JPS63157817A - Manufacture of low carbon steel wire rod and bar - Google Patents
Manufacture of low carbon steel wire rod and barInfo
- Publication number
- JPS63157817A JPS63157817A JP30117386A JP30117386A JPS63157817A JP S63157817 A JPS63157817 A JP S63157817A JP 30117386 A JP30117386 A JP 30117386A JP 30117386 A JP30117386 A JP 30117386A JP S63157817 A JPS63157817 A JP S63157817A
- Authority
- JP
- Japan
- Prior art keywords
- steel wire
- wire rod
- bar
- steel
- low carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は伸線加工や冷間鍛造加工に供せられるところの
強度が低く、かつ加工性にすぐれた低炭素鋼線材および
棒鋼の製造法に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for producing low-carbon steel wire rods and steel bars that have low strength and excellent workability when subjected to wire drawing or cold forging. It is related to.
[従来の技術]
低炭素鋼線材および棒鋼(以下、低炭素棒線と称す)は
通常0.2%以下の炭素を含有する普通炭素鋼で、熱間
圧延後、いわゆる二次加工工程と称さく1)
れる伸線、冷間鍛造、焼鈍などの工程を経て多くの鋼製
品の製造に供されている。低炭素棒線の材質上の特徴は
、いうまでもなく軟質で加工性にすぐれていることであ
る。特に、引張強さが低く、また冷間加工段階での加工
硬化が小さいことは、焼鈍工程の省略化あるいは工具寿
命の向上という経済的な効果を生み出すため、従来、低
炭素棒線の軟質化を目的とする多くの研究開発がなされ
ている。[Prior art] Low-carbon steel wire rods and bars (hereinafter referred to as low-carbon steel bars) are ordinary carbon steels that usually contain 0.2% or less carbon, and are processed through a so-called secondary processing process after hot rolling. 1) It is used to manufacture many steel products through processes such as wire drawing, cold forging, and annealing. Needless to say, the material characteristics of low carbon rods and wires are that they are soft and have excellent workability. In particular, low tensile strength and low work hardening during cold working produce economic effects such as omitting the annealing process and improving tool life, so conventionally, low carbon rods have been made softer. Much research and development has been carried out with the aim of
低炭素棒線を軟質化するための基本的な考え方を要約す
ると次のようになる。The basic idea for softening low-carbon rods and wires can be summarized as follows.
(1)C,SL、Mn、P等、含有成分量を低減して、
純鉄に近い組成とする。(1) Reduce the amount of components such as C, SL, Mn, P, etc.
The composition is close to that of pure iron.
(2)フェライト中に固溶しているCおよびNをそれぞ
れ炭化物および窒化物という形に固定して時効硬化を減
らす。(2) C and N dissolved in ferrite are fixed in the form of carbides and nitrides, respectively, to reduce age hardening.
(3)フェライト結晶粒を大きくする。(3) Enlarge ferrite crystal grains.
(1)に関しては、特公昭59−3535に述べられて
いるが、低炭素鋼でありながらSi、Mn、AΩ等の脱
酸元素が少ないために健全な峙片肌が得にくいとと、ま
た非金属介在物が多いために加工性が劣るという問題点
がある。(2)に関しては、Nに起因する時効を防止す
る手段としてAQ、Bなどを添加する技術が特開昭55
−61319、特開昭56−158841、および特開
昭59−215463に述べられている。これらはいず
れも固溶Nに起因する時効の抑制には有効だが、固溶C
に起因する時効を防止することができないため時効抑制
効果には自ずと限界がある。Regarding (1), it is stated in Japanese Patent Publication No. 59-3535 that although it is a low carbon steel, it is difficult to obtain a healthy surface due to the lack of deoxidizing elements such as Si, Mn, and AΩ. There is a problem in that workability is poor due to the large number of nonmetallic inclusions. Regarding (2), the technology of adding AQ, B, etc. as a means to prevent aging caused by N was disclosed in Japanese Patent Application Laid-Open No. 55
-61319, JP-A-56-158841, and JP-A-59-215463. All of these are effective in suppressing aging caused by solute N, but solute C
Since aging due to aging cannot be prevented, there is a limit to the aging suppression effect.
これに対して「鉄と鋼(日本鉄鋼協会)」第70巻第5
号、 5535ページに公表されているようにTi添加
を行えば、はゾ完全に時効を防止することが可能である
。これはTiが強力な炭窒化物形成元素であるためであ
る。しかし、上記刊行物にも記載されているようにTi
により非時効化を行うためには、化学量論的に必要なT
i量の2〜3倍、すなわちTiを成分重量比Ti/(C
十N)にして8〜10添加する必要がある。したがって
一般的には、Ti添加による非時効棒線の製造はコスト
高となるため、より経済的な製造法の開発が要請されて
いる。In contrast, “Iron and Steel (Japan Iron and Steel Association)” Vol. 70, No. 5
If Ti is added as disclosed in No. 1, page 5535, aging can be completely prevented. This is because Ti is a strong carbonitride forming element. However, as described in the above publication, Ti
In order to perform non-aging by
2 to 3 times the amount of Ti, that is, the component weight ratio Ti/(C
It is necessary to add 8 to 10 N). Therefore, in general, the production of non-aged rods by adding Ti is expensive, so there is a need to develop a more economical production method.
(3)に関しては、AQとNの含有量の比を適当に選ぶ
ことにより、焼鈍中にフェライトの異常粒成長を起こさ
せ、これにより鋼線の軟質化を達成する方法が特開昭6
0−36618の[低強度軟鋼線の製造法」に示されて
いる。しかしこのような粗大結晶粒を有する鋼線は引抜
加工ができず、また冷間鍛造加工時、材料表面に著しい
凹凸(いわゆるオレンジピール)を生ずるため、その用
途は自ずと限定されている。Regarding (3), JP-A No. 6 discloses a method of causing abnormal grain growth of ferrite during annealing by appropriately selecting the ratio of AQ and N contents, thereby softening the steel wire.
0-36618, "Production method of low-strength mild steel wire". However, steel wires having such coarse grains cannot be drawn, and their use is naturally limited because they produce significant irregularities (so-called orange peel) on the material surface during cold forging.
以上のような状況を鑑み、本発明者らは上述(2)の考
え方にしたがってTi添加による非時効化の検討を重ね
てきた。In view of the above situation, the present inventors have repeatedly investigated anti-aging by adding Ti in accordance with the above-mentioned idea (2).
[発明が解決しようとする問題点]
本発明の目的は、Tiを主体とする鋼組成とその熱間圧
延条件の最適化を検討し、これにより軟質かつ時効硬化
の少ない低炭素棒線を経済的に製造する方法を提供する
ことにある。[Problems to be Solved by the Invention] The purpose of the present invention is to study the optimization of the Ti-based steel composition and its hot rolling conditions, and thereby to economically produce low-carbon rods and wires that are soft and have little age hardening. The objective is to provide a method for manufacturing the same.
[問題点を解決するための手段]
すなわち、本発明は、C: 0.003〜0.04%r
si:0.005〜0.35%、 Mn : 0.1
0〜0.60%、AQ:0.005−0.080%ニT
iを成分重量比Ti/cで4〜8含み。[Means for solving the problems] That is, the present invention provides C: 0.003 to 0.04% r
si: 0.005-0.35%, Mn: 0.1
0-0.60%, AQ: 0.005-0.080% NiT
Contains 4 to 8 i in component weight ratio Ti/c.
残部がFeおよび不可避的不純物からなる鋼片あるいは
鋳片を700〜950℃の温度範囲に加熱し、その後熱
間圧延することを特徴とする低炭素鋼線材および棒鋼の
製造法である。This is a method for producing low carbon steel wire rods and steel bars, which is characterized in that a steel slab or slab, the balance of which is Fe and unavoidable impurities, is heated to a temperature range of 700 to 950°C, and then hot rolled.
[作用]
はじめに、本発明にかかわる化学成分の限定理由に関し
て説明する。[Operation] First, the reason for limiting the chemical components related to the present invention will be explained.
Tiは強力な炭窒化物形成元素であり、TiNおよびT
iCという析出物を生成することによりフェライト中に
固溶するNおよびCを固定して鋼を非時効化する。しか
し、TiNとTiCでは析出温度が異なり、TiNは錆
の凝固温度付近で析出するため、連続鋳造後の鋳片では
ほとんどのNはTiNとして析出していると考えてよい
。これに対して、TiCは通常の熱間圧延温度まで下っ
て析出を開始することから、以下TiCの析出に限定し
て説明する。TiとCの原子量比は4であるから、完全
に非時効化するに必要なTiの理論量はC量の4倍であ
る。換言すれば、TiとCの成分重量比Ti/Cは4以
上でなければならない。Ti is a strong carbonitride forming element, and TiN and T
By forming a precipitate called iC, N and C dissolved in solid solution in ferrite are fixed and the steel is non-aged. However, since TiN and TiC have different precipitation temperatures, and TiN precipitates near the solidification temperature of rust, it can be considered that most of the N in the slab after continuous casting is precipitated as TiN. On the other hand, since TiC starts to precipitate when the temperature drops to the normal hot rolling temperature, the following explanation will be limited to the precipitation of TiC. Since the atomic weight ratio of Ti and C is 4, the theoretical amount of Ti required for complete non-aging is four times the amount of C. In other words, the component weight ratio Ti/C of Ti and C must be 4 or more.
したがってTiの添加量を減らして経済的に非時効化を
行うためにはC量は少ない方が望ましい。Therefore, in order to economically perform non-aging by reducing the amount of Ti added, it is desirable that the amount of C be small.
これよりC量、の上限は0.04%とする。しかしC量
を0.003%未満に下げることは製錬コストの急増を
まねくため0.003%を下限とする。From this, the upper limit of the amount of C is set to 0.04%. However, lowering the C content to less than 0.003% causes a rapid increase in smelting costs, so 0.003% is set as the lower limit.
TiとCの成分重量比Ti/Cの下限値は上述の理論値
に等しいが、実際にはTiCの析出駆動力やTiとCの
拡散時間を考慮に入れる必要があり、工業的には4以上
必要である。本発明者らは、後述するように加熱炉にお
ける鋼片あるいは鋳片の加熱温度と非時効化に必要なT
J添加量および棒線の材質におよぼす固溶Ti(TiC
を形成しないTi)の影響を調査した。その結果、加熱
温度を700〜950℃に選べばTi/C比8以下では
ゾ完全に非時効できること、またTi/C比が8を越え
るとフェライト中に固溶するTiの量が過剰となるため
、冷間加工後の焼鈍に際して再結晶の遅滞をまねき、そ
のため軟化が阻害されるという新たな知見を得るに至っ
た。これらの結果を総合するとT i / C比は4〜
8とすることが好ましいことがわかる。SLは脱酸上必
要な元素であるため0.005%以上添加するが、一方
Siはフェライトの固溶強化作用が大きいため0.35
%を上限とする。The lower limit of the component weight ratio Ti/C of Ti and C is equal to the above-mentioned theoretical value, but in reality it is necessary to take into account the precipitation driving force of TiC and the diffusion time of Ti and C. The above is necessary. The present inventors have determined the heating temperature of steel slabs or cast slabs in a heating furnace and the T required for non-aging, as described below.
The effect of solid solution Ti (TiC) on the J addition amount and the rod material
The influence of Ti (which does not form) was investigated. As a result, if the heating temperature is selected between 700 and 950°C, complete non-aging can be achieved when the Ti/C ratio is 8 or less, and when the Ti/C ratio exceeds 8, the amount of Ti dissolved in the ferrite becomes excessive. As a result, we have obtained new knowledge that recrystallization is delayed during annealing after cold working, and as a result, softening is inhibited. Combining these results, the Ti/C ratio is 4~
It can be seen that it is preferable to set the value to 8. SL is an element necessary for deoxidation, so it is added at 0.005% or more, while Si has a large solid solution strengthening effect on ferrite, so it is added at 0.35%.
The upper limit is %.
Mnは脱酸元素として、またSに起因する熱間脆性を防
止するために0.10%以上添加するが、Mnも固溶強
化作用があるので0.60%を上限とする。Mn is added in an amount of 0.10% or more as a deoxidizing element and to prevent hot embrittlement caused by S, but since Mn also has a solid solution strengthening effect, the upper limit is 0.60%.
AQは脱酸上0.005%以上添加するが、AQも他の
元素と同様に、固溶強化作用があるのでo、og。AQ is added in an amount of 0.005% or more for deoxidation, but like other elements, AQ also has a solid solution strengthening effect, so o, og.
%以下とする。% or less.
非時効化に要するTiの量を最小限に抑えるためには、
熱間圧延における鋼片あるいは鋳片の加熱温度を適正な
範囲に入れる必要がある。In order to minimize the amount of Ti required for non-aging,
It is necessary to keep the heating temperature of the steel slab or slab during hot rolling within an appropriate range.
本発明者らは溶体化状態からのT i Cの析出に関し
て多くの基礎実験を行い、その結果、TiCの析出速度
が最大となる温度は800〜850℃であることを見出
した。したがって、この温度範囲で鋼片あるいは鋳片を
加熱し、引きつゾいて熱間圧延を行えば、加熱中にTi
Cの析出が進行し、その後の熱間圧延および冷却条件に
か2わらず十分な非時効化効果を得ることが可能である
。これより、鋼片あるいは鋳片の加熱温度は700〜9
50℃とすることが望ましい。これより高い温度あるい
は低い温度では、TiCの析出に長時間を要し、また7
00℃未満では熱間圧延が困難となるため、下限ならび
に上限温度をそれぞれ700℃および950℃とする。The present inventors conducted many basic experiments regarding the precipitation of TiC from a solution state, and as a result, found that the temperature at which the precipitation rate of TiC becomes maximum is 800 to 850°C. Therefore, if a steel billet or slab is heated in this temperature range and hot rolled under tension, Ti
Precipitation of C progresses, and it is possible to obtain a sufficient non-aging effect regardless of the subsequent hot rolling and cooling conditions. From this, the heating temperature of the steel slab or slab is 700~9
The temperature is preferably 50°C. At temperatures higher or lower than this, it takes a long time for TiC to precipitate, and
Since hot rolling becomes difficult below 00°C, the lower and upper limits are set to 700°C and 950°C, respectively.
なおTiCの析出を熱間圧延中あるいは熱間圧延後の冷
却中に生じさせる方法も考えられるが、通常の連続式熱
間圧延においては圧延時間は短かく、また冷却速度も大
きいためにTiCの析出は不十分であり、本発明と比較
するとその非時効化効果は小さい。It is possible to consider a method in which TiC is precipitated during hot rolling or during cooling after hot rolling, but since the rolling time is short and the cooling rate is high in normal continuous hot rolling, TiC precipitation is not possible. Precipitation is insufficient and its non-aging effect is small compared to the present invention.
なお上述した成分元素以外の元素に関して言えば、Pは
固溶強化作用があり、またSはTiSを生成して有効な
Tiの量を減するため、極力低減することが望ましい。Regarding elements other than the above-mentioned component elements, P has a solid solution strengthening effect, and S produces TiS and reduces the effective amount of Ti, so it is desirable to reduce it as much as possible.
同様なことはNについても言え、NはTiNを生成して
Tiを消費することからできるだけ少なく、望ましくは
0.0050%以下とすることが好ましい。The same thing can be said about N, and since N generates TiN and consumes Ti, it is preferably as small as possible, preferably 0.0050% or less.
[実施例]
低炭素鋼を250トン転炉で溶製し、脱ガス処理設備を
用いて脱炭ならびに成分調整を行った。第メ
1表に供試材の化学成分を示す。[Example] Low carbon steel was melted in a 250-ton converter, and decarburized and component adjusted using degassing equipment. Table 1 shows the chemical composition of the sample materials.
連続鋳造設備により300 X 500mm&1片とし
、さらに分塊圧延により122mm角断面の鋼片を製造
した。A piece of 300 x 500 mm was produced using continuous casting equipment, and a steel piece with a square cross section of 122 mm was produced by blooming rolling.
これを線材圧延工場の加熱炉で加熱後、連続式圧延機に
より直径5 、5mmの線材に圧延し、ステルモア冷却
を行った。線材圧延条件ならびに線材の特性を第1表に
示す。This was heated in a heating furnace at a wire rod rolling factory, then rolled into a wire rod with a diameter of 5.5 mm using a continuous rolling mill, and subjected to stelmor cooling. Table 1 shows the wire rolling conditions and wire properties.
線材の時効特性はフェライト中に固溶しているCおよび
Nの量に支配されていることから、固溶(C+N)量の
測定を行った。測定は次に述べる時効指数を求める方法
で行った6すなわち、引張試験機で8%の予ひずみを与
えたのち100℃×1時間の時効処理を行い、その後再
度引張試験を行うことにより、次式で示す時効指数を求
めた。Since the aging characteristics of the wire rod are controlled by the amount of C and N dissolved in the ferrite, the amount of solid solution (C+N) was measured. The measurements were carried out using the method described below to determine the aging index.6 In other words, after applying a pre-strain of 8% using a tensile testing machine, aging treatment was performed at 100°C for 1 hour, and then the tensile test was performed again. The aging index expressed by the formula was determined.
時効指数=(時効処理後の降伏強さ)−(時効処理前、
8%予ひすみに相当する変形強さ)時効指数の単位はk
gf/mm”で、その値の小さい方が固溶(C+N)量
が少なく、したがって時効硬化量も少ない。Aging index = (Yield strength after aging treatment) - (Before aging treatment,
Deformation strength equivalent to 8% pre-strain) Aging index unit is k
gf/mm'', the smaller the value, the smaller the amount of solid solution (C+N), and therefore the smaller the amount of age hardening.
第1表でN o 、 1〜N o 、 5はTi/C比
の影響を、また、N016〜N o 、 10は鋼片加
熱温度の影響を示したものである。なお、N o 、
11およびNo、12は従来法であるが、No、11は
通常の圧延条件で圧延を行った場合、No、12はNo
、11と同一化学成分の鋼を用い、圧延中の材料を水冷
することにより700〜900℃の温度範囲で低温圧延
を行った場合である。In Table 1, No. 1 to No. 5 represent the influence of the Ti/C ratio, and No. 16 to No. 10 represent the influence of the billet heating temperature. Note that N o ,
Nos. 11 and 12 are conventional methods, but Nos. 11 and 12 are conventional methods when rolling is performed under normal rolling conditions.
, No. 11 is used, and low-temperature rolling is performed in the temperature range of 700 to 900° C. by water-cooling the material being rolled.
第1表より、本発明法に従って製造した線材は従来のい
ずれの方法と比較しても、強度が低く、かつ時効指数も
小さいことがわかる。From Table 1, it can be seen that the wire produced according to the method of the present invention has lower strength and aging index than any of the conventional methods.
[発明の効果コ
以上述べた如く、本発明法にしたがって製造された低炭
素鋼線材は、従来法で製造されたものにくらべて、より
一段と軟質化されており、さらに固溶(C+N)がはゾ
完全に固定されているために伸線加工中の加工硬化が少
なく、著しく軟質化された鋼線を製造することが可能で
ある。[Effects of the invention] As described above, the low carbon steel wire rod manufactured according to the method of the present invention is much softer than that manufactured by the conventional method, and furthermore, the solid solution (C + N) is Because it is completely fixed, there is little work hardening during wire drawing, making it possible to produce a significantly softened steel wire.
なお、線材および棒鋼に関して述べてきたが、鋼板につ
いても同様な方法で製造することにより、強度が低く、
かつ加工性にすぐれた鋼板を製造することか可能である
。Although we have talked about wire rods and steel bars, steel plates can also be manufactured using the same method, resulting in lower strength and lower strength.
Moreover, it is possible to manufacture a steel plate with excellent workability.
Claims (1)
35% Mn:0.10〜0.60%、Al:0.005〜0.
080% にTiを成分重量比Ti/Cで4〜8含み、残部がFe
および不可避的不純物からなる鋼片あるいは鋳片を70
0〜950℃の温度範囲に加熱し、その後熱間圧延する
ことを特徴とする低炭素鋼線材および棒鋼の製造法[Claims] C: 0.003 to 0.04%, Si: 0.005 to 0.04%.
35% Mn: 0.10-0.60%, Al: 0.005-0.
080% contains Ti at a component weight ratio Ti/C of 4 to 8, and the remainder is Fe.
70 pieces of steel or slabs containing unavoidable impurities.
A method for producing low carbon steel wire and steel bars, which comprises heating to a temperature range of 0 to 950°C and then hot rolling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30117386A JP2501438B2 (en) | 1986-12-19 | 1986-12-19 | Low carbon steel wire rod and steel bar manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30117386A JP2501438B2 (en) | 1986-12-19 | 1986-12-19 | Low carbon steel wire rod and steel bar manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63157817A true JPS63157817A (en) | 1988-06-30 |
JP2501438B2 JP2501438B2 (en) | 1996-05-29 |
Family
ID=17893668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30117386A Expired - Lifetime JP2501438B2 (en) | 1986-12-19 | 1986-12-19 | Low carbon steel wire rod and steel bar manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2501438B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5237457A (en) * | 1990-10-04 | 1993-08-17 | Asahi Kogaku Kogyo Kabushiki Kaisha | Apparatus for adjusting an optical axis including a laser beam source and a beam shaping prism |
-
1986
- 1986-12-19 JP JP30117386A patent/JP2501438B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5237457A (en) * | 1990-10-04 | 1993-08-17 | Asahi Kogaku Kogyo Kabushiki Kaisha | Apparatus for adjusting an optical axis including a laser beam source and a beam shaping prism |
US5341246A (en) * | 1990-10-04 | 1994-08-23 | Asahi Kogaku Kogyo Kabushiki Kaisha | Apparatus for adjusting an optical axis including plates on opposite sides of a beam shaping prism |
US5343332A (en) * | 1990-10-04 | 1994-08-30 | Asahi Kogaku Kogyo Kabushiki Kaisha | Apparatus for adjusting optical axis including a beam shaping prism |
Also Published As
Publication number | Publication date |
---|---|
JP2501438B2 (en) | 1996-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO343350B1 (en) | Seamless steel tube for oil wells with excellent resistance to sulphide stress cracking and method for producing seamless steel tubes for oil wells | |
JPS62124218A (en) | Manufacture of high strength stainless steel material having superior workability without softening by welding | |
JPH0445576B2 (en) | ||
JP2876968B2 (en) | High-strength steel sheet having high ductility and method for producing the same | |
JP3733229B2 (en) | Manufacturing method of high strength bolt steel bar with excellent cold workability and delayed fracture resistance | |
JP3422864B2 (en) | Stainless steel with excellent workability and method for producing the same | |
US4851054A (en) | Method of producing rolled steel having excellent resistance to sulfide stress corrosion cracking | |
JP3218442B2 (en) | Manufacturing method of mechanical structural steel with excellent delayed fracture resistance | |
JPS6156235A (en) | Manufacturing method of high toughness non-thermal steel | |
JPH08199310A (en) | Method for producing high strength martensitic stainless steel member | |
JPH11131177A (en) | Steel plate for medium and normal temperature pressure vessel which can omit post-weld heat treatment and method for producing the same | |
JPS62196359A (en) | Manufacturing method of non-thermal steel for hot forging | |
JPS63157817A (en) | Manufacture of low carbon steel wire rod and bar | |
JPS63210234A (en) | Manufacture of high-strength stainless steel stock excellent in workability and free from softening by welding | |
JPH07216451A (en) | Production of stainless steel material having high welding softening resistance, high strength, and high ductility | |
JP2000204433A (en) | Steel excellent in cold workability and machine parts | |
JP2804278B2 (en) | Direct softening wire rod manufacturing method | |
KR100627484B1 (en) | Method for manufacturing graphitized wire for machine structure with low surface decarburization | |
JPH07233414A (en) | Manufacturing method of low yield ratio high strength steel sheet with excellent uniform elongation | |
JPH03223420A (en) | Production of high strength steel | |
JPH058256B2 (en) | ||
JPS63179019A (en) | Manufacturing method of low yield ratio high tensile strength steel plate | |
JPS63140034A (en) | Production of low yield ratio high tensile steel having excellent low-temperature toughness | |
JPS6324012A (en) | Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method | |
JPS6324013A (en) | Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method |