JPH02145556A - Aliphatic triisocyanate compound and production thereof - Google Patents
Aliphatic triisocyanate compound and production thereofInfo
- Publication number
- JPH02145556A JPH02145556A JP29838988A JP29838988A JPH02145556A JP H02145556 A JPH02145556 A JP H02145556A JP 29838988 A JP29838988 A JP 29838988A JP 29838988 A JP29838988 A JP 29838988A JP H02145556 A JPH02145556 A JP H02145556A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- phosgenation
- aliphatic
- phosgene
- hydrochloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、脂肪族トリイソシアネートおよびその製造法
に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an aliphatic triisocyanate and a method for producing the same.
本発明のイソシアネートは新規な構造の脂肪族トリイソ
シアネートであり、塗料、フィルム、接着材、繊維等の
各種ポリウレタン樹脂の原料、特に無黄変二液型ポリウ
レタン塗料の硬化剤に使用出来る。The isocyanate of the present invention is an aliphatic triisocyanate with a novel structure, and can be used as a raw material for various polyurethane resins such as paints, films, adhesives, and fibers, particularly as a curing agent for non-yellowing two-component polyurethane paints.
脂肪族トリイソシアネート化合物は既にいくつかが公知
となっている6例えば、1.6−ジイツシアナートヘキ
サン(以下、HDIと略す)を変性して得られるトリ
(ポリ)イソシアネート類が良く知られている。最近で
はアクリロニトリルを三量化したトリシアノ化合物を水
素添加して得られるトリアミンをホスゲン化して合成さ
れるl、8ジイソシアナート−4−インシアナートメチ
ル−オクタン(以下、TINと略す)(特開昭56−6
1341号)、e−カプロラクタム等の原料から得れる
1、、6.11−ウンデカントリアミンをホスゲン化し
て合成されるL6,11−ウンデカントリイソシアネー
ト(以下、TIUDと略す)(特公昭5761352号
)、又特開昭53−135931号にはリジンとエタノ
ールアミンを酸触媒の存在下にエステル化を行い生成す
るトリアミン塩酸塩をホスゲン化することによって合成
されるリジンエステルトリイソシアネート(以下、LT
Iと略す)が紹介されている。Some aliphatic triisocyanate compounds are already known6. For example, triisocyanate compounds obtained by modifying 1,6-dicyanatohexane (hereinafter abbreviated as HDI)
(Poly)isocyanates are well known. Recently, 1,8 diisocyanato-4-incyanatomethyl-octane (hereinafter abbreviated as TIN) (hereinafter abbreviated as TIN) (JP-A-Show 56-6
1341), L6,11-undecane triisocyanate (hereinafter abbreviated as TIUD) synthesized by phosgenating 1,,6,11-undecanetriamine obtained from raw materials such as e-caprolactam (Japanese Patent Publication No. 5761352), Furthermore, in JP-A-53-135931, lysine ester triisocyanate (hereinafter referred to as LT) is synthesized by esterifying lysine and ethanolamine in the presence of an acid catalyst and phosgenating triamine hydrochloride.
(abbreviated as I) is introduced.
(発明が解決しようとする課題]
本発明は1.6−ジイツシアナートヘキサンの変性体や
TIN、TIUD、LTIとは構造の全く異なる新規な
脂肪族トリイソシアネート化合物を提供することを目的
としている。(Problems to be Solved by the Invention) The purpose of the present invention is to provide a novel aliphatic triisocyanate compound whose structure is completely different from that of a modified product of 1,6-dicyanatohexane, TIN, TIUD, and LTI. There is.
本発明の目的は、下記の如き構造式を有する新規な脂肪
族トリイソシアネート化合物である1、7−ジイツシア
ナートー4−(3−イソシアナートプロピル)−へブタ
ン(以下、TIDと略す)によって達成される。The object of the present invention is to use 1,7-dicyanato-4-(3-isocyanatopropyl)-hebutane (hereinafter abbreviated as TID), which is a novel aliphatic triisocyanate compound having the following structural formula. achieved.
従来より公知の脂肪族3官能イソシアネートとしては前
述したHDIの水アダクト体、トリメチロールプロパン
を反応させたアダクト体、イソシアヌレート変性体等の
各種の変性体があるが、本発明のTIDと比較すると次
の様な欠点が挙げられる。Conventionally known aliphatic trifunctional isocyanates include various modified products such as the aforementioned water adduct of HDI, adduct obtained by reacting trimethylolpropane, and modified isocyanurate, but when compared with TID of the present invention, The following drawbacks can be mentioned.
すなわち、変性により相当のコストがかさむこと、変性
体は溶剤に熔解した型態をとること、変性後蒸気圧の高
い、人体に対して有害な未反応のHDIを除去する必要
があること、この未反応のHDIを除いたポリ(トリ)
イソシアネートは高分子量物を含有するので粘度が高い
こと等である。Namely, denaturation incurs considerable costs, the denatured product is dissolved in a solvent, and unreacted HDI, which has a high vapor pressure after denaturation and is harmful to the human body, must be removed. Poly(tri) excluding unreacted HDI
Since isocyanate contains a high molecular weight substance, it has a high viscosity.
又、最近開発されたTIN、TIUD、LTIは上記H
DI変性体の欠点を改良した低粘度且つ低毒性の脂肪族
トリイソシアネートであるが、以下に記述するような欠
点を有する。In addition, the recently developed TIN, TIUD, and LTI are
Although it is a low viscosity and low toxicity aliphatic triisocyanate that has improved the drawbacks of the DI modified product, it has the following drawbacks.
TINは名NCO基間の最少の炭素数が5であり、NG
O基間の距離が比較的短いため、このトリイソシアネー
トを用いたポリウレタン樹脂は柔軟性、弾力性(可撓性
)に欠け、未反応のNGO基を有する可能性がある。T
TUDは2級炭素に結合したNGO基を有し反応性が低
いと考えられる。又、LTIはエステル基構造を有する
為、得られたポリウレタン樹脂の耐酸、耐アルカリ性、
耐熱水性が悪い懸念がある。TIN has a minimum number of carbons of 5 between NCO groups, and NG
Since the distance between O groups is relatively short, polyurethane resins using this triisocyanate lack flexibility and elasticity, and may have unreacted NGO groups. T
TUD has an NGO group bonded to a secondary carbon and is considered to have low reactivity. In addition, since LTI has an ester group structure, the acid resistance, alkali resistance,
There are concerns about poor hot water resistance.
以上の従来より知られている脂肪族トリイソシアネート
類に比較して、本発明のTTDは以下に述べる優れた性
質を有する。Compared to the conventionally known aliphatic triisocyanates mentioned above, the TTD of the present invention has the excellent properties described below.
本発明のTIDは低粘度且つ低毒性である、NGO基は
総て1級炭素に結合し高い反応性を有する、NGO基間
の炭素数は7であり、TINやTIUDと比較して長い
。この為、TIDを用いたポリウレタン樹脂は柔軟性、
弾力性(可1発性)に優れた性質を存する。特にポリウ
レタン塗料の硬化剤に用いた場合価れた速乾性を有し、
得られた塗膜は無黄変性、架橋性、耐水性、耐酸性、耐
アルカリ性、耐衝撃性、密着性、耐汚染性、耐光安定性
に優れ、高い硬度を有し、従来よりある脂肪族トリイソ
シアネート類を硬化剤に用いた場合に比べると格別に優
れた塗膜物性を有するポリウレタン樹脂塗膜を得ること
が可能である。TID of the present invention has low viscosity and low toxicity. All NGO groups are bonded to primary carbons and have high reactivity. The number of carbon atoms between NGO groups is 7, which is longer than TIN and TIUD. For this reason, polyurethane resin using TID has flexibility and
It has excellent elasticity (possible elasticity). It has excellent quick drying properties especially when used as a curing agent for polyurethane paints.
The resulting coating film is non-yellowing, has excellent cross-linking properties, water resistance, acid resistance, alkali resistance, impact resistance, adhesion, stain resistance, light stability, high hardness, and has conventional aliphatic It is possible to obtain a polyurethane resin coating film having exceptionally excellent coating properties compared to when triisocyanates are used as a curing agent.
本発明のTIDは従来知られていない全く新規な構造を
有する脂肪族トリイソシアネート化合物であり、本発明
者らが鋭意研究した結果合成されたものである。以下に
TIDの製法について述べる。The TID of the present invention is an aliphatic triisocyanate compound having a completely new structure that has not been previously known, and was synthesized as a result of intensive research by the present inventors. The manufacturing method of TID will be described below.
本発明のトリイソシアネートは前記式(II)で表され
る1、7−ジアミツー4−アミノプロピル−へブタンを
ホスゲン化する事によって製造される。The triisocyanate of the present invention is produced by phosgenating 1,7-diamitu-4-aminopropyl-hebutane represented by the above formula (II).
前記脂肪族トリアミン化合物は、本発明者らによって合
成された新規な化合物であり、ニトロメタンをシアノエ
チル化しトリス−(β−シアンエチル)ニトロメタンを
合成後、水素化トリーnブチルスズ、アゾビスイソブチ
ロニトリルを還元剤に用いる脱ニトロ化反応によりトリ
ス−(β−シアンエチル)メタンを得た後、これをラネ
ーコバルトを触媒に用いて水添反応することにより得ら
れる。The aliphatic triamine compound is a novel compound synthesized by the present inventors, and after cyanoethylating nitromethane to synthesize tris-(β-cyanoethyl)nitromethane, tri-n-butyltin hydride and azobisisobutyronitrile are synthesized. Tris-(β-cyanoethyl)methane is obtained by a denitration reaction using as a reducing agent, and then hydrogenated using Raney cobalt as a catalyst.
上記1.7−ジアミツー4−アミノプロピル−へブタン
をホスゲン化する方法としては、このトリアミン化合物
を直接ホスゲンと反応させる方法、又はこのトリアミン
化合物の塩酸塩等の塩を予め合成し、これを不活性溶媒
中に懸濁させてホスゲンと反応させる方法等がある。前
者の方法は”冷熱二段ホスゲン化゛°と呼ばれ、反応の
実施態様は特に限定はないが、一般にはホスゲンガス導
入管を備えた、反応系内が充分に攪拌可能な反応器に不
活性溶媒を入れて、0〜5“Cに冷却してホスゲンガス
を導入し、ホスゲンを不活性溶媒に所定量溶解させる。As a method for phosgenating the above-mentioned 1,7-diami2-4-aminopropyl-hebutane, there is a method in which this triamine compound is directly reacted with phosgene, or a salt such as a hydrochloride of this triamine compound is synthesized in advance, and this is There are methods such as suspending it in an active solvent and reacting it with phosgene. The former method is called "cold-thermal two-stage phosgenation," and although there are no particular restrictions on the reaction method, it is generally placed in an inert reactor equipped with a phosgene gas introduction tube and capable of sufficient stirring in the reaction system. A solvent is added, cooled to 0-5"C, and phosgene gas is introduced to dissolve a predetermined amount of phosgene in the inert solvent.
その後、所定量のホスゲンガスを導入しながら不活性溶
媒に溶解した脂肪族トリアミン溶液を添加する。この間
反応液を15°C以下に保ち、発生する塩化水素と過剰
ホスゲンは還元冷却器を通して系外へとりだす、主反応
はカルバミルクロリドおよびアミン塩酸塩の生成であり
、反応器内はスラリ状となる。アミン溶液の添加後、所
定時間反応を続ける。Thereafter, an aliphatic triamine solution dissolved in an inert solvent is added while introducing a predetermined amount of phosgene gas. During this time, the reaction solution is kept below 15°C, and the generated hydrogen chloride and excess phosgene are taken out of the system through a reduction cooler.The main reaction is the production of carbamyl chloride and amine hydrochloride, and the inside of the reactor is in the form of a slurry. Become. After addition of the amine solution, the reaction is continued for a predetermined period of time.
以上を冷ホスゲン化と称する。The above process is called cold phosgenation.
次に反応系内を加熱し約1時間で約140°Cに昇温す
る。昇温時には溶解ホスゲンが気化して泡立ちやすいの
で冷ホスゲン化時に比較してホスゲン流量を減少させる
。昇温後、所定時間反応を続け、反応液のスラリか完全
に溶解したら反応終了とする。Next, the inside of the reaction system is heated and the temperature is raised to about 140°C in about 1 hour. When the temperature is raised, dissolved phosgene tends to vaporize and foam, so the phosgene flow rate is reduced compared to when cold phosgenation is performed. After raising the temperature, the reaction is continued for a predetermined period of time, and the reaction is terminated when the slurry of the reaction liquid is completely dissolved.
以上を熱ホスゲン化と称する。The above process is called thermal phosgenation.
なお、熱ホスゲン化の主反応はカルバミルクロリドのイ
ンシアナートへの分解とアミン塩酸塩のイソシアナート
へのホスゲン化である。熱ホスゲン化終了後、反応系内
を140℃に維持し窒素ガスを所定量吹き込み溶解ガス
を除く0次いで冷却後、減圧上不活性溶媒を留去し、粗
脂肪族トリイソシアネートを得る。粗脂肪族トリイソシ
アネートの精製は真空蒸留により行う。The main reactions of thermal phosgenation are the decomposition of carbamyl chloride into incyanate and the phosgenation of amine hydrochloride into isocyanate. After the completion of thermal phosgenation, the inside of the reaction system is maintained at 140° C. and a predetermined amount of nitrogen gas is blown in to remove dissolved gas. After cooling, the inert solvent is distilled off under reduced pressure to obtain a crude aliphatic triisocyanate. The crude aliphatic triisocyanate is purified by vacuum distillation.
後者の方法は”アミン塩酸塩のホスゲン化法”と呼ばれ
るもので、予め上記脂肪族トリアミンの塩酸塩を合成す
る。塩酸塩の合成法は周知の方法で、脂肪族トリアミン
を塩化水素又は濃塩酸と処理することにより容易に得ら
れる。充分に乾燥し、微粉砕化された上記の脂肪族トリ
アミン塩酸塩を前述の”冷熱2段ホスゲン化法”で用い
たのと同様な反応器内で不活性溶媒に分散させ、反応温
度を80〜140°Cに維持し、ホスゲンガスを導入し
イソシアネートを合成する。反応の進行は発生する塩化
水素のガスの量と原料の不活性溶媒に不溶の脂肪族トリ
アミン塩酸塩が消失し、反応液が透明均一になることに
より推定できる0発生する塩化水素と過剰のホスゲンガ
スは還流冷却器を通して放出する0反応終了後、反応溶
媒中に窒素ガスを導入し、溶存しているホスゲンを除き
、冷却後濾過した後、不活性溶媒を減圧上留去し、粗脂
肪族トリイソシアネートを得る。導入するホスゲンの量
は“冷熱2段ホスゲン化法”及び”アミン塩酸塩のホス
ゲン化法”とも理論量の3倍から10倍用いれば充分で
ある。又、不活性溶媒としては芳香族炭化水素、塩素化
芳香族炭化水素であり、好ましくはオルトジクロルベン
ゼンである。The latter method is called "amine hydrochloride phosgenation method," and the hydrochloride of the aliphatic triamine is synthesized in advance. The hydrochloride is easily synthesized by a well-known method by treating an aliphatic triamine with hydrogen chloride or concentrated hydrochloric acid. The above-mentioned aliphatic triamine hydrochloride, which has been sufficiently dried and pulverized, is dispersed in an inert solvent in a reactor similar to that used in the above-mentioned "cold-hot two-stage phosgenation method", and the reaction temperature is increased to 80°C. The temperature is maintained at ~140°C, and phosgene gas is introduced to synthesize isocyanate. The progress of the reaction can be estimated based on the amount of hydrogen chloride gas generated and the disappearance of the aliphatic triamine hydrochloride insoluble in the inert solvent of the raw material, and the reaction solution becoming transparent and homogeneous. 0 Hydrogen chloride generated and excess phosgene gas After the reaction is completed, nitrogen gas is introduced into the reaction solvent to remove the dissolved phosgene, and after cooling and filtration, the inert solvent is distilled off under reduced pressure to obtain the crude aliphatic trifluoride. Obtain isocyanate. It is sufficient to introduce 3 to 10 times the theoretical amount of phosgene in both the "cold and hot two-stage phosgenation method" and the "amine hydrochloride phosgenation method." Further, as the inert solvent, aromatic hydrocarbons and chlorinated aromatic hydrocarbons are used, and ortho-dichlorobenzene is preferable.
以上の操作で得られたTIDは、沸点168〜170”
C/ 0.1mm11g (蒸留フラスコの油浴点18
0〜190’C)の無色透明の液状物質で、次に示すス
ペクトルデータ及び元素分析値(例)を示す。The TID obtained by the above procedure has a boiling point of 168 to 170"
C/ 0.1 mm 11 g (oil bath point of distillation flask 18
It is a colorless and transparent liquid substance with a temperature of 0 to 190'C), and the following spectral data and elemental analysis values (examples) are shown.
(1)元素分析値(C+3H+JsOs)CI
N CI
計算値(χ) 58.85 7.22 15.84分
析値(χ) 58.95 7.53 15.90 0
.10(2)NGO含有率
NCO%=47.5%
(計算値NCO%=47.51%)
(3)GC−MS分析
CI(イソブタン)−MSスペクトル
(?IH)” −266
(注TIDの分子量=265.31)
(4)IRスペクトル(NaC1結晶板、液膜法)第1
図にIRスペクトルを示す。(1) Elemental analysis value (C+3H+JsOs) CI
N CI Calculated value (χ) 58.85 7.22 15.84 Analysis value (χ) 58.95 7.53 15.90 0
.. 10 (2) NGO content NCO% = 47.5% (calculated value NCO% = 47.51%) (3) GC-MS analysis CI (isobutane)-MS spectrum (?IH)” -266 (Note TID Molecular weight = 265.31) (4) IR spectrum (NaC1 crystal plate, liquid film method) 1st
The figure shows the IR spectrum.
吸収波数 C1−1
2870、2840、2230〜2240 (イソシア
ネート基) 、1460.1355
(5) ’II−NMRスペクトル(100Mllz、
CDCl+中)第2図に NMRRスペクトルを示す
。Absorption wave number C1-1 2870, 2840, 2230-2240 (isocyanate group), 1460.1355 (5) 'II-NMR spectrum (100 Mllz,
(in CDCl+) Figure 2 shows the NMRR spectrum.
」 あわせて13H [実施例] 以下、実施例により本発明の詳細な説明する。” 13H in total [Example] Hereinafter, the present invention will be explained in detail with reference to Examples.
実施例1
式(n)で示される1、7−ジアミツー4−アミノプロ
ピル−へブタンを原料として、冷熱2段法でホスゲン化
を行った。Example 1 Using 1,7-diamitu-4-aminopropyl-hebutane represented by formula (n) as a raw material, phosgenation was performed by a cold and hot two-step method.
撹拌機、温度計、ホスゲンガス導入管、冷却管、滴下ロ
ートを装備した22反応フラスコにオルトジクロルベン
ゼン400gを装入し、攪拌下、反応フラスコを氷水浴
につけ内温を約5°Cに保ち、ホスゲンガスを75 g
/ hの割合で1時間フラスコ内に導入した。400 g of orthodichlorobenzene was charged into a 22 reaction flask equipped with a stirrer, a thermometer, a phosgene gas introduction tube, a cooling tube, and a dropping funnel, and while stirring, the reaction flask was placed in an ice water bath to maintain the internal temperature at approximately 5°C. , 75 g of phosgene gas
/h into the flask for 1 hour.
次イテ、オルトジクロルベンゼン250gに溶解した上
記1,7−ジアミツー4−アミノプロピル−へブタン1
2.5 g (0,0667sol)を30分間で滴下
した。Next, 1 of the above 1,7-diami2-4-aminopropyl-hebutane dissolved in 250 g of orthodichlorobenzene.
2.5 g (0,0667 sol) was added dropwise over 30 minutes.
アミン滴下時にホスゲンガスを50g/hの割合で導入
しながら8〜12’cで冷ホスゲン化を行った。Cold phosgenation was carried out at 8 to 12'C while introducing phosgene gas at a rate of 50 g/h during the amine dropwise addition.
冷ホスゲン化によりフラスコ内にはカルバミルクロリド
の生成の為、無色透明のゲル状物が生じた。Due to the formation of carbamyl chloride, a colorless and transparent gel-like substance was formed in the flask due to the cold phosgenation.
次いで反応液を30分間で140’Cに昇温した。昇温
後、反応温度140°Cでホスゲンガスを50g/hの
割合で導入しながら、2時間熱ホスゲン化を行った。熱
ホスゲン化の過程で無色透明のゲル状物はオルトジクロ
ルベンゼンに完溶した。冷熱2段ホスゲン化で合計22
5gのホスゲンガスを導入した。The reaction solution was then heated to 140'C over 30 minutes. After raising the temperature, thermal phosgenation was carried out for 2 hours while introducing phosgene gas at a rate of 50 g/h at a reaction temperature of 140°C. During the thermal phosgenation process, the colorless and transparent gel was completely dissolved in orthodichlorobenzene. Total of 22 in cold and hot two-stage phosgenation
5 g of phosgene gas was introduced.
これは理論量の約10倍であった。熱ホスゲン化終了後
、反応温度140”cで窒素ガス300m/ 翔inの
割合で2時間導入し脱ガスを行った。冷却後、濾過した
後、約1 mmHgの減圧度で溶媒のオルトジクロルベ
ンゼンの留去を行い、褐色の反応成約18gを得た。褐
色反応液を真空蒸留により精製して、沸点168〜17
0’C10,1mm)Ig(蒸留フラスコの油浴部18
0〜190°C)の無色透明な液体留分約118を得た
。元素分析値、NGO含有率、GC−MSスペクトル、
IR−スペクトル、’H−NMRスペクトルの分析値を
調べたところ、前記のものであったことがらTID(1
,7−ジイソシアナト−4イソシアナトプロピル−へブ
タン−式(1)の化合物)であることを同定した。This was about 10 times the theoretical amount. After the completion of thermal phosgenation, degassing was carried out by introducing nitrogen gas at a rate of 300 m/in for 2 hours at a reaction temperature of 140"C. After cooling and filtration, the solvent orthodichlor was removed at a reduced pressure of about 1 mmHg. Benzene was distilled off to obtain 18 g of a brown reaction mixture.The brown reaction liquid was purified by vacuum distillation to give a boiling point of 168-17.
0'C10, 1mm) Ig (oil bath part 18 of distillation flask
Approximately 118 colorless and transparent liquid fractions (0-190°C) were obtained. Elemental analysis value, NGO content, GC-MS spectrum,
When we investigated the analytical values of the IR-spectrum and 'H-NMR spectrum, we found that they were the same as above, so TID (1
, 7-diisocyanato-4isocyanatopropyl-hebutane-a compound of formula (1)).
実施例2
1.7−ジアミツー4−アミノプロピル−へブタンを原
料として塩酸塩法でホスゲン化を行った。Example 2 Phosgenation was performed using 1,7-diamitu-4-aminopropyl-hebutane as a raw material by the hydrochloride method.
上記トリアミン25g (0,133WAol)をメタ
ノール25mQに溶解、25°C以下で攪拌下35%の
濃塩酸50gを徐々に滴下して塩酸塩を生成させた。減
圧下、メタノール及び水を留去して濃縮し、再びメタノ
ール100mを加えて濃縮を行い、粘稠なトリアミン塩
酸塩を得た。これを70’C10,5nu++Hgで2
4時間乾燥を行うと薄赤色の固体のトリアミン塩酸塩が
得られた。この塩酸塩を微粉砕した。25 g (0,133 WAol) of the above triamine was dissolved in 25 mQ of methanol, and 50 g of 35% concentrated hydrochloric acid was gradually added dropwise under stirring at 25° C. or lower to produce a hydrochloride. Methanol and water were distilled off and concentrated under reduced pressure, and 100 m of methanol was added again for concentration to obtain viscous triamine hydrochloride. This is 2 at 70'C10,5nu++Hg
After drying for 4 hours, a pale red solid triamine hydrochloride was obtained. This hydrochloride was pulverized.
上記の操作で得られたトリアミン塩酸塩粉末19.8
g (0,0667+mol)をオルトジクロルベンゼ
ン400gに懸濁させ、攪拌機、温度計、ホスゲンガス
導入管、冷却管を装備した12反応フラスコに装入した
。反応温度を140°Cに保ちながらホスゲンを50g
/hの割合で3時間、25g/hの割合で6時間導入し
た。反応末期にはトリアミン塩酸塩はほぼ消失した。塩
酸塩法によるホスゲン化で合計300gのホスゲンを使
用した。これは理論量の約15倍であった。ホスゲン化
終了後、反応液に140 ”Cで窒素ガスを300if
/a+ipの割合で2時間導入した。冷却後、少量の不
溶解物を濾過して除いた。次いで約1 mmHgの減圧
下で溶媒のオルトジクロルベンゼンの留去を行い、褐色
反応成約17gを得た。褐色反応液を真空蒸留により精
製して、沸点175〜180°C/ 0.15anHg
(蒸留フラスコの油浴部185〜195°C)の留分
約10gを得た0元素分析値、NGO含有率、IR−ス
ペクトル、′HN M Rスペクトルの分析値は実施例
1と同様の値を示したのでTID(1,7−ジイソシア
ナト−4イソシアナトプロピル−へブタン−式(1)の
化合物)であることを同定した。Triamine hydrochloride powder obtained by the above operation 19.8
g (0,0667+mol) was suspended in 400 g of orthodichlorobenzene and charged into a 12 reaction flask equipped with a stirrer, a thermometer, a phosgene gas introduction tube, and a cooling tube. 50g of phosgene while keeping the reaction temperature at 140°C.
/h for 3 hours and at a rate of 25g/h for 6 hours. At the end of the reaction, triamine hydrochloride almost disappeared. A total of 300 g of phosgene was used in the phosgenation by the hydrochloride method. This was about 15 times the theoretical amount. After completion of phosgenation, nitrogen gas was added to the reaction solution at 140"C for 300if.
/a+ip for 2 hours. After cooling, a small amount of undissolved matter was removed by filtration. Then, the solvent, orthodichlorobenzene, was distilled off under reduced pressure of about 1 mmHg to obtain about 17 g of a brown reaction product. The brown reaction liquid was purified by vacuum distillation to a boiling point of 175-180°C/0.15 anHg.
The analysis values of the 0 element analysis value, NGO content, IR-spectrum, and 'HNMR spectrum obtained from about 10 g of the fraction (185-195°C in the oil bath of the distillation flask) are the same as in Example 1. It was identified as TID (compound of 1,7-diisocyanato-4isocyanatopropyl-hebutane-formula (1)).
4、4,
第1図はTIDのIRスペクトル、第2図はTIDのN
MRスペクトルを示す図である。Figure 1 is the IR spectrum of TID, Figure 2 is the N of TID.
It is a figure showing an MR spectrum.
Claims (1)
ートプロピル−ヘプタン 2)式(II) ▲数式、化学式、表等があります▼(II) で示される1,7−ジミノ−4−アミノプロピル−ヘプ
タンまたはその塩をホスゲンと反応させることを特徴と
する1,7−ジイソシアナート−4−イソシアナートプ
ロピル−ヘプタンの製造方法。[Claims] 1) Formula (I) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ 1,7-diisocyanato-4-isocyanatopropyl-heptane represented by (I) 2) Formula (II) ▲ There are mathematical formulas, chemical formulas, tables, etc.▼(II) 1,7-diisocyanate-4-, which is characterized by reacting 1,7-dimino-4-aminopropyl-heptane or its salt with phosgene. A method for producing isocyanate propyl-heptane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63298389A JP2548343B2 (en) | 1988-11-28 | 1988-11-28 | Aliphatic triisocyanate compound and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63298389A JP2548343B2 (en) | 1988-11-28 | 1988-11-28 | Aliphatic triisocyanate compound and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02145556A true JPH02145556A (en) | 1990-06-05 |
JP2548343B2 JP2548343B2 (en) | 1996-10-30 |
Family
ID=17859070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63298389A Expired - Fee Related JP2548343B2 (en) | 1988-11-28 | 1988-11-28 | Aliphatic triisocyanate compound and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2548343B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019070068A (en) * | 2017-10-06 | 2019-05-09 | 旭化成株式会社 | Coating composition |
-
1988
- 1988-11-28 JP JP63298389A patent/JP2548343B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019070068A (en) * | 2017-10-06 | 2019-05-09 | 旭化成株式会社 | Coating composition |
Also Published As
Publication number | Publication date |
---|---|
JP2548343B2 (en) | 1996-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3401190A (en) | 3-(isocyanatomethyl)-3, 5, 5-tri-lower-alkyl cyclohexyl isocyanates | |
US4220749A (en) | Process for the production of modified polyisocyanates | |
KR910009819B1 (en) | Method for preparing polyisocyanurate-polyisocyanate by catalytic ring trimerization of polyisocyanate | |
CA1248544A (en) | Process for the preparation of polyisocyanates with biuret structure | |
US5357021A (en) | Reactive carbodimide compositions | |
US2853518A (en) | Chemical process | |
US4625052A (en) | Process for the production of polyisocyanates which have a biuret structure | |
JP3729857B2 (en) | Production method of polyisocyanate containing biuret group | |
KR100542842B1 (en) | Method for producing biuret group-containing polyisocyanate from (alicyclic) aliphatic diisocyanate | |
Iwakura et al. | Cyclopolymerization of α, ω‐polymethylene diisocyanates | |
US4152350A (en) | Process for the preparation of polyisocyanates containing biuret groups | |
JPS5981324A (en) | Method for reducing free monomers in isocyanate adducts | |
JPH02145556A (en) | Aliphatic triisocyanate compound and production thereof | |
JPS63183553A (en) | Preparation of cyclohexylmono- and -urethane by adding methylcarbamate to limonene, isocyanate derived therefrom, method and composition | |
US4786751A (en) | Dissocyanates, diisocyanate mixtures and a process for their production | |
US3322812A (en) | Alkyl isocyanatoalkyl carbonates | |
US3676495A (en) | 2,4-bis(4-aminocyclohexylmethyl)cyclohexylamine | |
JPH0124797B2 (en) | ||
US4192936A (en) | Preparation of polyisocyanates containing biuret groups | |
US3231595A (en) | Isocyanato substituted multicyclodecenes | |
US4593117A (en) | Process for the preparation of N- and O-substituted diurethanes and/or polyurethanes | |
EP0042701B1 (en) | Isocyanate composition | |
JPS6315264B2 (en) | ||
US3282975A (en) | Process for producing stable, undistilled tolylene diisocyanate compositions | |
JP2840112B2 (en) | Diisocyanate and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |