器を示し、2はジイソシアネート
の供給ポンプを示し、3はジアミンの撹拌容器を示し、 4はジアミンの供給ポンプを示し、 5は助溶剤の攪拌容器を示し、 6は助溶剤の供給ポンプを示し、 7はジアミン、および助溶剤を加熱するための熱交換器
を示し、 8はジイソシアネートを加熱するための熱交換器を示し
、 9は混合室を示し、 10は反応混合物を冷却するための熱交換器を示し、 11はこの方法の生産物に対するインペラ型混合器を示
している。
In FIG. 1, the reference symbols indicate: 1 indicates the diisocyanate stirred vessel, 2 indicates the diisocyanate feed pump, 3 indicates the diamine stirred vessel, 4 indicates the diamine feed pump, 5 indicates a co-solvent stirring vessel, 6 indicates a co-solvent supply pump, 7 indicates a heat exchanger for heating the diamine and co-solvent, and 8 indicates a heat exchanger for heating the diisocyanate. 9 indicates a mixing chamber, 10 indicates a heat exchanger for cooling the reaction mixture, and 11 indicates an impeller type mixer for the product of the process.

助溶剤(たとえば容器5からのジフェニルエーテル)を
連続駆動装置における操作開始時のみ使用しかつジイソ
シアネートと一緒に混合室中に導入して一定の温度条件
を生ぜしめ、このことは供給流における成分のバックミ
キシングが生じえないよう保証することを意味する。装
置の実際の始動は、溶剤流をジアミン龍に切換えること
によって簡単かつ安全に達成された。混合室中へのジイ
ソシアネートおよびジアミンの流れの入口の前にノズル
を設けて、この個所における高流速を達成した。原理上
、これらノズルの形状は自由に選択することができる。
The co-solvent (for example diphenyl ether from vessel 5) is used only at the start of operation in a continuous drive and is introduced together with the diisocyanate into the mixing chamber to create constant temperature conditions, which causes a back-up of the components in the feed stream. This means ensuring that no mixing occurs. Actual start-up of the device was accomplished simply and safely by switching the solvent flow to the diamine stream. A nozzle was provided before the inlet of the diisocyanate and diamine flow into the mixing chamber to achieve high flow rates at this point. In principle, the shapes of these nozzles can be freely selected.

何故なら、これらノズルは混合室エネルギーを反応溶液
に導入する役割を持たず、バックミキシングを確実に阻
止する役割のみを有するからである。
This is because these nozzles do not have the role of introducing mixing chamber energy into the reaction solution, but only have the role of reliably preventing back-mixing.

混合室から流出した直後に、反応混合物を熱交換器10
によって実施例に示した滞留時間内で低温度レベルまで
冷却した0反応生成物の熱後処理を、連続出入流を有す
るインペラ型混合器11゛にて行なった。このような後
処理は、攪拌ポットカスケード或いは対応寸法の滞留領
域にて行なうこともできるであろう。
Immediately after exiting the mixing chamber, the reaction mixture is transferred to a heat exchanger 10.
Thermal after-treatment of the reaction product, which had been cooled to a low temperature level within the residence times given in the examples, was carried out in an impeller-type mixer 11 with continuous inlet and outlet flow. Such after-treatment could also be carried out in a stirred pot cascade or in a correspondingly sized retention area.

攪拌容器1,3.5および11としては、ガラス容器を
使用した。ピストン投入ポンプ(LEWA)をポンプ2
.4および6として使用した。
As stirring containers 1, 3.5 and 11, glass containers were used. Pump 2 the piston injection pump (LEWA)
.. 4 and 6.

熱交換器7および8としては二重パイプ熱交換器を使用
し、これらを伝熱媒体としての油によって駆動し、次の
寸法を有するニ ア 熱交換器の内部容量   22.8cd    0.4
cd熱交換器の表面積   415  cj   31
.5cdこれら寸法により、高温度での所望の短い滞留
時間が達成された。
Double pipe heat exchangers are used as heat exchangers 7 and 8, which are driven by oil as heat transfer medium, with an internal capacity of the near heat exchanger having the following dimensions: 22.8 cd 0.4
CD heat exchanger surface area 415 cj 31
.. 5cd With these dimensions, the desired short residence time at high temperature was achieved.

混合室9を円筒状パイプとして形成し、ジアミン用の直
径0.1 mmのノズル開口部と入口におけるジイソシ
アネート用の直径0.5階−の2個のノズル開口部とを
設け、長さ5cmX4m+wの寸法を与えた。
The mixing chamber 9 was formed as a cylindrical pipe with a nozzle opening of 0.1 mm in diameter for the diamine and two nozzle openings of 0.5 mm in diameter for the diisocyanate at the inlet, with a length of 5 cm x 4 m + w. given the dimensions.

容積は0.6−とした、混合室に直接接続した熱交換器
lOはさらに可変容積のパイプ型熱交換器とすることも
でき、種々異なるセクションを様々に調節することもで
きる。正確な条件を、個々の実施例で別々に示す。
The heat exchanger 1O, which has a volume of 0.6 and is connected directly to the mixing chamber, can also be a pipe-type heat exchanger with variable volume, and the different sections can be adjusted in different ways. The exact conditions are shown separately in the individual examples.

l旌五−上 1.6−ジイソシアナト−ヘキサン(HDI)と1.6
−ジアミツヘキサン(HD^)とを70℃にて容器lお
よび3に導入した。ジフェニルエーテルを、不 。
1.6-diisocyanato-hexane (HDI) and 1.6-diisocyanato-hexane (HDI)
-diamithexane (HD^) was introduced into vessels 1 and 3 at 70°C. No diphenyl ether.

活性溶剤として同様に約70℃にて容器5中へ導入した
。15分間にわたり338 g /sinのHDIと2
0.0 g /sinの助溶剤(HflAの代わり)と
を熱交換器7および8を介して240℃(1101)お
よび190℃(助溶剤)の温度まで加熱すると共に混合
室中へ導入した後、助溶剤の流入を遮断した。
The active solvent was likewise introduced into container 5 at approximately 70°C. HDI of 338 g/sin for 15 minutes and 2
After heating 0.0 g/sin of cosolvent (instead of HflA) to a temperature of 240 °C (1101) and 190 °C (cosolvent) via heat exchangers 7 and 8 and introducing it into the mixing chamber. , the inflow of co-solvent was blocked.

毎時20.3 kgのHDI (=120.8モル/h
)を毎時1、18 kgの)10^(・10.17モル
/h)と共に熱交換器7および8により240℃(HD
りおよび190℃(1(1)A)の温度まで加熱して、
これらを混合室中へ導入した。混合室は285℃の温度
に調整した。
HDI of 20.3 kg/h (=120.8 mol/h
) is heated to 240°C (HD
and heated to a temperature of 190°C (1(1)A),
These were introduced into the mixing chamber. The temperature of the mixing chamber was adjusted to 285°C.

混合室中への供給本管の入口から熱交換器10中への入
口に到るこの温度の平均滞留時間は約0.5秒であった
6次いで、285℃の温度で混合室から流出する反応混
合物を熱交換器10にて140℃まで冷却した。この熱
交換器における平均滞留時間は4分間であった。冷却器
10に流入する時点から250℃の温度まで低下する時
点に到る時間は約4秒であった0次いで、反応混合物を
撹拌容器ll内で140℃にて1時間の平均滞留時間に
わたり攪拌した。攪拌容器11から連続流出する工程生
成物(21,48kt/ h)は39.4%のNGO含
有量を有した。薄層蒸発器(図示せず)により過剰の[
0を0.3%の残留含有量まで除去した後、粗製溶液1
 kg当り357gのビウレット基を有するポリイソシ
アネートが得られ、その特性は次の通りであった: NGO含有量            22.7%粘度
(23℃)          5870mPa5AP
HA色価            70〜90叉隻±−
1 実施例1に記載したと同じ手順を用い、21.2fur
/h(・126モル/h)の1101を0.812 k
g/h(・7.0モル/h)のHDAに対しくすなわち
18:1のモル比にて)次の条件下で反応させた:反応
前のMDIの温度:       260℃反応前反応
前Aの温度:       140℃混合室中の温度:
         290℃290℃における平均滞留
時間二0.5秒混合室から流出した後、この混合物を3
分間以内に160℃まで冷却し、ここで冷却器10中へ
流入する時点から250℃の温度まで低下する時点に到
る時間(平均滞留時間)は約4秒であり、次いでこの温
度にてさらに30分間攪拌した。
The average residence time at this temperature from the inlet of the feed main into the mixing chamber to the inlet into the heat exchanger 10 was approximately 0.5 seconds 6 It then exits the mixing chamber at a temperature of 285°C. The reaction mixture was cooled to 140°C in a heat exchanger 10. The average residence time in this heat exchanger was 4 minutes. The time from entering the condenser 10 to the temperature dropping to 250° C. was approximately 4 seconds. The reaction mixture was then stirred in a stirred vessel 1 at 140° C. for an average residence time of 1 hour. did. The process product (21,48 kt/h) continuously flowing out of the stirred vessel 11 had an NGO content of 39.4%. Excess [
After removing 0 to a residual content of 0.3%, the crude solution 1
A polyisocyanate with 357 g/kg of biuret groups was obtained, the properties of which were as follows: NGO content 22.7% Viscosity (23° C.) 5870 mPa5AP
HA color value 70-90 ±-
1 Using the same procedure as described in Example 1, 21.2 fur
/h (・126 mol/h) of 1101 is 0.812 k
g/h (-7.0 mol/h) of HDA, i.e. at a molar ratio of 18:1) was reacted under the following conditions: Temperature of MDI before reaction: 260°C Pre-reaction A Temperature: 140℃ Temperature in mixing chamber:
Average residence time at 290°C: 20.5 seconds After exiting the mixing chamber, this mixture was
It cools down to 160°C within minutes, where the time (average residence time) from the point of entry into the cooler 10 to the point of reduction to the temperature of 250°C is about 4 seconds, and then further at this temperature. Stirred for 30 minutes.

41.8%のNCOi&育量を有する22.12kr/
hの「粗製ビウレット溶液」が得られ、これは0.2%
の残留含有量まで過剰の801を除去した後に次の特性
を冑するポリイソシアネート280gを粗製溶液1 k
g当りに生成した: NGO含有ml             23.1%
粘度(23℃)          2450+wPa
sAPHA色価          110−130大
立■−主 実施例Iに記載したと同じ手順を用い、19.2kg/
 h(−114,3モル/h)のHDIを1.33 k
r/h(−11,4モル/h)の)10^に対しくすな
わち10:1のモル比にて)次の条件下で反応させた:
反応前のHDIの温度=       220℃反応前
反応前Aの温度:       160℃混合室におけ
る温度:       278℃278℃における平均
滞留時間二0.5秒混合室から流出した反応混合物を5
分間以内に120℃まで冷却し、次いでこの温度でさら
に4時間攪拌した。この工程において、冷却器10中へ
流入する時点から250℃の温度以下に低下する時点ま
での時間(平均滞留時間)は5秒間であった。
22.12kr/ with 41.8% NCOi & growth
A “crude biuret solution” of h was obtained, which was 0.2%
After removing the excess 801 to a residual content of 280 g of polyisocyanate having the following properties, 1 k of the crude solution
Produced per g: NGO content ml 23.1%
Viscosity (23℃) 2450+wPa
sAPHA color value 110-130 large ■ - Using the same procedure as described in Main Example I, 19.2 kg/
h (-114,3 mol/h) of HDI to 1.33 k
r/h (-11,4 mol/h)), i.e. at a molar ratio of 10:1), the reaction was carried out under the following conditions:
Temperature of HDI before reaction = 220°C Temperature before reaction A before reaction: 160°C Temperature in mixing chamber: 278°C Average residence time at 278°C: 20.5 seconds The reaction mixture flowing out from the mixing chamber was
It was cooled to 120° C. within minutes and then stirred at this temperature for a further 4 hours. In this step, the time (average residence time) from the time when it entered the cooler 10 until the time when the temperature decreased to below 250° C. was 5 seconds.

36.8%のNGO含有量を有する20.53kr/h
の「粗製ビウレット溶液」が得られた。過剰のHDIを
除去した後(0,1%の残留含有量まで)、次の特性を
有するポリイソシアネート460gが粗製溶液1 kg
あたりに得られた: NGO含有量         21.7%粘It(2
3℃)        IO,50OaPasAPHA
色価          60〜70大隻斑−土 実施例1に記載した手順を用い、14.61qt/h(
−86,9モル/h)のHallを3モル部のIIDA
と1モル部の2.2−ジメチループロパンジオールー1
.3との混合物1.07 kg/ hと次の条件下で反
応させた: 反応前のHDIの温度:        24−3℃反
応前のHDA/ネオペンチルグリコール混合物の温度:
           190℃混合室における温度:
       272℃272℃における平均滞留時間
:  約0.7秒混合室から流出した後、この混合物を
3分間以内に145℃まで冷却し、次いでこの温度にて
さらに約30分間攪拌した。この工程において、冷却器
10中へ流入する時点から250℃の温度以下に低下す
る時点までの時間(平均滞留時間)は約4秒間であった
20.53kr/h with 36.8% NGO content
A "crude biuret solution" was obtained. After removing excess HDI (up to a residual content of 0,1%), 460 g of polyisocyanate with the following properties are obtained in 1 kg of crude solution
Obtained per: NGO content 21.7% viscosity It(2
3℃) IO, 50OaPasAPHA
Color value: 60-70 Omune Mottari - Soil Using the procedure described in Example 1, 14.61 qt/h (
-86.9 mol/h) of Hall and 3 mol parts of IIDA
and 1 mole part of 2,2-dimethyl-propanediol-1
.. It was reacted with 1.07 kg/h of the mixture with 3 under the following conditions: Temperature of HDI before reaction: 24-3℃ Temperature of HDA/neopentyl glycol mixture before reaction:
Temperature in the 190°C mixing chamber:
272°C Average residence time at 272°C: approx. 0.7 seconds After exiting the mixing chamber, the mixture was cooled to 145°C within 3 minutes and then stirred at this temperature for a further approx. 30 minutes. In this process, the time (average residence time) from the point of entry into the cooler 10 to the point of temperature drop below 250° C. was about 4 seconds.

ビウレット基とウレタン基とアロファネート基とを含有
し35.8%のNGO含有量を有する粗製溶液15.6
7kg/hが得られ、これは0.3%の残留含有量まで
過剰のI(DIを除去した後に粗製溶液1眩当り413
gのポリイソシアネートを生成し、これは次の特性を有
した: NGO含有1         20.7%粘度(23
℃)         18.900mPa5APHA
色価          180大土勇−立 実施例1に記載した手j頓を用い、l 5. Okg/
 h(= 89.3モル/h)のHDIを95モル部の
1(DAと5モル部の水との混合物1.099kg/h
に対し次の条件下で反応させた; 反応前)HDI (7)温度:        240
℃反応前反応前A/)I□0混合物の温度:  190
℃混合室における温度:       295℃290
℃における平均滞留温度:  約0.6抄部合室から流
出した後、この混合物を2分間以内に160℃まで冷却
し、次いでこの温度にてさらに15分間攪拌した。この
工程において、冷却器10中へ流入する時点から250
’Cの温度以下に低下する時点に到る時間(平均滞留時
間)は約6秒間であった。
Crude solution 15.6 containing biuret groups, urethane groups and allophanate groups and having an NGO content of 35.8%
7 kg/h was obtained, which corresponds to 413 kg/h of excess I (after removing the DI) up to a residual content of 0.3% per lumen of the crude solution.
g of polyisocyanate, which had the following properties: NGO content 1 20.7% viscosity (23
℃) 18.900mPa5APHA
Color value: 180 Otsuchi Yutatsu Using the method described in Example 1, 5. Okg/
h (= 89.3 mol/h) of HDI in a mixture of 95 mol parts of 1 (DA and 5 mol parts of water 1.099 kg/h)
was reacted under the following conditions; Before reaction) HDI (7) Temperature: 240
℃Pre-reaction Pre-reaction A/)I□0 Temperature of mixture: 190
Temperature in mixing chamber: 295°C 290°C
Average residence temperature in °C: approx. 0.6 After exiting the paper joint, the mixture was cooled within 2 minutes to 160 °C and then stirred at this temperature for a further 15 minutes. In this process, from the point of entry into the cooler 10, 250
The time to drop below the temperature of 'C (average residence time) was about 6 seconds.

35.1%のNGO含有量を有する16.0kg/h(
7)「粗製ビウレット溶液」が得られ1、これは過剰の
HDIを0.2%の残留含有量まで除去した後にIli
製溶液1 kg当り536gのポリイソシアネートを生
成し、これは次の特性を有した: NGO含有量         21.3%粘度(23
℃ン        30. 000sPasAPHA
色価           +10−130以上本発明
を説明の目的で詳細に記載したが、この詳細は単に説明
の目的であって、本発明の思想および範囲を逸脱するこ
となく種々の改変をなしうろことが当業者には了解され
よう。
16.0 kg/h (with NGO content of 35.1%)
7) A “crude biuret solution” is obtained, 1 which after removing excess HDI to a residual content of 0.2% Ili
536 g of polyisocyanate was produced per kg of solution, which had the following properties: NGO content 21.3% viscosity (23
℃ 30. 000sPasAPHA
Color value: +10-130 or more Although the present invention has been described in detail for the purpose of explanation, the details are merely for the purpose of explanation, and it is understood that various modifications may be made without departing from the spirit and scope of the present invention. I hope the businesses will understand.

【図面の簡単な説明】[Brief explanation of the drawing]

第11fflは本発明の方法を実施するのに有用な装置
の略図である。 1−攪拌容器       2・・・ポンプ3・・−撹
拌容器       4・・−ポンプ7.8−−一熱交
換器     9−混合室代理人の氏名   川原1)
−穂 FIG、 1
No. 11ffl is a schematic diagram of an apparatus useful for carrying out the method of the invention. 1- Stirring container 2... Pump 3...- Stirring container 4...- Pump 7.8-- Heat exchanger 9- Name of mixing room agent Kawahara 1)
-Ear FIG, 1

Claims (13)

【特許請求の範囲】[Claims] (1)(a)脂肪族および/または脂環式に結合したイ
ソシアネート基を有する有機ジイソシアネートの過剰量
を、 (b)脂肪族および/または脂環式に結合した第1アミ
ノ基を有する有機ジアミンと、 250℃より高い温度にて反応器中で反応させることを
特徴とするビウレツト構造を有するポリイソシアネート
の製造方法。
(1) (a) an excess amount of an organic diisocyanate having an aliphatic and/or alicyclically bonded isocyanate group; (b) an organic diamine having an aliphatic and/or alicyclically bonded primary amino group; and a method for producing a polyisocyanate having a biuret structure, characterized in that the reaction is carried out in a reactor at a temperature higher than 250°C.
(2)反応を連続的に行なう特許請求の範囲第1項記載
の方法。
(2) The method according to claim 1, wherein the reaction is carried out continuously.
(3)反応を270℃より高い温度で行なう特許請求の
範囲第1項記載の方法。
(3) The method according to claim 1, wherein the reaction is carried out at a temperature higher than 270°C.
(4)反応体を60秒以内の平均滞留時間にわたり反応
器内に存在させる特許請求の範囲第1項記載の方法。
(4) The method according to claim 1, wherein the reactants are present in the reactor for an average residence time of up to 60 seconds.
(5)反応体を60秒以内の平均滞留時間にわたり反応
器内に存在させる特許請求の範囲第3項記載の方法。
(5) The method according to claim 3, wherein the reactants are present in the reactor for an average residence time of up to 60 seconds.
(6)有機ジアミンを水および/または500未満の分
子量を有する多価脂肪族アルコールと混合して使用する
特許請求の範囲第1項記載の方法。
(6) The method according to claim 1, wherein the organic diamine is used in combination with water and/or a polyhydric aliphatic alcohol having a molecular weight of less than 500.
(7)有機ジアミンをジアミン1モル当り0.2モルま
での水および/または1モルまでの500未満の分子量
を有する多価アルコールと混合して使用する特許請求の
範囲第1項記載の方法。
7. Process according to claim 1, in which the organic diamine is used in admixture with up to 0.2 mol of water and/or up to 1 mol of polyhydric alcohol having a molecular weight below 500 per mol of diamine.
(8)有機ジイソシアネートが1,6−ジイソシアナト
−ヘキサンである特許請求の範囲第1項記載の方法。
(8) The method according to claim 1, wherein the organic diisocyanate is 1,6-diisocyanato-hexane.
(9)有機ジアミンが1,6−ジアミノ−ヘキサンであ
る特許請求の範囲第8項記載の方法。
(9) The method according to claim 8, wherein the organic diamine is 1,6-diamino-hexane.
(10)有機ジアミンが1,6−ジアミノ−ヘキサンで
ある特許請求の範囲第1項記載の方法。
(10) The method according to claim 1, wherein the organic diamine is 1,6-diamino-hexane.
(11)反応混合物を10分間以内に80〜220℃の
温度まで冷却することをさらに含む特許請求の範囲第1
項記載の方法。
(11) Claim 1 further comprising cooling the reaction mixture to a temperature of 80 to 220°C within 10 minutes.
The method described in section.
(12)未反応ジイソシアネート(a)を蒸留により反
応混合物から除去することをさらに含む特許請求の範囲
第11項記載の方法。
12. The method of claim 11, further comprising: (12) removing unreacted diisocyanate (a) from the reaction mixture by distillation.
(13)未反応ジイソシアネート(a)を蒸留により反
応混合物から除去することをさら含む特許請求の範囲第
1項記載の方法。
13. The method of claim 1, further comprising: (13) removing unreacted diisocyanate (a) from the reaction mixture by distillation.
JP63000167A 1987-01-07 1988-01-05 Method for producing polyisocyanate having biuret structure Expired - Fee Related JP2668233B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873700209 DE3700209A1 (en) 1987-01-07 1987-01-07 METHOD FOR PRODUCING POLYISOCYANATES WITH BIURET STRUCTURE
DE3700209.0 1987-01-07

Publications (2)

Publication Number Publication Date
JPS63174961A true JPS63174961A (en) 1988-07-19
JP2668233B2 JP2668233B2 (en) 1997-10-27

Family

ID=6318483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63000167A Expired - Fee Related JP2668233B2 (en) 1987-01-07 1988-01-05 Method for producing polyisocyanate having biuret structure

Country Status (8)

Country Link
US (1) US4837359A (en)
EP (1) EP0277353B1 (en)
JP (1) JP2668233B2 (en)
AU (1) AU593707B2 (en)
BR (1) BR8800021A (en)
CA (1) CA1315799C (en)
DE (2) DE3700209A1 (en)
ES (1) ES2015039B3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020452A (en) * 2000-07-13 2002-01-23 Asahi Kasei Corp Biuret type polyisocyanate composition and its manufacturing method
WO2012108505A1 (en) 2011-02-10 2012-08-16 三菱化学株式会社 Non-aqueous electrolyte for secondary battery, and non-aqueous electrolyte secondary battery using same

Families Citing this family (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT387974B (en) * 1987-04-17 1989-04-10 Vianova Kunstharz Ag METHOD FOR THE PRODUCTION OF SELF-CROSSING CATIONIC LACQUERS CONTAINING BIURET GROUPS AND THE USE THEREOF
DE3742181A1 (en) * 1987-12-12 1989-06-22 Bayer Ag PROCESS FOR PREPARING BIURET POLYISOCYANATES, THE COMPOUNDS OBTAINED BY THIS METHOD AND THEIR USE
DE4211480A1 (en) * 1992-04-06 1993-10-07 Bayer Ag Process for wet strengthening paper
ES2098602T5 (en) * 1992-08-07 2000-12-01 Bayer Ag MULTIFUNCTIONAL RESINS WITHOUT CHLORINE FOR PAPER FINISHING.
DE4432647A1 (en) 1994-09-14 1996-03-21 Bayer Ag Oligourethanes containing 1,3-dioxan-2-one groups
DE4433437A1 (en) 1994-09-20 1996-03-21 Bayer Ag Crosslinker for textile printing binders
DE19624821A1 (en) * 1996-06-21 1998-01-02 Bayer Ag Leather tanning process
DE19633404A1 (en) 1996-08-19 1998-02-26 Basf Ag Process for the production of polyisocyanates containing biuret groups from (cyclo) aliphatic diisocyanates
DE19707576C1 (en) * 1997-02-26 1998-04-16 Bayer Ag Preparation of biuret structure poly:isocyanate(s)
FR2777894B1 (en) * 1998-04-24 2001-06-22 Rhodia Chimie Sa PROCESS FOR THE PREPARATION OF LOW VISCOSITY TRICONDENSATE POLYFUNCTIONAL ISOCYANATES
DE19943034A1 (en) 1999-09-09 2001-03-15 Bayer Ag Powder coating crosslinkers with high functionality and containing uretdione groups and free isocyanate groups
DE10025301A1 (en) 2000-05-22 2001-11-29 Bayer Ag Process for the preparation of polyisocyanates with a biuret structure
DE10025304A1 (en) * 2000-05-22 2001-11-29 Bayer Ag Mixtures of aqueous binders
DE10103027A1 (en) 2001-01-24 2002-07-25 Bayer Ag Adhesion promoter, e.g. for improving adhesion of silicon-based protective coatings to polymeric substrates, comprising two-component polyurethane binder based on alkoxysilane-modified polyisocyanate
DE10120083A1 (en) * 2001-04-17 2003-01-30 Nmi Univ Tuebingen Pair of measuring electrodes, biosensor with such a pair of measuring electrodes and method of manufacture
DE10328663A1 (en) * 2003-06-26 2005-01-13 Bayer Materialscience Ag Polyisocyanate-modified polycarboxylic acids
US6838542B1 (en) 2003-07-24 2005-01-04 Bayer Materialscience Llc Stable liquid biuret modified and biuret allophanate modified diphenylmethane diisocyanates, prepolymers thereof, and processes for their preparation
US7378543B2 (en) * 2003-07-24 2008-05-27 Bayer Materialscience Llc Stable liquid biuret modified and biuret allophanate modified toluene diisocyanates, prepolymers thereof, and processes for their preparation
DE102004003495A1 (en) * 2004-01-23 2005-08-11 Bayer Materialscience Ag Orthoestergruppenhaltige binder
DE102004009818A1 (en) * 2004-02-28 2005-09-15 Bayer Materialscience Ag Hydrophobic, low viscosity polyols
DE102004050284A1 (en) 2004-10-15 2006-04-27 Lanxess Deutschland Gmbh Isocyanate-based tannins
DE102005020269A1 (en) 2005-04-30 2006-11-09 Bayer Materialscience Ag Binder mixtures of polyaspartic esters and sulfonate-modified polyisocyanates
DE102006053741A1 (en) * 2006-11-15 2008-05-21 Bayer Materialscience Ag coating agents
DE102006053740A1 (en) 2006-11-15 2008-05-21 Bayer Materialscience Ag coating agents
DE102009005712A1 (en) 2009-01-22 2010-07-29 Bayer Materialscience Ag Polyurethanvergussmassen
DE102009005711A1 (en) 2009-01-22 2010-07-29 Bayer Materialscience Ag Polyurethanvergussmassen
EP2218740B1 (en) 2009-02-13 2013-11-06 Bayer MaterialScience LLC Cleanable waterborne polyurethane coatings
EP2236531A1 (en) 2009-03-31 2010-10-06 Bayer MaterialScience AG New aqueous 2K PUR coating system for improved corrosion protection
DE102009038463A1 (en) 2009-08-21 2011-02-24 Bayer Materialscience Ag Process for the preparation of biuret polyisocyanates
DE102009060552A1 (en) 2009-12-23 2011-06-30 Bayer MaterialScience AG, 51373 Polyurethane binder
DE102010029235A1 (en) 2010-05-21 2011-11-24 Evonik Degussa Gmbh Hydrophilic polyisocyanates
DE102010031683A1 (en) 2010-07-20 2012-01-26 Bayer Materialscience Ag polyisocyanate
EP2415879A1 (en) 2010-08-06 2012-02-08 LANXESS Deutschland GmbH Compositions comprising at least one compound containing carbamoylsulfonate groups and their use as tanning agents
EP2463340A1 (en) 2010-12-09 2012-06-13 Sika Technology AG Thixotropic polyurea adducts
EP2681189A1 (en) * 2011-03-03 2014-01-08 Basf Se Process for preparing polyisocyanates containing biuret groups
US8609887B2 (en) 2011-03-03 2013-12-17 Basf Se Process for preparing polyisocyanates comprising biuret groups
EP2508626A1 (en) 2011-04-04 2012-10-10 LANXESS Deutschland GmbH Solid, particular tanning agent preparations
EP2508627A1 (en) 2011-04-04 2012-10-10 LANXESS Deutschland GmbH Solid, particular material on the basis of compounds containing carbamoylsulfonate groups
EP2540753A1 (en) 2011-06-29 2013-01-02 LANXESS Deutschland GmbH Compound on the basis of compounds containing carbamoylsulfonate groups
EP2557224A1 (en) 2011-08-12 2013-02-13 LANXESS Deutschland GmbH Method for colouring substrates containing collagen fibres
EP2557181A1 (en) 2011-08-12 2013-02-13 LANXESS Deutschland GmbH Method for hydrophobic finishing of substrates containing collagen fibre
KR102057747B1 (en) 2012-04-23 2019-12-19 코베스트로 도이칠란드 아게 Lightfast polyurethane compositions
JP6363994B2 (en) 2012-04-23 2018-07-25 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Light-resistant polyurethane composition
TWI530510B (en) 2012-11-01 2016-04-21 旭化成化學股份有限公司 Polyisocyanate composition and isocyanate polymer composition
CN104448232B (en) 2013-09-13 2017-12-15 万华化学集团股份有限公司 Polyisocyanates that a kind of sulfamic acid is modified and its production and use
KR102409801B1 (en) 2014-06-13 2022-06-16 코베스트로 도이칠란트 아게 Thioallophanate polyisocyanates containing silane groups
EP2990398B1 (en) 2014-08-29 2018-12-19 Covestro Deutschland AG Hydrophilic polyaspartic acid ester
CN107207697B (en) 2015-01-20 2020-09-15 科思创德国股份有限公司 Crystallization-stable polyester prepolymers
WO2016146474A1 (en) 2015-03-17 2016-09-22 Covestro Deutschland Ag Silane groups containing polyisocyanates based on 1,5-diisocyanatopentane
EP3085719A1 (en) 2015-04-21 2016-10-26 Covestro Deutschland AG Hydrophobically modified polyisocyanurate plastic and method for producing the same
CN107531875B (en) 2015-04-21 2020-09-22 科思创德国股份有限公司 Process for producing polyisocyanurate plastics having functionalized surfaces
EP3286242A1 (en) 2015-04-21 2018-02-28 Covestro Deutschland AG Polyisocyanurate plastics having high thermal stability
CA2980669C (en) 2015-04-21 2023-09-19 Covestro Deutschland Ag Polyisocyanurate polymers and process for the production of polyisocyanurate polymers
CA2982261C (en) 2015-04-21 2023-09-26 Covestro Deutschland Ag Solids based on polyisocyanurate polymers produced under adiabatic conditions
CN107438635B (en) 2015-04-21 2021-01-19 科思创德国股份有限公司 Process for making polyisocyanurate plastics
KR20180051515A (en) 2015-09-09 2018-05-16 코베스트로 도이칠란트 아게 Scratch-resistant aqueous 2K PU coating
KR102555281B1 (en) 2015-09-09 2023-07-14 코베스트로 도이칠란트 아게 Scratch-resistant two-component polyurethane coating
US9815739B2 (en) 2015-10-30 2017-11-14 Covestro Llc Polyisocyanurate based cement for wellbore fluid loss prevention
JP2019515105A (en) 2016-05-04 2019-06-06 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Method for producing polyisocyanurate composite material
JP7208013B2 (en) 2016-05-04 2023-01-18 コベストロ、ドイチュラント、アクチエンゲゼルシャフト Method for producing polyisocyanurate composite material
JP2019526674A (en) 2016-09-02 2019-09-19 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Process for producing polyisocyanurate plastics by phosphine catalysis
CN109715691A (en) 2016-09-20 2019-05-03 科思创德国股份有限公司 Anisotropic composite material based on polyisocyanates
CN109790269B (en) 2016-10-14 2022-06-14 旭化成株式会社 Isocyanate composition, method for producing isocyanate composition, and method for producing isocyanate polymer
BR112019007400A2 (en) 2016-10-14 2019-07-02 Asahi Chemical Ind isocyanate composition, and method for producing an isocyanate polymer
WO2018073299A1 (en) 2016-10-18 2018-04-26 Covestro Deutschland Ag Production of plastics by catalytic crosslinking of blocked polvisocvanates
EP3529292A1 (en) 2016-10-18 2019-08-28 Covestro Deutschland AG Coating of wires with catalytically crosslinked blocked polyisocyanates
CN110062794B (en) 2016-10-18 2022-05-13 科思创德国股份有限公司 Hard coating with high chemical and mechanical resistance
EP3538583A1 (en) 2016-11-14 2019-09-18 Covestro Deutschland AG Dual-curing isocyanurate polymers
PL3601401T3 (en) 2017-03-24 2023-01-16 Covestro Intellectual Property Gmbh & Co. Kg Solid surface materials with polyurethane matrix
EP3381962A1 (en) 2017-03-29 2018-10-03 Covestro Deutschland AG Generation of polyisocyanurate layers through separate application of isocyanate components and catalysts
EP3421516A1 (en) 2017-06-28 2019-01-02 Covestro Deutschland AG Coloured plastics based on crosslinked polyisocyanates
EP3743449B1 (en) 2017-11-14 2024-04-17 Covestro Deutschland AG Semi-finished products based on dual cross-linking mechanism
EP3728369B1 (en) 2017-12-21 2022-01-12 Covestro Deutschland AG Polyurethane composite materials based on thermolatent catalysts
DE102018202050A1 (en) 2018-02-09 2019-08-14 Glue Tec Industrieklebstoffe Gmbh & Co. Kg TWO COMPONENT STRUCTURAL ADHESIVES
WO2019175344A1 (en) 2018-03-15 2019-09-19 Covestro Deutschland Ag Storage-stable pigmented formulations containing isocyanate groups and use thereof
EP3774980B1 (en) 2018-04-13 2024-05-01 Covestro Deutschland AG Adducts of amine catalysts for the production of isocyanurate polymers
TW202003448A (en) 2018-04-13 2020-01-16 德商科思創德意志股份有限公司 Adducts of amine catalysts for producing isocyanurate polymers
EP3560975B2 (en) 2018-04-25 2023-12-06 Covestro Intellectual Property GmbH & Co. KG Ionically hydrophilized polyisocyanates and antioxidants
EP3560974A1 (en) 2018-04-25 2019-10-30 Covestro Deutschland AG Ionically hydrophilized polyisocyanates, water content
EP3560976B1 (en) 2018-04-25 2021-05-26 Covestro Intellectual Property GmbH & Co. KG Ionically hydrophilized polyisocyanates and radical scavenger and/or peroxide decomposition agent
US20210214487A1 (en) 2018-05-17 2021-07-15 Covestro Intellectual Property Gmbh & Co. Kg Method for preparing composite materials made of polyethylene fibers having an ultra-high molecular weight and cross-linked polyisocyanates
ES2924735T3 (en) * 2018-05-17 2022-10-10 Covestro Intellectual Property Gmbh & Co Kg Process for the preparation of a polyisocyanate polymer and a polyisocyanurate plastic material
US20210130530A1 (en) 2018-07-20 2021-05-06 Covestro Intellectual Property Gmbh & Co. Kg Ionically hydrophilized polyisocyanates with improved drying
EP3599255A1 (en) 2018-07-23 2020-01-29 Covestro Deutschland AG Ionically hydrophilized polyisocyanates with improved drying
WO2020079160A1 (en) 2018-10-19 2020-04-23 Covestro Deutschland Ag Anhydrously curing polyisocyanate-based adhesives
US12071394B2 (en) 2018-10-31 2024-08-27 Dow Global Technologies Llc Method for removing monoisocyanates from organic solution
CN111253552B (en) 2018-11-30 2023-08-22 科思创德国股份有限公司 Modified polyisocyanates
WO2020109189A1 (en) 2018-11-30 2020-06-04 Covestro Deutschland Ag Modified polyisocyanate
CN113286836B (en) 2019-01-22 2024-02-13 科思创知识产权两合公司 Composite based on dual-cure urethane and isocyanurate polymers
WO2020174009A1 (en) 2019-02-27 2020-09-03 Covestro Intellectual Property Gmbh & Co. Kg Polyisocyanurate materials as electrical potting compounds
CN113518791B (en) 2019-02-28 2023-08-08 科思创知识产权两合公司 Storage-stable pigment-containing isocyanate-group-containing formulations having an isocyanate-group-containing grinding resin and use thereof
EP3744747A1 (en) 2019-05-27 2020-12-02 Covestro Deutschland AG Improved distillation by means of dilution with components to be separated out
EP3750934A1 (en) 2019-06-12 2020-12-16 Covestro Deutschland AG Method for the production of isocyanate-group terminated polyoxazolidinones
EP3750933A1 (en) 2019-06-12 2020-12-16 Covestro Deutschland AG Method for the production of epoxy-group terminated polyoxazolidinones
EP3760658A1 (en) 2019-07-03 2021-01-06 Covestro Deutschland AG Resistant 2k-pur coatings
EP3997149A1 (en) 2019-07-08 2022-05-18 Covestro Intellectual Property GmbH & Co. KG Polymerizable compositions for preparing polyisocyanurate-based plastics having extended worklife
US20220251280A1 (en) 2019-07-11 2022-08-11 Covestro Intellectual Property Gmbh & Co. Kg Process of preparing allophanate- and/or thioallophanate group-containing compounds
EP3763792A1 (en) 2019-07-11 2021-01-13 Covestro Deutschland AG Method for the production of isocyanurates from uretdiones
CN114502611A (en) 2019-10-07 2022-05-13 科思创知识产权两合公司 Storage stable thermal latent catalysts for isocyanate polymerization
EP3822297A1 (en) 2019-11-15 2021-05-19 Covestro Deutschland AG Polysiloxane functionalized polyurethanes for enhancing hydrophobisation of surfaces
WO2021148419A1 (en) 2020-01-22 2021-07-29 Covestro Deutschland Ag Method for recovering diisocyanates from distillation residues
WO2021165125A1 (en) 2020-02-17 2021-08-26 Covestro Deutschland Ag Polyisocyanate preparations
EP3872108A1 (en) 2020-02-28 2021-09-01 Covestro Intellectual Property GmbH & Co. KG Compositions containing uretdione groups
EP3885387A1 (en) 2020-03-25 2021-09-29 Covestro Deutschland AG Polyisocyanate-based polyaddition compounds having five-membered cyclic iminoether structural elements
EP3892659A1 (en) 2020-04-08 2021-10-13 Covestro Deutschland AG Low viscosity isocyanate prepolymers blocked with phenols obtainable from cashew nut shell oil, method for their preparation and their use
EP3916032A1 (en) 2020-05-29 2021-12-01 Covestro Deutschland AG Compositions containing uretdione groups crosslinking at low temperatures
WO2022002808A1 (en) 2020-06-29 2022-01-06 Covestro Deutschland Ag Polyether-modified polyisocyanate composition
ES2987027T3 (en) 2020-06-29 2024-11-13 Covestro Deutschland Ag Two-component coating composition
EP3988596A1 (en) 2020-10-26 2022-04-27 Covestro Deutschland AG Polyether-modified polyisocyanate composition
EP3988597A1 (en) 2020-10-26 2022-04-27 Covestro Deutschland AG Two-component coating composition
CN115768616A (en) 2020-07-02 2023-03-07 科思创德国股份有限公司 Polyisocyanurate coatings (RIM) and their use in injection moulding processes
EP3960783A1 (en) 2020-09-01 2022-03-02 Covestro Deutschland AG Isocyanate-terminated prepolymers based on polyoxymethylene-polyoxyalkylene block copolymers, method for their preparation and their use
EP4001332A1 (en) 2020-11-18 2022-05-25 Covestro Deutschland AG A modified polyisocyanate
EP4011927A1 (en) 2020-12-10 2022-06-15 Covestro Deutschland AG Composition comprising epoxy-functional oxazolidinone
EP4259676A1 (en) 2020-12-10 2023-10-18 Covestro Deutschland AG Composition comprising epoxy-functional oxazolidinone
EP4015547A1 (en) 2020-12-15 2022-06-22 Covestro Deutschland AG Nonionically hydrophilicized polyisocyanates, catalysis with zinc complexes
EP4015546A1 (en) 2020-12-15 2022-06-22 Covestro Deutschland AG Nonionically hydrophilicized polyisocyanates having a very low monomer content
EP4029892A1 (en) 2021-01-13 2022-07-20 Covestro Deutschland AG Compositions containing uretdione groups
US20240150515A1 (en) 2021-02-24 2024-05-09 Covestro Deutschland Ag Low Viscosity Catalyst Compositions for Producing Isocyanurate Polymers
US20240301154A1 (en) 2021-03-29 2024-09-12 Covestro Deutschland Ag Polyisocyanurate-prepregs and fiber composite components produced therefrom
EP4083100A1 (en) 2021-04-26 2022-11-02 Covestro Deutschland AG Method for the production of an isocyanate-group terminated polyoxazolidinone composition
WO2022228955A1 (en) 2021-04-26 2022-11-03 Covestro Deutschland Ag Method for the production of an isocyanate-group terminated polyoxazolidinone composition
CN115466201B (en) 2021-06-11 2024-05-03 万华化学集团股份有限公司 Sulfonic acid modified polyisocyanate and preparation method thereof
EP4105251A1 (en) 2021-06-18 2022-12-21 Covestro Deutschland AG Crosslinkable compositions containing imine and / or aminal-forming components
WO2022263306A1 (en) 2021-06-18 2022-12-22 Covestro Deutschland Ag Aldehyde-blocked organic polyisocyanates
EP4108695A1 (en) 2021-06-21 2022-12-28 Covestro Deutschland AG Coating agent and coatings produced therefrom having improved soiling resistances and (self) cleaning properties
EP4108694A1 (en) 2021-06-21 2022-12-28 Covestro Deutschland AG Coating agent and coatings produced therefrom having improved soiling resistances and (self) cleaning properties
US20240294692A1 (en) 2021-07-23 2024-09-05 Sika Technology Ag Polyisocyanurate plastics with high transparency
EP4169962A1 (en) 2021-10-21 2023-04-26 Covestro Deutschland AG Encapsulated polyurethane polymerization catalyst and latent reactive polyurethane composition
WO2023080258A1 (en) 2021-11-08 2023-05-11 旭化成株式会社 Carbonyl compound, method for producing carbonyl compound, method for producing isocyanate compound, and isocyanate composition
EP4198094A1 (en) 2021-12-20 2023-06-21 Covestro Deutschland AG Multilayer structure on metal substrates based on polyaspartate coatings
WO2023175014A1 (en) 2022-03-16 2023-09-21 Covestro Deutschland Ag Nco-terminated prepolymer for coating applications
EP4265663A1 (en) 2022-04-21 2023-10-25 Covestro Deutschland AG Polyaspartate-based two-component coating compositions for the production of coatings having improved self-heating properties and low adhesion
EP4279522A1 (en) 2022-05-17 2023-11-22 Covestro Deutschland AG Water-dispersible polyisocyanates with aldehyde blocking and aqueous compositions obtainable therefrom
EP4450532A1 (en) 2022-06-30 2024-10-23 Wanhua Chemical Group Co., Ltd. Hydrophilically modified polyisocyanate, and preparation method therefor and use thereof
EP4303246A1 (en) 2022-07-04 2024-01-10 Covestro Deutschland AG Polyisocyanate mixture
WO2024079004A1 (en) 2022-10-13 2024-04-18 Covestro Deutschland Ag Solid surface materials based on reaction mixtures with two kind of blowing agents
EP4375307A1 (en) 2022-11-23 2024-05-29 Covestro Deutschland AG Solid surface materials based on reaction mixtures with two kind of blowing agents
EP4406987A1 (en) 2023-01-27 2024-07-31 Sika Technology AG Curable potting material for automotive battery packs
EP4464727A1 (en) 2023-05-16 2024-11-20 Covestro Deutschland AG Esterified ethanolamines for the preparation of isocyanurate polymers
EP4480979A1 (en) 2023-06-20 2024-12-25 Covestro Deutschland AG Polyisocyanate composition
WO2024260926A1 (en) 2023-06-22 2024-12-26 Covestro Deutschland Ag Method for the production of a hydroxyl-group terminated oxazolidinone composition
EP4506166A1 (en) 2023-08-10 2025-02-12 Covestro Deutschland AG Method for producing a recyclable single-material multilayer system
EP4512839A1 (en) 2023-08-25 2025-02-26 Covestro Deutschland AG Water-based radiation-curable polyurethane dispersions with excellent application properties

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49134629A (en) * 1973-02-17 1974-12-25
JPS52108927A (en) * 1976-03-10 1977-09-12 Bayer Ag Process for manufacturing biuret grouppcontaining polyisocyanate
JPS54119431A (en) * 1978-01-25 1979-09-17 Bayer Ag Manufacture of organic polyisocyanate having biuret group and*or urea group

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1174759B (en) * 1963-02-08 1964-07-30 Bayer Ag Process for the production of polyisocyanates with a biuret structure
DE2261065C2 (en) * 1972-12-14 1982-04-01 Basf Ag, 6700 Ludwigshafen Process for the preparation of stable polyisocyanates containing biuret groups
US3903126A (en) * 1973-12-11 1975-09-02 Basf Ag Manufacture of biuret group-containing polyisocyanates
US4147714A (en) * 1976-03-10 1979-04-03 Bayer Aktiengesellschaft Process for the preparation of polyisocyanates which contain biuret groups
DE3403278A1 (en) * 1984-01-31 1985-08-01 Bayer Ag, 5090 Leverkusen METHOD FOR PRODUCING POLYISOCYANATES WITH BIURET STRUCTURE
DE3403277A1 (en) * 1984-01-31 1985-08-01 Bayer Ag, 5090 Leverkusen METHOD FOR PRODUCING POLYISOCYANATES WITH BIURET STRUCTURE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49134629A (en) * 1973-02-17 1974-12-25
JPS52108927A (en) * 1976-03-10 1977-09-12 Bayer Ag Process for manufacturing biuret grouppcontaining polyisocyanate
JPS54119431A (en) * 1978-01-25 1979-09-17 Bayer Ag Manufacture of organic polyisocyanate having biuret group and*or urea group

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020452A (en) * 2000-07-13 2002-01-23 Asahi Kasei Corp Biuret type polyisocyanate composition and its manufacturing method
WO2012108505A1 (en) 2011-02-10 2012-08-16 三菱化学株式会社 Non-aqueous electrolyte for secondary battery, and non-aqueous electrolyte secondary battery using same
US8846247B2 (en) 2011-02-10 2014-09-30 Mitsubishi Chemical Corporation Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery employing the same

Also Published As

Publication number Publication date
AU593707B2 (en) 1990-02-15
US4837359A (en) 1989-06-06
JP2668233B2 (en) 1997-10-27
AU1011988A (en) 1988-07-14
EP0277353A1 (en) 1988-08-10
DE3700209A1 (en) 1988-07-21
BR8800021A (en) 1988-08-02
EP0277353B1 (en) 1990-05-16
CA1315799C (en) 1993-04-06
ES2015039B3 (en) 1990-08-01
DE3762739D1 (en) 1990-06-21

Similar Documents

Publication Publication Date Title
JPS63174961A (en) Manufacture of polyisocyanate having burette structure
JP4375949B2 (en) Process for producing aliphatic / alicyclic isocyanate
US4147714A (en) Process for the preparation of polyisocyanates which contain biuret groups
US6066759A (en) Process and device for preparing (cyclo)aliphatic biuret groups-containing polyisocyanates
CN102414247A (en) Method and device for synthesizing polyester
US6414184B1 (en) Process for producing polyisocyanates containing biuret groups from (cyclo)aliphatic diisocyanates
US5994491A (en) Process for the production of polyisocyanates having a biuret structure
JP4926334B2 (en) Method for producing polyisocyanate having burette structure
JPS6229426B2 (en)
JP2003535166A (en) Method and apparatus for continuous preparation of isocyanate-containing polyurethane prepolymers
JP4514293B2 (en) Biuret type polyisocyanate composition and method for producing the same
JPS61130267A (en) Manufacture of modified polyisocyanate, compound thereby anduse thereof for polyurethane lacquer
JP5546385B2 (en) Process for producing polyisocyanate containing biuret structure
JPS6250322A (en) Polyamine and its production
JP7285924B2 (en) A method for preparing isocyanates in the gas phase
JP2840112B2 (en) Diisocyanate and method for producing the same
JPS63256611A (en) Production of polyamine
JP2875871B2 (en) Method for producing aromatic isocyanate
JP2004529255A (en) Continuous production method of polyisocyanate
JP4367988B2 (en) Method for producing polyisocyanate composition
JPH11335344A (en) Production of organic isocyanate excellent in heat stability
JPS6241496B2 (en)
JPH02145556A (en) Aliphatic triisocyanate compound and production thereof
JPH1095823A (en) Production of uretedione-containing polyisocyanate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees