JPH11131177A - Steel plate for medium and normal temperature pressure vessel which can omit post-weld heat treatment and method for producing the same - Google Patents
Steel plate for medium and normal temperature pressure vessel which can omit post-weld heat treatment and method for producing the sameInfo
- Publication number
- JPH11131177A JPH11131177A JP5165798A JP5165798A JPH11131177A JP H11131177 A JPH11131177 A JP H11131177A JP 5165798 A JP5165798 A JP 5165798A JP 5165798 A JP5165798 A JP 5165798A JP H11131177 A JPH11131177 A JP H11131177A
- Authority
- JP
- Japan
- Prior art keywords
- less
- medium
- ceq
- steel plate
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
(57)【要約】
【課題】 溶接後熱処理の省略可能な中常温圧力容器用
鋼板を提供すること。
【解決手段】 重量%でC:0.02〜0.10%、S
i:0.05〜0.5%、Mn:0.8〜1.6%、P:
0.030%以下、S:0.020%以下、Nb:0.0
03〜0.030%、Ti:0.005〜0.020%、
Al:0.01〜0.08%、N:0.002〜0.00
6%を含有し、残部が鉄および不可避的不純物元素より
なり、6C+Mn:1.2〜2.0、Ceq:0.25〜
0.38、Ppr: 2.0〜40を満足する中常温圧力容
器用鋼板と、前記化学成分の鋼板スラブを950〜13
00℃に加熱し、再結晶温度域で累積圧下率10〜90
%の粗圧延を行い、Ar3 点以上の未再結晶温度域で累
積圧下率10〜90%の仕上圧延を行って冷却速度が1
〜100℃/sで制御冷却する前記鋼板の製造方法。
(57) [Summary] [PROBLEMS] To provide a steel plate for a medium- and normal-temperature pressure vessel in which post-weld heat treatment can be omitted. SOLUTION: C: 0.02 to 0.10% by weight%, S
i: 0.05 to 0.5%, Mn: 0.8 to 1.6%, P:
0.030% or less, S: 0.020% or less, Nb: 0.0
03-0.030%, Ti: 0.005-0.020%,
Al: 0.01 to 0.08%, N: 0.002 to 0.00
6C + Mn: 1.2 to 2.0, Ceq: 0.25 to 5%, with the balance being iron and unavoidable impurity elements.
0.38, Ppr: a steel plate for a medium-pressure container satisfying 2.0 to 40, and a steel plate slab of the above chemical composition at 950 to 13
Heat to 00 ° C, and reduce the cumulative rolling reduction in the recrystallization temperature range from 10 to 90.
% Rough rolling, and finish rolling at a cumulative reduction rate of 10 to 90% in a non-recrystallization temperature region of 3 points or more of Ar, and the cooling rate is 1
The method for manufacturing the steel sheet, wherein the steel sheet is controlled and cooled at a temperature of 100 ° C./s.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、350℃程度の中
温から常温までの温度範囲で用いられる中常温圧力容器
用炭素鋼鋼板(例えば、JIS G 3118(1987)等に準拠)に
関するものであり、特に、溶接後熱処理の省略可能な中
常温圧力容器用鋼板にかかわるものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon steel plate for a medium-pressure container (for example, in accordance with JIS G 3118 (1987)) used in a temperature range of about 350.degree. In particular, the present invention relates to a steel plate for a medium- and normal-temperature pressure vessel in which post-weld heat treatment can be omitted.
【0002】[0002]
【従来の技術】近年、電力需要の増大に伴い、発電プラ
ントの大型化が進んでいる。例えば、原子力発電プラン
トの場合も、原子炉圧力容器本体の大型化に伴い、原子
炉格納容器の大型化が求められている。原子炉格納容器
の大型化に伴って鋼板を厚肉化する場合、板厚が38m
mを超えると溶接後熱処理を実施しなければならないこ
とが通産省令により規定されている。原子炉格納容器の
溶接施工は発電所現地で行われるため、溶接後熱処理
は、設備、作業性、工期等の面で大きなデメリットとな
る。そこで、板厚が38mmを超えても溶接したままで
使用可能な溶接後熱処理の省略可能な鋼板の開発が強く
求められている。2. Description of the Related Art In recent years, power plants have been increasing in size with increasing power demand. For example, also in the case of a nuclear power plant, an increase in the size of the reactor pressure vessel body is required to increase the size of the reactor containment vessel. When the thickness of the steel plate is increased with the increase in the size of the containment vessel, the plate thickness is 38 m.
It is stipulated by the Ministry of International Trade and Industry that the post-weld heat treatment must be performed when the distance exceeds m. Since the welding of the PCV is performed at the site of the power plant, post-weld heat treatment is a major disadvantage in terms of equipment, workability, and construction period. Therefore, there is a strong demand for the development of a steel sheet which can be used as it is even after the thickness exceeds 38 mm and which can be omitted from post-weld heat treatment.
【0003】溶接後熱処理は、溶接継手部を金属のAc
1 変態点以下で、かつ溶接部の性能を改善し溶接残留応
力などの有害な影響を除去するのに十分な温度に均一に
加熱し、一定時間保持した後、均一に冷却する処理であ
ることから、これを省略するためには、溶接による引張
の残留応力が作用した状態でも、脆性破壊を防止出来る
程度の溶接熱影響部(Heat Affected Z
one:以下、HAZ)の靭性を確保することが必要と
なる。[0003] In the post-weld heat treatment, the weld joint is made of metallic Ac.
(1) Heating uniformly to a temperature below the transformation point and sufficient to improve the performance of the welded part and remove harmful effects such as welding residual stress, hold for a certain period of time, and then cool uniformly Therefore, in order to omit this, even in a state where the residual tensile stress due to welding is applied, the weld heat affected zone (Heat Affected Z) can prevent brittle fracture.
one: Hereinafter, it is necessary to ensure the toughness of HAZ).
【0004】従来、原子炉格納容器用の鋼板としては、
引張強度が480〜590MPaで、焼きならし法によ
り製造される中常温圧力容器用炭素鋼鋼板(JIS規格
G3118 SGV480)が用いられることが多い
が、この技術の延長線上で合金元素の添加による厚肉化
を進めた場合、溶接部の靭性が低下するため、溶接後熱
処理を省略することは出来ない。Conventionally, steel plates for containment vessels include:
A carbon steel plate for a medium-temperature and pressure vessel (JIS G3118 SGV480), which has a tensile strength of 480 to 590 MPa and is manufactured by a normalizing method, is often used. When the wall thickness is increased, the toughness of the welded portion is reduced, so that the post-weld heat treatment cannot be omitted.
【0005】圧力容器用鋼板で高い靭性を得る手法につ
いては、特公平2−4673号公報に記載されている。
ここに開示されている技術は、P、S、AlNとしての
Nの量を規定することにより、焼準(N) −焼入れ
(Q) −焼きもどし(T) −応力除去焼鈍(SR) 後の
オーステナイト粒を細粒化し、鋼板の靭性を向上させる
ことを特徴とする高靭性圧力容器用鋼に関するものであ
る。[0005] A technique for obtaining high toughness with a steel sheet for a pressure vessel is described in Japanese Patent Publication No. 2-4673.
The technology disclosed herein regulates the amount of N as P, S, and AlN to provide normalizing (N) -quenching (Q) -tempering (T) -stress relief annealing (SR). The present invention relates to a high-toughness pressure vessel steel characterized by reducing austenite grains and improving the toughness of a steel sheet.
【0006】圧力容器用鋼板で溶接部の靭性を向上させ
る手法については、特公昭56−29951号公報に記
載されている。ここに開示されている技術は、Nb、M
oを含有し、Ceq、Pcmを規定することにより、母
材およびボンド部の靭性を向上させ、かつ使用温度での
母材強度を確保できる、焼準(N) −焼き戻し(T)を
施して使用することを特徴とする圧力容器用鋼板に関す
るものである。[0006] A technique for improving the toughness of a welded portion with a steel plate for a pressure vessel is described in Japanese Patent Publication No. 56-29951. The technology disclosed herein is based on Nb, M
By performing the normalizing (N) -tempering (T), which contains o, improves the toughness of the base material and the bond portion and can secure the base material strength at the operating temperature by defining Ceq and Pcm. TECHNICAL FIELD The present invention relates to a steel plate for a pressure vessel, which is characterized in that the steel plate is used in a pressure vessel.
【0007】圧力容器用鋼板で溶接後熱処理を省略する
手法については、特公平6−35618号公報に記載さ
れている。ここに開示されている技術は、低炭素Cr−
Mo系低合金鋼を特定の温度条件で熱間圧延し、その後
焼き入れ(Q) 、焼き戻し(T) 処理することにより、
溶接部の硬さの上昇を抑制することを特徴とする、溶接
後熱処理が不要な圧力容器用鋼の製造方法に関するもの
である。A method of omitting post-weld heat treatment for a pressure vessel steel sheet is described in Japanese Patent Publication No. 6-35618. The technology disclosed herein uses low carbon Cr-
The Mo-based low alloy steel is hot-rolled under a specific temperature condition, and then quenched (Q) and tempered (T).
The present invention relates to a method for producing pressure vessel steel that does not require heat treatment after welding, which suppresses an increase in hardness of a welded portion.
【0008】[0008]
【発明が解決しようとする課題】しかし、溶接後熱処理
を省略するにあたっては、以下の問題点が挙げられる。
高い靭性を得る手法について、特公平2−4673号公
報に開示されている技術は、Cの添加量が0.15〜
0.23%であり、0.02〜0.10%とする本発明
とは化学成分の範囲が異なる。また、これは鋼板母材に
関する技術であって溶接部に関する記載はなく、この手
法により溶接後熱処理を省略することは出来ない。However, omitting the post-weld heat treatment involves the following problems.
Regarding the technique for obtaining high toughness, the technique disclosed in Japanese Patent Publication No. 2-4673 discloses that the amount of C added is 0.15 to 0.15.
It is 0.23%, and the range of the chemical component is different from that of the present invention which is 0.02 to 0.10%. Further, this is a technique relating to a base material of a steel sheet, there is no description about a welded portion, and it is not possible to omit post-weld heat treatment by this method.
【0009】溶接部の靭性に関して、特公昭56−29
951号公報に開示されている技術は、Ceqが0.4
5〜0.54の範囲であり、0.25〜0.38とする
本発明とはその範囲が異なる。また、溶接後熱処理に関
する記載がなく、低温割れを防止するための予熱温度が
100℃であることから、この手法により溶接後熱処理
を省略するのは実質的に不可能である。Regarding the toughness of the weld, Japanese Patent Publication No. 56-29
No. 951 discloses a technology in which Ceq is 0.4.
The range is 5 to 0.54, which is different from the range of the present invention which is 0.25 to 0.38. Further, since there is no description about heat treatment after welding and the preheating temperature for preventing low-temperature cracking is 100 ° C., it is substantially impossible to omit the heat treatment after welding by this method.
【0010】溶接後熱処理を省略する手法について、特
公平6−35618号公報に開示されている技術は、C
rの含有量が0.6〜2.5%であり、選択元素として
Crを0.05〜0.50%含有する本発明とは化学成
分の範囲が異なる。また、TiをBとともに添加する必
要がある点でも、Tiを単独で添加しBは不可避的不純
物である本発明とは化学成分が異なる。さらに、溶接部
については硬さについての記載しかなくHAZ靭性につ
いては不明であり、また、製造される板厚は実質的に3
6mmまでであり、38mm以上の鋼板について溶接後
熱処理が省略できるかどうかについては不明である点が
問題であった。Regarding a method of omitting heat treatment after welding, the technique disclosed in Japanese Patent Publication No. 6-35618
The content of r is 0.6 to 2.5%, and the range of the chemical component is different from that of the present invention containing 0.05 to 0.50% of Cr as a selective element. Also, the point that it is necessary to add Ti together with B is different from the present invention in which Ti is added alone and B is an inevitable impurity. Further, as for the welded portion, only the hardness is described, and the HAZ toughness is not known.
The problem was that it was unclear whether the post-weld heat treatment could be omitted for steel plates up to 6 mm and 38 mm or more.
【0011】これら従来の技術の問題点に鑑み、本発明
は、常温と中温での良好な母材強度と優れた溶接継手特
性を併せ持つことにより、溶接後熱処理の省略可能な中
常温圧力容器用鋼板およびその製造方法を提供すること
を目的とする。[0011] In view of these problems of the prior art, the present invention has a good base metal strength at room temperature and medium temperature and excellent welded joint characteristics, so that a post-weld heat treatment can be omitted. An object of the present invention is to provide a steel sheet and a method for manufacturing the same.
【0012】[0012]
【課題を解決するための手段】本発明者らは、溶接後熱
処理を省略するため、中常温圧力容器用鋼板の成分およ
び製造方法により、HAZ靭性、中温強度、常温強度に
ついて種々の検討を行った結果、次に示す新しい知見を
発見するに至った。Means for Solving the Problems In order to omit the heat treatment after welding, the present inventors have conducted various studies on the HAZ toughness, medium temperature strength, and normal temperature strength according to the components and the manufacturing method of the steel sheet for a medium-pressure container. As a result, the following new findings were discovered.
【0013】まず、HAZ靭性については、HAZの結
晶粒径を細粒化させる作用があるNbとTiを添加し、
さらにNを細粒化に有効なTiとの割合になるように添
加した上で、HAZ靭性に大きく影響するCとMnの量
を限定し、Ceqを従来の中常温圧力容器では母材強度
が不足するため不可能であった低いレベルに下げること
により、従来材では得られない高いHAZ靭性を達成で
きることを見出した。First, regarding the HAZ toughness, Nb and Ti, which have the effect of reducing the crystal grain size of HAZ, are added.
Further, after adding N so as to have a ratio with Ti effective for grain refinement, the amounts of C and Mn which greatly affect HAZ toughness are limited, and Ceq is reduced in the base material strength in a conventional medium-temperature pressure vessel. It has been found that by lowering to a low level, which was impossible due to a shortage, a high HAZ toughness that cannot be obtained with conventional materials can be achieved.
【0014】次に、制御圧延で導入された転位の回復に
よる中温強度の低下については、析出により母材強度を
向上させる作用があるNb、Mo、Vをある範囲内で添
加することにより、従来材と同等の中温強度を確保でき
ることを見出した。Next, with respect to the decrease in the intermediate temperature strength due to the recovery of dislocations introduced by controlled rolling, Nb, Mo, and V, which have the effect of improving the base metal strength by precipitation, are added within a certain range. It has been found that the medium temperature strength equivalent to the material can be secured.
【0015】さらに、合金元素の低減に伴う常温強度の
低下については、上記の成分に加えて母材の強度を向上
させるCu、Ni、Crの添加により常温強度が上昇す
ることを見出した。また、再結晶域圧延と未再結晶域圧
延を行った後に制御冷却し、途中で冷却を停止するか、
あるいは常温近くまで冷却した後に焼き戻しを行うこと
により、従来材と同等の常温強度が得られることを見出
した。本発明は、上記の限定条件を組み合わせて実施す
ることにより、初めて溶接後熱処理の省略を達成するも
のである。Further, as for the decrease in the room temperature strength due to the reduction of the alloying elements, it has been found that the room temperature strength is increased by the addition of Cu, Ni and Cr which improve the strength of the base material in addition to the above-mentioned components. In addition, after performing recrystallization zone rolling and non-recrystallization zone rolling, control cooling, or stop cooling halfway,
Alternatively, it has been found that by performing tempering after cooling to near normal temperature, a normal temperature strength equivalent to that of the conventional material can be obtained. The present invention achieves, for the first time, the omission of the post-weld heat treatment by implementing the above-mentioned limited conditions in combination.
【0016】すなわち、本発明の要旨は下記の通りであ
る。 (1)重量%で C : 0.02〜0.10%、 Si: 0.05〜0.5%、 Mn: 0.8〜1.6%、 P : 0.030%以下、 S : 0.020%以下、 Nb: 0.005〜0.030%、 Ti: 0.005〜0.030%、 Al: 0.01〜0.08%、 N : 0.002〜0.008% を含有し、残部が鉄および不可避的不純物元素よりな
り、 6C+Mn: 1.2〜2.0、 Ceq : 0.25〜0.38、 Ppr : 2.0〜40 を満足することを特徴とする、溶接後熱処理の省略可能
な中常温圧力容器用鋼板。ただし、 Ceq=C+Si/24+Mn/6+Ni/60+Cr/5
+Mo/4+V/14 Ppr=27Nb1/2 +55Mo1/2 +14V1/2 とする。That is, the gist of the present invention is as follows. (1) C: 0.02 to 0.10% by weight, Si: 0.05 to 0.5%, Mn: 0.8 to 1.6%, P: 0.030% or less, S: 0 0.020% or less, Nb: 0.005 to 0.030%, Ti: 0.005 to 0.030%, Al: 0.01 to 0.08%, N: 0.002 to 0.008% The balance consisting of iron and unavoidable impurity elements, and satisfying 6C + Mn: 1.2 to 2.0, Ceq: 0.25 to 0.38, and Ppr: 2.0 to 40. A steel plate for medium-pressure containers that can be omitted from post-heat treatment. However, Ceq = C + Si / 24 + Mn / 6 + Ni / 60 + Cr / 5
+ Mo / 4 + V / 14 Ppr = 27Nb 1/2 + 55Mo 1/2 + 14V 1/2
【0017】(2)重量%で C : 0.02〜0.10%、 Si: 0.05〜0.5%、 Mn: 0.8〜1.6%、 P : 0.030%以下、 S : 0.020%以下、 Nb: 0.005〜0.030%、 Ti: 0.005〜0.030%、 Al: 0.01〜0.08%、 N : 0.002〜0.008% を含有し、さらに、 Mo: 0.03〜0.50%、 V : 0.005〜0.10% のうち、1種または2種を含有し、残部が鉄および不可
避的不純物元素よりなり、 6C+Mn: 1.2〜2.0、 Ceq : 0.25〜0.38、 Ppr : 2.0〜40 を満足することを特徴とする、溶接後熱処理の省略可能
な中常温圧力容器用鋼板。ただし、 Ceq=C+Si/24+Mn/6+Ni/60+Cr/5
+Mo/4+V/14 Ppr=27Nb1/2 +55Mo1/2 +14V1/2 とする。(2) C: 0.02-0.10%, Si: 0.05-0.5%, Mn: 0.8-1.6%, P: 0.030% or less by weight%, S: 0.020% or less, Nb: 0.005 to 0.030%, Ti: 0.005 to 0.030%, Al: 0.01 to 0.08%, N: 0.002 to 0.008 Mo: 0.03 to 0.50%, V: 0.005 to 0.10%, containing one or two kinds, and the balance consisting of iron and unavoidable impurity elements , 6C + Mn: 1.2 to 2.0, Ceq: 0.25 to 0.38, Ppr: 2.0 to 40. . However, Ceq = C + Si / 24 + Mn / 6 + Ni / 60 + Cr / 5
+ Mo / 4 + V / 14 Ppr = 27Nb 1/2 + 55Mo 1/2 + 14V 1/2
【0018】(3)重量%で C : 0.02〜0.10%、 Si: 0.05〜0.5%、 Mn: 0.8〜1.6%、 P : 0.030%以下、 S : 0.020%以下、 Nb: 0.005〜0.030%、 Ti: 0.005〜0.030%、 Al: 0.01〜0.08%、 N : 0.002〜0.008% を含有し、さらに Cu: 0.10〜1.0%、 Ni: 0.10〜1.0%、 Cr: 0.05〜0.50% のうち、1種または2種以上を含有し、残部が鉄および
不可避的不純物元素よりなり、 6C+Mn: 1.2〜2.0、 Ceq : 0.25〜0.38、 Ppr : 2.0〜40 を満足することを特徴とする、溶接後熱処理の省略可能
な中常温圧力容器用鋼板。ただし、 Ceq=C+Si/24+Mn/6+Ni/60+Cr/5
+Mo/4+V/14 Ppr=27Nb1/2 +55Mo1/2 +14V1/2 とする。(3) C: 0.02-0.10%, Si: 0.05-0.5%, Mn: 0.8-1.6%, P: 0.030% or less by weight%, S: 0.020% or less, Nb: 0.005 to 0.030%, Ti: 0.005 to 0.030%, Al: 0.01 to 0.08%, N: 0.002 to 0.008 %, And one or more of Cu: 0.10 to 1.0%, Ni: 0.10 to 1.0%, and Cr: 0.05 to 0.50%. The balance being iron and unavoidable impurity elements, and satisfying 6C + Mn: 1.2 to 2.0, Ceq: 0.25 to 0.38, Ppr: 2.0 to 40, after welding A steel plate for medium and normal pressure vessels that can be omitted from heat treatment. However, Ceq = C + Si / 24 + Mn / 6 + Ni / 60 + Cr / 5
+ Mo / 4 + V / 14 Ppr = 27Nb 1/2 + 55Mo 1/2 + 14V 1/2
【0019】(4)重量%で C : 0.02〜0.10%、 Si: 0.05〜0.5%、 Mn: 0.8〜1.6%、 P : 0.030%以下、 S : 0.020%以下、 Nb: 0.005〜0.030%、 Ti: 0.005〜0.030%、 Al: 0.01〜0.08%、 N : 0.002〜0.008% を含有し、さらに Mo: 0.03〜0.50%、 V : 0.005〜0.10% のうち、1種または2種を含有し、さらに Cu: 0.10〜1.0%、 Ni: 0.10〜1.0%、 Cr: 0.05〜0.50% のうち、1種または2種以上を含有し、残部が鉄および
不可避的不純物元素よりなり、 6C+Mn: 1.2〜2.0、 Ceq : 0.25〜0.38、 Ppr : 2.0〜40 を満足することを特徴とする、溶接後熱処理の省略可能
な中常温圧力容器用鋼板。ただし、 Ceq=C+Si/24+Mn/6+Ni/60+Cr/5
+Mo/4+V/14 Ppr=27Nb1/2 + 55Mo1/2 + 14V1/2 とする。(4) C: 0.02 to 0.10%, Si: 0.05 to 0.5%, Mn: 0.8 to 1.6%, P: 0.030% or less by weight%, S: 0.020% or less, Nb: 0.005 to 0.030%, Ti: 0.005 to 0.030%, Al: 0.01 to 0.08%, N: 0.002 to 0.008 %, Mo: 0.03 to 0.50%, V: 0.005 to 0.10%, one or two of them, and Cu: 0.10 to 1.0% , Ni: 0.10 to 1.0%, Cr: 0.05 to 0.50%, containing one or more of them, with the balance being iron and unavoidable impurity elements, 6C + Mn: 2 to 2.0, Ceq: 0.25 to 0.38, and Ppr: 2.0 to 40. Steel sheet for cold pressure vessel in an optional post heat treatment. However, Ceq = C + Si / 24 + Mn / 6 + Ni / 60 + Cr / 5
+ Mo / 4 + V / 14 Ppr = 27 Nb 1/2 +55 Mo 1/2 +14 V 1/2 .
【0020】(5)(1)〜(4)いずれか1項に記載
の化学成分を有する鋼スラブを、950〜1300℃に
加熱し、再結晶温度域で累積圧下率が10〜90%の粗
圧延を行い、続いてAr3 点以上の未再結晶温度域で累
積圧下率が10〜90%の仕上圧延を行い、直ちに冷却
速度が1〜100℃/sで650〜500℃まで制御冷
却し、室温まで空冷することを特徴とする、溶接後熱処
理の省略可能な中常温圧力容器用鋼板の製造方法。(5) A steel slab having the chemical composition described in any one of (1) to (4) is heated to 950 to 1300 ° C., and has a cumulative rolling reduction of 10 to 90% in a recrystallization temperature range. Rough rolling is performed, followed by finish rolling with a cumulative rolling reduction of 10 to 90% in the non-recrystallization temperature range of 3 points or more, and immediately controlled cooling at a cooling rate of 1 to 100 ° C / s to 650 to 500 ° C. And a method for producing a steel plate for a medium- or normal-temperature pressure vessel, wherein heat treatment after welding can be omitted.
【0021】(6)(1)〜(4)いずれか1項に記載
の化学成分を有する鋼スラブを、950〜1300℃に
加熱し、再結晶温度域で累積圧下率が10〜90%の粗
圧延を行い、続いてAr3 点以上の未再結晶温度域で累
積圧下率が10〜90%の仕上圧延を行い、直ちに冷却
速度が1〜100℃/sで200℃以下に制御冷却し、
その後、500℃〜650℃で焼き戻しを行うことを特
徴とする、溶接後熱処理の省略可能な中常温圧力容器用
鋼板の製造方法。(6) The steel slab having the chemical composition described in any one of (1) to (4) is heated to 950 to 1300 ° C., and has a cumulative rolling reduction of 10 to 90% in a recrystallization temperature range. Rough rolling is performed, followed by finish rolling with a cumulative rolling reduction of 10 to 90% in the non-recrystallization temperature range of Ar 3 points or more, and immediately controlled cooling to 200 ° C or less at a cooling rate of 1 to 100 ° C / s. ,
Thereafter, tempering is performed at 500 ° C to 650 ° C.
【0022】[0022]
【発明の実施の形態】以下、本発明の技術的思想と限定
理由について、詳細に説明する。本発明では、前述した
ように、溶接後熱処理を省略するためには溶接による引
張の残留応力が作用した状態でも脆性破壊を防止出来る
程度のHAZ靭性を確保する必要があることから、HA
Z靭性に及ぼす合金元素の影響についてミクロ組織的な
見地から検討した。一般に、軟鋼のHAZには、ベイネ
ティックフェライト、粒界フェライト、上部ベイナイト
が生成するが、490MPa級鋼のHAZは、合金元素
量が増加するため焼入性が上昇し、上部ベイナイトの割
合が増加するため、HAZ靭性が低下する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The technical concept of the present invention and the reasons for limitation will be described in detail below. In the present invention, as described above, in order to omit the post-weld heat treatment, it is necessary to secure HAZ toughness to the extent that brittle fracture can be prevented even when residual tensile stress due to welding acts.
The effects of alloying elements on Z toughness were studied from a microstructural point of view. Generally, in the HAZ of mild steel, bainetic ferrite, grain boundary ferrite, and upper bainite are generated. However, in the HAZ of 490 MPa class steel, the hardenability increases due to an increase in the amount of alloying elements, and the ratio of upper bainite increases. Due to the increase, the HAZ toughness decreases.
【0023】そこで、まず添加元素の中でも特に焼入性
に大きく影響を及ぼすCとMnの量について検討した。
0.02%Nbと0.01%Tiを含有し、CとMnの
量をC:0.02〜0.10%、Mn:0.8〜1.6
%の範囲で変化させた鋼塊を1150℃に加熱し、11
00℃から再結晶域圧延を行い、830℃から未再結晶
域圧延を行った後に、室温まで制御冷却し、さらに50
0℃で焼き戻しをして得られた50mm厚の鋼板につい
て、常温で引張試験を行い、さらに、最高加熱温度が1
400℃、800〜500℃までの冷却時間が23秒の
条件で溶接再現熱サイクルを付与した後、シャルピー衝
撃試験を実施した。引張強度とHAZ靭性に及ぼすCと
Mnの量の影響について種々検討した結果を図1に示
す。Therefore, first, among the added elements, the amounts of C and Mn which greatly affect hardenability were examined.
It contains 0.02% Nb and 0.01% Ti. The amounts of C and Mn are C: 0.02 to 0.10% and Mn: 0.8 to 1.6.
% Was heated to 1150 ° C.
After performing the recrystallization zone rolling from 00 ° C. and the non-recrystallization zone rolling from 830 ° C., the temperature was controlled and cooled to room temperature.
A 50 mm thick steel sheet obtained by tempering at 0 ° C. was subjected to a tensile test at room temperature.
A Charpy impact test was performed after applying a welding reproduction thermal cycle under the condition of cooling at 400 ° C. and 800 to 500 ° C. for 23 seconds. FIG. 1 shows the results of various studies on the effects of the amounts of C and Mn on the tensile strength and HAZ toughness.
【0024】この図からわかるように、C:0.02〜
0.10%、Mn:0.8〜1.6%の範囲で、かつ6
C+Mnの値が1.2〜2.0となる場合に、良好なH
AZ靭性と母材強度を得ることができ、CとMnの量が
それぞれ上記の範囲内であったとしても、6C+Mnが
1.2未満では母材強度が不足し、2.0超では焼入性
が上昇して上部ベイナイトの割合が増加し、HAZ靭性
が劣化することを見出した。As can be seen from FIG.
0.10%, Mn: in the range of 0.8 to 1.6%, and 6
When the value of C + Mn is 1.2 to 2.0, good H
AZ toughness and base metal strength can be obtained. Even if the amounts of C and Mn are respectively within the above ranges, the base metal strength is insufficient if 6C + Mn is less than 1.2, and the quenching is more than 2.0. It has been found that the HAZ toughness deteriorates due to an increase in the ratio of the upper bainite due to an increase in the properties.
【0025】次に、CとMnも含めた他の合金元素によ
る焼入性への影響について検討した。焼入性が上昇する
と、HAZの最高硬さも上昇する。HAZの最高硬さは
冷却速度が一定の場合は化学成分で決まり、添加元素の
影響を炭素に対する割合で評価した炭素当量式により評
価できることが知られている。日本では次式に示すWE
Sから提案されている炭素当量式が多く用いられる。 Ceq=C+Si/24+Mn/6+Ni/60+Cr/5+
Mo/4+V/14 そこで、図1で用いたシャルピー衝撃試験結果と引張強
度をCeqについて整理し直し、これを図2に示す。Next, the effect of other alloying elements including C and Mn on hardenability was examined. As the hardenability increases, the maximum hardness of the HAZ also increases. It is known that the maximum hardness of the HAZ is determined by the chemical component when the cooling rate is constant, and the effect of the added element can be evaluated by a carbon equivalent formula evaluated by a ratio to carbon. In Japan, the WE
The carbon equivalent formula proposed by S is often used. Ceq = C + Si / 24 + Mn / 6 + Ni / 60 + Cr / 5 +
Mo / 4 + V / 14 Therefore, the results of the Charpy impact test and the tensile strength used in FIG. 1 are rearranged for Ceq, and this is shown in FIG.
【0026】この図からわかるように、Ceqが0.2
5〜0.38の範囲で、良好なHAZ靭性と母材強度が
得られるが、0.25未満では十分な母材強度が得られ
ず、また0.38超では、上部ベイナイトが増加するた
め、十分なHAZ靭性が得られないことが明らかとなっ
た。ここで、さらに好ましくは、上限値としては0.3
6以下である。As can be seen from this figure, Ceq is 0.2
In the range of 5 to 0.38, good HAZ toughness and base material strength can be obtained, but if it is less than 0.25, sufficient base material strength cannot be obtained, and if it exceeds 0.38, upper bainite increases. It became clear that sufficient HAZ toughness could not be obtained. Here, more preferably, the upper limit is 0.3
6 or less.
【0027】本発明では、制御圧延による転位強化を利
用して母材強度を確保しているが、350℃程度の中温
では転位の回復が起こるため、従来の焼きならし材に比
べて350℃での降伏応力が若干低下する傾向がある。
そこで、500〜650℃での焼き戻し時に炭化物を析
出させることにより、焼き戻し温度よりも350℃での
母材強度を向上させる方法について検討した。In the present invention, the base material strength is ensured by utilizing the dislocation strengthening by controlled rolling. However, at a medium temperature of about 350 ° C., the recovery of the dislocation occurs. Yield stress tends to decrease slightly.
Therefore, a method of improving the strength of the base material at 350 ° C. above the tempering temperature by precipitating carbide during tempering at 500 to 650 ° C. was studied.
【0028】種々の析出強化元素について検討した結
果、350℃での強度確保に有効と考えられるNb、M
o、Vについて、これらの添加量を変化させた鋼塊を1
150℃に加熱し、1100℃から再結晶域圧延を行
い、830℃から未再結晶域圧延を行った後に、室温ま
で制御冷却し、さらに500℃で焼き戻しをして得られ
た50mm厚の鋼板について、350℃での引張試験を
行った。合金元素添加による350℃での降伏応力の上
昇代と合金元素量の関係を図3に示す。As a result of studying various precipitation strengthening elements, Nb and M which are considered to be effective for securing the strength at 350 ° C.
As for o and V, the steel ingot with these added amounts changed was 1
After heating to 150 ° C., performing recrystallization zone rolling from 1100 ° C., performing non-recrystallization zone rolling from 830 ° C., controlled cooling to room temperature, and further tempering at 500 ° C. The steel plate was subjected to a tensile test at 350 ° C. FIG. 3 shows the relationship between the yield of the yield stress at 350 ° C. and the amount of the alloy element due to the addition of the alloy element.
【0029】この図からわかるように、350℃での降
伏応力は、微量のNb、Mo、Vを添加することにより
向上し、添加量を増やしていくとその効果は飽和してい
くことが明らかとなった。この図から、各元素による降
伏応力の上昇率は、Nb:27MPa・% -1/2 、 M
o:55MPa・% -1/2 、 V:14MPa・% -1/2
であった。従って、これらの元素による350℃降伏応
力に対する当量式は、これを析出強化パラメーターPp
rとすると、 Ppr=27Nb1/2 + 55Mo1/2 + 14V1/2 で表すことが出来る。As can be seen from this figure, it is clear that the yield stress at 350 ° C. is improved by adding a small amount of Nb, Mo, and V, and that the effect is saturated as the added amount is increased. It became. From this figure, the rise rate of the yield stress by each element is Nb: 27 MPa ·% −1/2 , M
o: 55MPa ·% -1/2, V : 14MPa ·% -1/2
Met. Therefore, the equivalent equation for the 350 ° C. yield stress due to these elements is expressed as the precipitation strengthening parameter Pp
Assuming that r, it can be expressed by Ppr = 27Nb 1/2 + 55Mo 1/2 + 14V 1/2 .
【0030】Pprが2.0未満では、析出強化元素に
よる350℃での降伏応力の向上を期待することは出来
ず、また、40超ではHAZに島状マルテンサイトを生
成しやすくなるだけでなく、多層盛り溶接時には後続パ
スによる焼き戻しにより局所的な析出が生じて、HAZ
靭性が低下する。従って、Pprを2.0〜40の範囲
に限定することにより、良好な中温強度とHAZ靭性が
得られることを見出した。If Ppr is less than 2.0, improvement of the yield stress at 350 ° C. due to the precipitation strengthening element cannot be expected, and if it exceeds 40, not only is it easy to form island martensite in HAZ, but also In multi-pass welding, local precipitation occurs due to tempering in a subsequent pass, and HAZ
The toughness decreases. Therefore, it has been found that by limiting Ppr to the range of 2.0 to 40, good intermediate temperature strength and HAZ toughness can be obtained.
【0031】なお、製造方法としては、500℃〜65
0℃での焼き戻しにより鋼板を製造した場合だけでな
く、圧延後に650〜500℃で制御冷却を停止し、空
冷して製造した場合についても、同様の効果を得ること
が出来る。The manufacturing method is as follows.
Similar effects can be obtained not only in the case where the steel sheet is manufactured by tempering at 0 ° C., but also in the case where the controlled cooling is stopped at 650 to 500 ° C. after rolling and air-cooled.
【0032】本発明では、母材強度とHAZ靭性を確保
するため、上記に述べた条件だけではなく、化学成分に
ついてもその範囲を限定する必要がある。Cは、母材強
度を確保する上で重要な元素である。0.02%未満で
は母材強度の確保が困難であり、0.10%超ではHA
Z硬さが上昇し、島状マルテンサイトの生成量も多くな
り、HAZ靭性が劣化するため、0.02〜0.10%
の範囲とした。In the present invention, in order to secure base material strength and HAZ toughness, it is necessary to limit not only the above-mentioned conditions but also the range of chemical components. C is an important element for securing the base material strength. If it is less than 0.02%, it is difficult to secure base material strength, and if it exceeds 0.10%, HA
The Z hardness increases, the amount of island martensite formed increases, and the HAZ toughness deteriorates.
Range.
【0033】Siは、脱酸および母材強度の向上に有効
な元素である。0.05%未満では母材強度の向上が得
られず、0.5%超では母材靭性およびHAZ靭性が劣
化するため、0.05〜0.5%の範囲とした。[0033] Si is an element effective for deoxidation and improvement of base material strength. If it is less than 0.05%, the base material strength cannot be improved, and if it exceeds 0.5%, the base material toughness and the HAZ toughness are deteriorated.
【0034】Mnは、母材強度の向上およびMnSとし
てSを固定する上で重要な元素である。0.8%未満で
は十分な母材強度が得られず、1.6%超ではHAZの
硬さが上昇し、島状マルテンサイトを生成して、HAZ
靭性が低下するため、0.8〜1.6%の範囲とした。Mn is an important element for improving the strength of the base material and fixing S as MnS. If it is less than 0.8%, sufficient base material strength cannot be obtained, and if it exceeds 1.6%, the hardness of HAZ increases, and island-like martensite is formed.
Since the toughness is reduced, the content is set in the range of 0.8 to 1.6%.
【0035】Pは、鋼中にミクロ偏析し、粒界脆化を起
こしやすくさせる元素である。0.030%超では、そ
の影響が顕著となるため、0.030%以下とした。P is an element that segregates microscopically in steel and easily causes grain boundary embrittlement. If the content exceeds 0.030%, the effect becomes significant, so the content is set to 0.030% or less.
【0036】Sは、鋼中で粗大で伸長したMnSを形成
し、材質の異方性を生じ、靭性を低下させる元素であ
る。0.020%超ではその影響が顕著となるため、
0.020%以下とした。S is an element that forms coarse and elongated MnS in steel, causes anisotropy of the material, and lowers toughness. If it exceeds 0.020%, the effect becomes remarkable,
0.020% or less.
【0037】Nbは、圧延時に結晶粒界の移動を妨げる
ことにより再結晶を抑制し、未再結晶温度域での圧延を
可能にし、結晶粒径を細粒化して母材強度を上昇させ、
HAZ組織を細粒にしてHAZ靭性を向上させ、さら
に、焼き戻し時にNbCを生成して、350℃程度の中
温での降伏応力を向上させるため、本発明で必須の元素
である。0.003%未満ではこれらの効果が十分に得
られず、0.030%超では島状マルテンサイトを形成
してHAZ靭性を低下させるため、0.003〜0.0
30%の範囲とした。Nb suppresses recrystallization by hindering movement of crystal grain boundaries during rolling, enables rolling in a non-recrystallization temperature range, reduces the crystal grain size and increases the base material strength,
It is an essential element in the present invention, since the HAZ structure is refined to improve HAZ toughness, and further, NbC is generated during tempering to improve the yield stress at a medium temperature of about 350 ° C. If the content is less than 0.003%, these effects cannot be sufficiently obtained. If the content is more than 0.030%, island martensite is formed to lower the HAZ toughness.
The range was 30%.
【0038】Tiは、Nと結合してTiNを生成し、H
AZ組織を細粒化して、HAZ靭性を向上させるため、
本発明で必須の元素である。Tiが0.005%未満で
は、これらの効果が十分に得られず、0.030%超で
は炭化物を生成して靭性を低下させるため、0.005
〜0.030%の範囲とした。なお、TiとNの添加割
合は2.0〜3.4の範囲が好ましい。Ti combines with N to form TiN, and H
In order to refine the AZ structure and improve the HAZ toughness,
It is an essential element in the present invention. If Ti is less than 0.005%, these effects cannot be sufficiently obtained, and if it exceeds 0.030%, carbides are formed and the toughness is reduced.
-0.030%. In addition, the addition ratio of Ti and N is preferably in the range of 2.0 to 3.4.
【0039】Alは、固溶Nの固定および脱酸に有効な
元素である。0.01%未満では、これらの効果が十分
に得られず、0.08%超では、粗大な介在物を生成し
て靭性を低下させるため、0.01〜0.08%の範囲
とした。Al is an element effective for fixing solid solution N and deoxidizing. If it is less than 0.01%, these effects cannot be sufficiently obtained, and if it exceeds 0.08%, coarse inclusions are formed and the toughness is reduced. .
【0040】Nは、上述したようにTiNを生成するた
め、本発明で必須の元素である。0.002%未満では
TiNを十分に生成できず、0.008%超では固溶N
により靭性が低下するため、0.002〜0.008%
の範囲とした。N is an essential element in the present invention because it produces TiN as described above. If it is less than 0.002%, TiN cannot be sufficiently generated, and if it exceeds 0.008%, solid solution N
0.002% to 0.008%
Range.
【0041】Moは、焼入性を上げ、常温での母材強度
の向上だけでなく、焼き戻し時にMo2 C を生成し、3
50℃程度の中温での降伏応力を向上させるため、本発
明で重要な元素である。0.03%未満ではその効果が
十分に得られず、0.50%超ではHAZに島状マルテ
ンサイトを形成して、HAZ靭性を低下させるため、
0.03〜0.50%の範囲とした。Mo not only improves the hardenability and improves the strength of the base material at room temperature, but also generates Mo 2 C at the time of tempering.
It is an important element in the present invention for improving the yield stress at a medium temperature of about 50 ° C. If it is less than 0.03%, the effect cannot be sufficiently obtained, and if it exceeds 0.50%, island-like martensite is formed in the HAZ, and the HAZ toughness is reduced.
The range was 0.03 to 0.50%.
【0042】Vは、常温での母材強度の向上だけでな
く、焼き戻し時にVCを生成し、350℃程度の中温で
の降伏応力を向上させるため、本発明で重要な元素であ
る。0.005%未満ではその効果が十分に得られず、
0.10%超ではHAZに島状マルテンサイトを形成し
て、HAZ靭性を低下させるため、0.005〜0.1
0%の範囲とした。V is an important element in the present invention because it not only improves the strength of the base material at normal temperature but also generates VC during tempering and improves the yield stress at a medium temperature of about 350 ° C. If it is less than 0.005%, the effect cannot be obtained sufficiently,
If it exceeds 0.10%, island-like martensite is formed in the HAZ to reduce the HAZ toughness.
The range was 0%.
【0043】Cuは、母材強度の向上に有効な元素であ
る。0.10%未満ではその効果が十分に得られず、
1.0%超ではε−Cuを多量に析出し、HAZ靭性を
低下させるため、0.10〜1.0%の範囲とした。Cu is an element effective for improving the strength of the base material. If it is less than 0.10%, the effect cannot be obtained sufficiently,
If it exceeds 1.0%, a large amount of ε-Cu is precipitated, and the HAZ toughness is reduced.
【0044】Niは、焼入性を上昇させることにより母
材強度を向上させ、かつ母材靭性とHAZ靭性を向上さ
せる上で有効な元素である。0.10%未満では十分な
母材強度と靭性の向上効果が得られず、1.0%超では
経済的でなくなるため、0.10〜1.0%の範囲とし
た。Ni is an element effective for improving the strength of the base material by increasing the hardenability and for improving the base material toughness and the HAZ toughness. If it is less than 0.10%, a sufficient effect of improving the base material strength and toughness cannot be obtained, and if it exceeds 1.0%, it is not economical.
【0045】Crは、焼入性を上昇させることにより母
材強度を向上させる上で有効な元素である。0.05%
未満ではその効果が十分に得られず、0.50%超では
HAZが硬化してHAZ靭性が低下するため、0.05
〜0.50%の範囲とした。Cr is an element effective in improving the strength of the base material by increasing the hardenability. 0.05%
If it is less than 0.50%, the effect cannot be sufficiently obtained. If it exceeds 0.50%, HAZ is hardened and HAZ toughness is reduced.
-0.50%.
【0046】本発明では、CとMn量を低く限定し、C
eqも0.25〜0.38に低く限定しており、従来の
焼きならし法によっては十分な母材強度を確保ことが不
可能であるため、鋼板を製造するにあたり、以下に示す
製造条件についても限定する必要がある。In the present invention, the amounts of C and Mn are limited to low values,
The eq is also limited to a low value of 0.25 to 0.38, and it is impossible to secure a sufficient base material strength by the conventional normalizing method. Also needs to be limited.
【0047】鋼スラブは、転炉、電気炉で溶製した後、
必要に応じて取鍋精練や真空脱ガス処理を施し、連続鋳
造法により製造される。あるいは、鋳型あるいは一方向
凝固鋳型で造塊した後、分塊でスラブとしても良い。After the steel slab is melted in a converter and an electric furnace,
Ladle scouring and vacuum degassing are performed as necessary, and the product is manufactured by a continuous casting method. Alternatively, the slab may be formed by lumping with a mold or a one-way solidification mold and then lumping.
【0048】加熱は、圧延時の変形抵抗を減らし、鋼に
含有されるNbやVの一部または全部を固溶させるため
に行う。950℃未満では、これらを固溶させることが
出来ず、1300℃超では、オーステナイト粒径が粗大
化し、圧延による結晶粒の微細化が困難となり十分な母
材靭性を確保することは出来ないため、加熱温度を95
0〜1300℃の範囲とした。なお、加熱の保持時間
は、60〜180分が好ましい。Heating is performed to reduce the deformation resistance during rolling and to form a solid solution of part or all of Nb and V contained in the steel. If the temperature is lower than 950 ° C., they cannot be dissolved. If the temperature is higher than 1300 ° C., the austenite grain size becomes coarse, and it becomes difficult to refine the crystal grains by rolling, so that sufficient base material toughness cannot be secured. , Heating temperature 95
The range was 0 to 1300 ° C. In addition, the holding time of heating is preferably 60 to 180 minutes.
【0049】粗圧延は、各圧延パスによる再結晶によっ
てオーステナイト粒径を漸進的に細粒化するために行
う。圧延時に再結晶させる必要があるため、その温度を
再結晶温度域とした。また、粗圧延の累積圧下率が10
%未満では、十分なオーステナイト粒の細粒化が得られ
ず、90%超では、仕上圧延の圧下率を確保できないた
め、その累積圧下率を10〜90%の範囲とした。ここ
で、累積圧下率は、((スラブ厚)−(移送厚))/
(スラブ厚)である。The rough rolling is performed to gradually reduce the austenite grain size by recrystallization in each rolling pass. Since it is necessary to recrystallize at the time of rolling, the temperature is defined as a recrystallization temperature range. The cumulative rolling reduction of the rough rolling is 10
%, Sufficient reduction of austenite grains cannot be obtained, and if it exceeds 90%, the rolling reduction of finish rolling cannot be ensured. Therefore, the cumulative rolling reduction is in the range of 10 to 90%. Here, the cumulative draft is ((slab thickness) − (transfer thickness)) /
(Slab thickness).
【0050】仕上圧延は、オーステナイトを未再結晶状
態で圧延し、オーステナイト粒内に変形帯、双晶境界を
導入するために行う。Ar3 点よりも低温では、フェラ
イトが生成するため、オーステナイト単相での圧延が出
来ず、また未再結晶状態で圧延する必要があるため、そ
の温度をAr3 点以上の未再結晶温度域とした。また、
仕上圧延の累積圧下率が10%未満では、フェライト粒
を細粒化する十分な効果が得られず、90%超では、仕
上圧延に長時間を要するため、温度の確保が困難となる
ため、その累積圧下率を10〜90%の範囲とした。こ
こで、累積圧下率は、((移送厚)−(仕上厚))/
(移送厚)である。The finish rolling is performed to roll austenite in an unrecrystallized state and to introduce a deformation zone and a twin boundary in austenite grains. At low temperatures than Ar 3 point, since the ferrite is formed, can not rolling in the austenite single phase and non-recrystallization for the state needs to be rolled, the temperature of the Ar 3 point or more pre-recrystallization temperature region And Also,
If the cumulative rolling reduction of the finish rolling is less than 10%, a sufficient effect of refining the ferrite grains cannot be obtained, and if it exceeds 90%, it takes a long time for the finish rolling, and it is difficult to secure the temperature. The cumulative rolling reduction was in the range of 10 to 90%. Here, the cumulative draft is ((transfer thickness) − (finish thickness)) /
(Transfer thickness).
【0051】制御冷却は、未再結晶状態のオーステナイ
ト粒内の変形帯、双晶境界からのフェライト変態の核発
生を促進し、フェライト粒を細粒化し、十分な母材強度
を得るために行う。冷却速度が1℃/s未満ではこれら
の効果が得られず、100℃/s以上の冷却速度を得る
ことは設備制約上困難であることから、冷却速度を1〜
100℃/sの範囲とした。次に述べる焼き戻しを行わ
ない場合には、冷却停止温度が650℃超では上記の効
果を十分に得ることが出来ず、500℃未満では空冷中
の焼き戻し効果が不足し母材靭性が低下するため、冷却
停止温度を650〜500℃とした。また、焼き戻しを
行う場合には、200℃以下まで冷却しないと十分な母
材強度を得ることは出来ないため、冷却停止温度を20
0℃以下とした。上記冷却速度及び焼き戻し温度は、材
質要求値の板厚部位に応じて板厚中心部、1/4t
(t:板厚)部のいづれでもかまわない。The controlled cooling is carried out in order to promote the deformation band in the austenite grains in the non-recrystallized state and the nucleation of ferrite transformation from the twin boundaries, to make the ferrite grains finer, and to obtain a sufficient base material strength. . If the cooling rate is less than 1 ° C./s, these effects cannot be obtained, and it is difficult to obtain a cooling rate of 100 ° C./s or more due to facility restrictions.
The range was 100 ° C./s. When the tempering described below is not performed, the above effect cannot be sufficiently obtained when the cooling stop temperature is higher than 650 ° C, and when the cooling stop temperature is lower than 500 ° C, the tempering effect during air cooling is insufficient and the base material toughness is reduced. Therefore, the cooling stop temperature was set to 650 to 500 ° C. In the case of performing tempering, sufficient base metal strength cannot be obtained unless the temperature is lowered to 200 ° C. or lower.
0 ° C. or less. The cooling rate and the tempering temperature are set at the center of the sheet thickness, 1/4 t according to the sheet thickness part of the required material value.
Any of the (t: plate thickness) portions may be used.
【0052】焼き戻しは、制御冷却により低下した母材
靭性を向上するために行う。焼き戻し温度が500℃未
満では、十分に母材靭性が向上せず、650℃超では母
材靭性は向上するが、逆に母材強度が低下するため、5
00〜650℃の範囲とした。なお、焼き戻しの保持時
間は20〜120分が好ましい。The tempering is performed to improve the base material toughness reduced by the controlled cooling. If the tempering temperature is lower than 500 ° C., the base metal toughness is not sufficiently improved. If the tempering temperature is higher than 650 ° C., the base metal toughness is improved.
The temperature range was from 00 to 650 ° C. In addition, the holding time of tempering is preferably 20 to 120 minutes.
【0053】以上の技術思想に基づき、本発明は、良好
な母材強度と優れたHAZ靭性を併せ持つことにより、
溶接後熱処理の省略可能な中常温圧力容器用鋼板および
その製造方法を提案するものである。Based on the above technical concept, the present invention has both good base material strength and excellent HAZ toughness,
An object of the present invention is to propose a steel plate for a medium- or normal-temperature pressure vessel in which post-weld heat treatment can be omitted, and a method for manufacturing the same.
【0054】なお、溶接のままで溶接部に低温割れを生
じさせないため、本発明の請求範囲に加えて、次式によ
り評価される低温割れ感受性についても、0.11〜
0.20の範囲にすることが好ましい。 Pcm=C+Si/30+Mn/20+Cu/20+N
i/60+Cr/20+Mo/15+V/10+5B また、本発明は、サブマージアーク溶接(SAW)を行
った場合に特に有効であるが、炭酸ガスを用いたアーク
溶接(MAG)、不活性ガスを用いたアーク溶接(MI
G)、被覆アーク溶接(SMAW)のような溶接方法で
も溶接入熱が50kJ/cm以下であれば、同様の効果
を得ることが出来る。In order to prevent low-temperature cracking in the welded portion as it is, the low-temperature cracking susceptibility evaluated by the following equation is also 0.11 to 0.11.
It is preferred to be in the range of 0.20. Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + N
i / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B The present invention is particularly effective when submerged arc welding (SAW) is performed. Arc welding using carbon dioxide gas (MAG), arc using inert gas, etc. Welding (MI
G), the same effect can be obtained by a welding method such as covered arc welding (SMAW) if the welding heat input is 50 kJ / cm or less.
【0055】[0055]
【実施例】以下に、本発明の実施例について述べる。鋼
材の化学成分および製造条件と母材特性および溶接継手
特性の関係を明らかにすることを目的に、表1に示す種
々の化学成分を有する鋼を溶解し、連続鋳造により得た
スラブを表2に示す条件で、板厚9〜120mmの鋼板
に製造した。Embodiments of the present invention will be described below. In order to clarify the relationship between the chemical composition of steel and the manufacturing conditions and the properties of the base metal and the properties of the welded joint, steels having various chemical compositions shown in Table 1 were melted, and slabs obtained by continuous casting were prepared as shown in Table 2. Under the conditions shown in (1), a steel plate having a thickness of 9 to 120 mm was manufactured.
【0056】常温および中温母材強度を調査するため、
常温と350℃で引張試験を実施した。また、溶接継手
のHAZ靭性を評価するため、X開先を加工し、表3に
示す条件で溶接を行い、ボンド境界部の−40℃でのシ
ャルピー衝撃試験を実施した。さらに、溶接残留応力に
よる低応力破壊を再現するため、各鋼板から30×40
0×500mmの十字溶接継手を作成し、溶接ビード交
差部で長さ400mmのビードのボンド境界に沿って切
欠きを加工し、長さ500mmのビードの溶接線方向に
引張荷重を負荷する切欠き付き十字継手広幅試験(日本
溶接協会、監修産報出版「高張力鋼溶接の実際」198
4年発行、p73〜74)により破壊靭性値を求め、溶
接後熱処理が省略できるかどうかを確認した。In order to investigate the strength of the base material at room temperature and medium temperature,
A tensile test was performed at normal temperature and 350 ° C. In addition, in order to evaluate the HAZ toughness of the welded joint, the X groove was machined, welded under the conditions shown in Table 3, and a Charpy impact test at −40 ° C. at the bond boundary was performed. Furthermore, to reproduce low stress fracture due to welding residual stress, 30 × 40
Create a 0x500mm cross weld joint, cut a notch along the bond boundary of a 400mm long bead at the intersection of the weld bead, and apply a tensile load in the weld line direction of the 500mm long bead. Cruciform joint wide test (Japan Welding Association, supervised product report, “The practice of high tensile steel welding” 198
Fracture toughness values were determined by 4 years, pp. 73-74, and it was confirmed whether post-weld heat treatment could be omitted.
【0057】発明鋼1〜15は、常温での母材強度と中
温での降伏応力に関して、いずれも良好な値が得られ
た。また、溶接部のシャルピー衝撃値と破壊靭性値につ
いても、高い値が得られたことから、溶接後熱処理を省
略できることが確認された。Inventive steels 1 to 15 all exhibited good values for the base metal strength at room temperature and the yield stress at medium temperature. In addition, since high values were also obtained for the Charpy impact value and the fracture toughness value of the welded portion, it was confirmed that post-weld heat treatment could be omitted.
【0058】一方、比較鋼16は、成分が本発明の請求
範囲であるが、製造方法が異なるため、継手特性は良好
であるが、常温での母材強度が低く、これに伴い中温強
度も低い。比較鋼17は、成分および製造方法がともに
本発明の範囲外であるため、母材強度に対して中温強度
が特に低下し、継手特性も低下する。比較鋼18は、6
C+Mnおよび製造条件が本発明の範囲外であるため、
継手特性および常温、中温での母材強度が低い。比較鋼
19、20は、Ceq、Pprが範囲外であるが、製造
条件は本発明の請求範囲であるため、母材強度は高いも
のの継手特性が低い。以上の実施例から、本発明鋼はそ
の請求範囲を満足することにより、常温と中温での良好
な母材強度と優れた溶接継手特性を併せ持つことがわか
る。On the other hand, the comparative steel 16 has the components within the scope of the present invention, but the joint method is good because the manufacturing method is different, but the base metal strength at room temperature is low, and the medium temperature strength is accordingly low. Low. Since both the composition and the production method of the comparative steel 17 are out of the range of the present invention, the intermediate temperature strength is particularly reduced with respect to the base metal strength, and the joint properties are also reduced. Comparative steel 18 is 6
Since C + Mn and production conditions are out of the scope of the present invention,
Low joint properties and base material strength at normal and medium temperatures. Ceq and Ppr of the comparative steels 19 and 20 are out of the range, but since the manufacturing conditions are within the scope of the present invention, the joint properties are low although the base metal strength is high. From the above examples, it can be understood that the steel of the present invention, when satisfying the claims, has both good base metal strength at room temperature and medium temperature and excellent welded joint properties.
【0059】[0059]
【表1】 [Table 1]
【0060】[0060]
【表2】 [Table 2]
【0061】[0061]
【表3】 [Table 3]
【0062】[0062]
【発明の効果】以上詳述したように、本発明によれば、
350℃程度の中温から常温までの温度範囲で用いられ
る中常温圧力容器用炭素鋼鋼板に関して、溶接後熱処理
を省略できる中常温圧力容器用鋼板を提供することが可
能であり、本発明によって、原子炉格納容器のような圧
力容器の大型化が可能となった。このような効果を有す
る本発明の意義は、極めて著しいものである。As described in detail above, according to the present invention,
With respect to a carbon steel sheet for a medium-pressure chamber used at a temperature range of about 350 ° C. to a normal temperature, it is possible to provide a steel sheet for a medium-temperature pressure vessel that can omit heat treatment after welding. Pressure vessels such as furnace containment vessels can be made larger. The significance of the present invention having such an effect is extremely remarkable.
【図1】シャルピー衝撃試験における引張強度とHAZ
靭性に及ぼすCとMnの関係を示す図である。FIG. 1 Tensile strength and HAZ in Charpy impact test
It is a figure which shows the relationship of C and Mn which affect toughness.
【図2】図1で用いたシャルピー衝撃試験結果と引張強
度をCeqについて整理し直した図である。FIG. 2 is a diagram rearranging the results of the Charpy impact test and the tensile strength used in FIG. 1 for Ceq.
【図3】350℃での引張試験における合金元素添加に
よる降伏応力の上昇代と合金元素量の関係を示す図であ
る。FIG. 3 is a diagram showing a relationship between a rise in yield stress due to addition of an alloy element and an amount of an alloy element in a tensile test at 350 ° C.
Claims (6)
り、 6C+Mn: 1.2〜2.0、 Ceq : 0.25〜0.38、 Ppr : 2.0〜40 を満足することを特徴とする、溶接後熱処理の省略可能
な中常温圧力容器用鋼板。ただし、 Ceq=C+Si/24+Mn/6+Ni/60+Cr/5
+Mo/4+V/14 Ppr=27Nb1/2 +55Mo1/2 +14V1/2 とする。1. C: 0.02 to 0.10% by weight, Si: 0.05 to 0.5%, Mn: 0.8 to 1.6%, P: 0.030% or less by weight%, S: : 0.020% or less, Nb: 0.005 to 0.030%, Ti: 0.005 to 0.030%, Al: 0.01 to 0.08%, N: 0.002 to 0.008% And the balance consists of iron and unavoidable impurity elements, and satisfies 6C + Mn: 1.2 to 2.0, Ceq: 0.25 to 0.38, and Ppr: 2.0 to 40. A steel plate for medium and normal pressure vessels that can be omitted from post-weld heat treatment. Here, Ceq = C + Si / 24 + Mn / 6 + Ni / 60 + Cr / 5
+ Mo / 4 + V / 14 Ppr = 27Nb 1/2 + 55Mo 1/2 + 14V 1/2
的不純物元素よりなり、 6C+Mn: 1.2〜2.0、 Ceq : 0.25〜0.38、 Ppr : 2.0〜40 を満足することを特徴とする、溶接後熱処理の省略可能
な中常温圧力容器用鋼板。ただし、 Ceq=C+Si/24+Mn/6+Ni/60+Cr/5
+Mo/4+V/14 Ppr=27Nb1/2 +55Mo1/2 +14V1/2 とする。2. C: 0.02 to 0.10%, Si: 0.05 to 0.5%, Mn: 0.8 to 1.6%, P: 0.030% or less by weight%, S: : 0.020% or less, Nb: 0.005 to 0.030%, Ti: 0.005 to 0.030%, Al: 0.01 to 0.08%, N: 0.002 to 0.008% Mo: 0.03 to 0.50%, V: 0.005 to 0.10%, containing one or two of the following, and the balance consisting of iron and unavoidable impurity elements: 6C + Mn: A steel plate for a medium-pressure container that can be omitted from post-weld heat treatment, satisfying 1.2 to 2.0, Ceq: 0.25 to 0.38, and Ppr: 2.0 to 40. However, Ceq = C + Si / 24 + Mn / 6 + Ni / 60 + Cr / 5
+ Mo / 4 + V / 14 Ppr = 27Nb 1/2 + 55Mo 1/2 + 14V 1/2
可避的不純物元素よりなり、 6C+Mn: 1.2〜2.0、 Ceq : 0.25〜0.38、 Ppr : 2.0〜40 を満足することを特徴とする、溶接後熱処理の省略可能
な中常温圧力容器用鋼板。ただし、 Ceq=C+Si/24+Mn/6+Ni/60+Cr/5
+Mo/4+V/14 Ppr=27Nb1/2 +55Mo1/2 +14V1/2 とする。3. C: 0.02 to 0.10% by weight, Si: 0.05 to 0.5%, Mn: 0.8 to 1.6%, P: 0.030% or less by weight%, S: : 0.020% or less, Nb: 0.005 to 0.030%, Ti: 0.005 to 0.030%, Al: 0.01 to 0.08%, N: 0.002 to 0.008% And further contains one or more of Cu: 0.10 to 1.0%, Ni: 0.10 to 1.0%, and Cr: 0.05 to 0.50%, with the balance being Is composed of iron and an unavoidable impurity element, and satisfies 6C + Mn: 1.2 to 2.0, Ceq: 0.25 to 0.38, and Ppr: 2.0 to 40. Optional steel plate for medium and normal temperature pressure vessels. However, Ceq = C + Si / 24 + Mn / 6 + Ni / 60 + Cr / 5
+ Mo / 4 + V / 14 Ppr = 27Nb 1/2 + 55Mo 1/2 + 14V 1/2
可避的不純物元素よりなり、 6C+Mn: 1.2〜2.0、 Ceq : 0.25〜0.38、 Ppr : 2.0〜40 を満足することを特徴とする、溶接後熱処理の省略可能
な中常温圧力容器用鋼板。ただし、 Ceq=C+Si/24+Mn/6+Ni/60+Cr/5
+Mo/4+V/14 Ppr=27Nb1/2 +55Mo1/2 +14V1/2 とする。4. In% by weight, C: 0.02 to 0.10%, Si: 0.05 to 0.5%, Mn: 0.8 to 1.6%, P: 0.030% or less, S: : 0.020% or less, Nb: 0.005 to 0.030%, Ti: 0.005 to 0.030%, Al: 0.01 to 0.08%, N: 0.002 to 0.008% Mo: 0.03 to 0.50%; V: 0.005 to 0.10% One or two of the following: Cu: 0.10 to 1.0%, Ni : 0.10 to 1.0%, Cr: 0.05 to 0.50% Contains one or more of the following, and the balance consists of iron and inevitable impurity elements. 6C + Mn: 1.2 to 2 0.0, Ceq: 0.25 to 0.38, Ppr: 2.0 to 40 Steel sheet for cold pressure vessel in an optional. However, Ceq = C + Si / 24 + Mn / 6 + Ni / 60 + Cr / 5
+ Mo / 4 + V / 14 Ppr = 27Nb 1/2 + 55Mo 1/2 + 14V 1/2
分を有する鋼スラブを、950〜1300℃に加熱し、
再結晶温度域で累積圧下率が10〜90%の粗圧延を行
い、続いてAr3 点以上の未再結晶温度域で累積圧下率
が10〜90%の仕上圧延を行い、直ちに冷却速度が1
〜100℃/sで650〜500℃まで制御冷却し、室
温まで空冷することを特徴とする、溶接後熱処理の省略
可能な中常温圧力容器用鋼板の製造方法。5. A steel slab having the chemical composition according to any one of claims 1 to 4, which is heated to 950 to 1300 ° C.
Rough rolling is performed in the recrystallization temperature range with a cumulative draft of 10 to 90%, followed by finish rolling with a cumulative draft of 10 to 90% in the non-recrystallization temperature range of three or more Ar points. 1
A method for manufacturing a steel plate for a medium- or normal-temperature pressure vessel, in which post-weld heat treatment can be omitted, comprising controlled cooling to 650 to 500 ° C. at 100100 ° C./s and air cooling to room temperature.
分を有する鋼スラブを、950〜1300℃に加熱し、
再結晶温度域で累積圧下率が10〜90%の粗圧延を行
い、続いてAr3 点以上の未再結晶温度域で累積圧下率
が10〜90%の仕上圧延を行い、直ちに冷却速度が1
〜100℃/sで200℃以下に制御冷却し、その後、
500℃〜650℃で焼き戻しを行うことを特徴とす
る、溶接後熱処理の省略可能な中常温圧力容器用鋼板の
製造方法。6. A steel slab having the chemical composition according to claim 1 is heated to 950 to 1300 ° C.,
Rough rolling is performed in the recrystallization temperature range with a cumulative draft of 10 to 90%, followed by finish rolling with a cumulative draft of 10 to 90% in the non-recrystallization temperature range of three or more Ar points. 1
Controlled cooling to 200 ° C or less at ~ 100 ° C / s, then
A method for producing a steel plate for a medium-pressure container capable of eliminating heat treatment after welding, wherein tempering is performed at 500 ° C to 650 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5165798A JPH11131177A (en) | 1997-08-29 | 1998-03-04 | Steel plate for medium and normal temperature pressure vessel which can omit post-weld heat treatment and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23409697 | 1997-08-29 | ||
JP9-234096 | 1997-08-29 | ||
JP5165798A JPH11131177A (en) | 1997-08-29 | 1998-03-04 | Steel plate for medium and normal temperature pressure vessel which can omit post-weld heat treatment and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11131177A true JPH11131177A (en) | 1999-05-18 |
Family
ID=26392207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5165798A Withdrawn JPH11131177A (en) | 1997-08-29 | 1998-03-04 | Steel plate for medium and normal temperature pressure vessel which can omit post-weld heat treatment and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11131177A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100378241C (en) * | 2003-03-24 | 2008-04-02 | 新日本制铁株式会社 | High-strength hot-rolled steel sheet excellent in hole expandability and ductility and manufacturing method thereof |
EP2105516A1 (en) * | 2008-03-28 | 2009-09-30 | Kabushiki Kaisha Kobe Seiko Sho | High-strength steel sheet excellent in resistance to stress-relief annealing and in low-temperature joint toughness |
JP2011001620A (en) * | 2009-06-22 | 2011-01-06 | Jfe Steel Corp | High strength thick steel plate combining excellent productivity and weldability and having excellent drop weight characteristic after pwht, and method for producing the same |
JP2013113414A (en) * | 2011-11-30 | 2013-06-10 | Nippon Steel & Sumikin Engineering Co Ltd | Pressure vessel |
KR101353858B1 (en) * | 2011-12-28 | 2014-01-20 | 주식회사 포스코 | Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same |
EP2520680A4 (en) * | 2009-12-28 | 2014-11-19 | Posco | High strength steel sheet having excellent resistance to post weld heat treatment and method for manufacturing same |
US10829830B2 (en) | 2015-12-17 | 2020-11-10 | Posco | Pressure vessel steel plate having excellent post weld heat treatment resistance, and manufacturing method therefor |
-
1998
- 1998-03-04 JP JP5165798A patent/JPH11131177A/en not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100378241C (en) * | 2003-03-24 | 2008-04-02 | 新日本制铁株式会社 | High-strength hot-rolled steel sheet excellent in hole expandability and ductility and manufacturing method thereof |
EP2105516A1 (en) * | 2008-03-28 | 2009-09-30 | Kabushiki Kaisha Kobe Seiko Sho | High-strength steel sheet excellent in resistance to stress-relief annealing and in low-temperature joint toughness |
US8394209B2 (en) | 2008-03-28 | 2013-03-12 | Kobe Steel, Ltd. | High-strength steel sheet excellent in resistance to stress-relief annealing and in low-temperature joint toughness |
JP2011001620A (en) * | 2009-06-22 | 2011-01-06 | Jfe Steel Corp | High strength thick steel plate combining excellent productivity and weldability and having excellent drop weight characteristic after pwht, and method for producing the same |
EP2520680A4 (en) * | 2009-12-28 | 2014-11-19 | Posco | High strength steel sheet having excellent resistance to post weld heat treatment and method for manufacturing same |
JP2013113414A (en) * | 2011-11-30 | 2013-06-10 | Nippon Steel & Sumikin Engineering Co Ltd | Pressure vessel |
KR101353858B1 (en) * | 2011-12-28 | 2014-01-20 | 주식회사 포스코 | Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same |
US10829830B2 (en) | 2015-12-17 | 2020-11-10 | Posco | Pressure vessel steel plate having excellent post weld heat treatment resistance, and manufacturing method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1025271B1 (en) | Ultra-high strength, weldable, essentially boron-free steels wit h superior toughness | |
EP3239327A1 (en) | High-strength steel plate for pressure vessel having excellent toughness after post weld heat treatment and manufacturing method thereof | |
JP7411072B2 (en) | High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same | |
JP5659758B2 (en) | TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability | |
JP4207334B2 (en) | High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same | |
US10316385B2 (en) | High-tensile-strength steel plate and process for producing same | |
KR100699629B1 (en) | Continuous casting without surface cracks and manufacturing method of non-elastic high tensile strength steel using this casting | |
JP5194572B2 (en) | Method for producing high-tensile steel material with excellent weld crack resistance | |
JP7410438B2 (en) | steel plate | |
JPH07278656A (en) | Method of manufacturing low yield ratio high strength steel | |
JP4310591B2 (en) | Method for producing high-strength steel sheet with excellent weldability | |
JP4926447B2 (en) | Manufacturing method of high strength steel with excellent weld crack resistance | |
JPH09143557A (en) | Method for producing high-strength Ni-containing thick steel sheet excellent in low temperature toughness | |
JPH11131177A (en) | Steel plate for medium and normal temperature pressure vessel which can omit post-weld heat treatment and method for producing the same | |
JPH06128631A (en) | Method for producing high manganese ultra high strength steel with excellent low temperature toughness | |
JPH05186848A (en) | High heat input welding steel with excellent toughness | |
JPH05195156A (en) | High-manganese ultrahigh tensile strength steel excellent in toughness in heat affected zone and its production | |
JPH09302445A (en) | Ni-containing steel for low temperature and method for producing the same | |
JP2930772B2 (en) | High manganese ultra-high strength steel with excellent toughness of weld heat affected zone | |
JPH0118967B2 (en) | ||
JP2000104116A (en) | Manufacturing method of steel with excellent strength and toughness | |
KR100311791B1 (en) | METHOD FOR MANUFACTURING QUENCHED AND TEMPERED STEEL WITH SUPERIOR TENSILE STRENGTH OF AROUND 600MPa AND IMPROVED TOUGHNESS IN WELDED PART | |
JP3367388B2 (en) | High ductility and high toughness steel sheet and manufacturing method thereof | |
KR910003883B1 (en) | Making process for high tension steel | |
JP2532176B2 (en) | Method for producing high-strength steel with excellent weldability and brittle crack propagation arresting properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050510 |