[go: up one dir, main page]

JPS63155720A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63155720A
JPS63155720A JP30330986A JP30330986A JPS63155720A JP S63155720 A JPS63155720 A JP S63155720A JP 30330986 A JP30330986 A JP 30330986A JP 30330986 A JP30330986 A JP 30330986A JP S63155720 A JPS63155720 A JP S63155720A
Authority
JP
Japan
Prior art keywords
depth
ion implantation
junction
amorphous layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30330986A
Other languages
Japanese (ja)
Other versions
JPH0795535B2 (en
Inventor
Masayasu Miyake
三宅 雅保
Shinji Aoyama
真二 青山
Toshio Kobayashi
敏夫 小林
Kazuhide Kiuchi
木内 一秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61303309A priority Critical patent/JPH0795535B2/en
Publication of JPS63155720A publication Critical patent/JPS63155720A/en
Publication of JPH0795535B2 publication Critical patent/JPH0795535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To form a shallow junction having preferable current/voltage characteristics by using a deeper amorphous layer than ion implantation depth for forming the junction to prevent a channeling at the time of ion implantation, thereby eliminating the influence of crystal defect upon ion implantation for forming an amorphous layer. CONSTITUTION:After a field oxide film 2 is formed on an N-type Si substrate 1, a gate oxide film 3 is formed. Then, a low resistance polycrystalline silicon is deposited to form a gate electrode 4. Thereafter, Si ions are implanted to form an amorphous layer 5 of 1000Angstrom thick in the substrate 1. Then, BF2 ions are implanted. Here, the B implanting depth is 900Angstrom , which is shallower than the layer 5. Thereafter, it is lampannealed to activate the B to diffuse the B, thereby forming a junction at a position deeper than the depth 1000Angstrom of a crystal defect 7 upon ion implantation for forming an amorphous layer to form a junction having preferable current/voltage characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微細LSI製作に要求される、良好な電流−
電圧特性を持つ浅い接合形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is directed to a good current
The present invention relates to a method for forming a shallow junction with voltage characteristics.

〔従来の技術〕[Conventional technology]

LSIは高性能化、高集積化に向けてさらに微細化の研
究が進められているが、ゲート長0.5μm程度以下の
微細LSIを実現するためには、MO8FgTのソース
、ドレインとして用いられる接合として、深さが0.1
μm程度以下の浅い接合が必要不可欠である。従来、S
l基板に接合を形成する方法としては、P+N接合を形
成する場合にはBを、N+P接合を形成する場合にはA
mあるいはPをイオン注入し、電気炉中でアニールする
という手法が用いられてきた。しかし、アニール時の不
純物の拡散のために、浅い接合を形成するのは困難であ
る。このため、従来の電気炉アニールの代わりに、不純
物の拡散をあま、り起こさせないで活性化できるランプ
アニールが、浅い接合形成な可能にする有力な手法とし
て用いられている。
Research into further miniaturization of LSIs is progressing toward higher performance and higher integration, but in order to realize miniaturized LSIs with gate lengths of approximately 0.5 μm or less, the junctions used as the source and drain of MO8FgT must be , the depth is 0.1
A shallow junction on the order of μm or less is essential. Conventionally, S
The method for forming a junction on a substrate is B when forming a P+N junction, and A when forming an N+P junction.
A method has been used in which ions of m or phosphorus are implanted and annealed in an electric furnace. However, it is difficult to form shallow junctions due to the diffusion of impurities during annealing. Therefore, instead of the conventional electric furnace annealing, lamp annealing, which can be activated without causing too much diffusion of impurities, is used as an effective method for forming shallow junctions.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の上述した浅い接合形成に不可欠な低エネルギイオ
ン注入を行なうと、特にイオン半径の小さいBの場合に
は、低指数の結晶軸方向からずらしてイオン注入しても
、チャネリングが起き不純物が深くまで侵入し、接合を
浅くできないという問題がある。上記のチャネリングを
抑えるため、例えば8のイオン注入の前に電気特性に影
響を与えないイオン、例えばStのイオン注入により、
si基板の表面付近を非晶質化するという方法が提案さ
れている。この方法によれば、非晶質層へのイオン注入
であるためチャネリングを防止でき、浅い接合の形成が
可能であるが、チャネリングを完全に防止するために非
晶質層の深さを深くすると、非晶質化のためのイオン注
入により導入される結晶欠陥の影響のために、接合ダイ
オードのリーク電流が大きくなり、良好な電流−電圧特
性を持つ浅い接合を形成できないという欠点があった。
When conventional low-energy ion implantation is performed, which is essential for forming shallow junctions as mentioned above, channeling occurs and impurities are implanted deeply, especially in the case of B, which has a small ion radius, even if the ions are implanted in a direction shifted from the low-index crystal axis direction. There is a problem that the bonding cannot be made shallow due to the intrusion. In order to suppress the above channeling, for example, before the ion implantation in step 8, ions that do not affect the electrical characteristics, such as St, are implanted.
A method has been proposed in which the vicinity of the surface of the Si substrate is made amorphous. According to this method, since ions are implanted into an amorphous layer, channeling can be prevented and shallow junctions can be formed. However, if the depth of the amorphous layer is increased to completely prevent channeling, However, due to the influence of crystal defects introduced by ion implantation for amorphousization, leakage current of the junction diode becomes large, and a shallow junction with good current-voltage characteristics cannot be formed.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、従来の接合形成技術の以上のような問題を解
決した、良好な電流−電圧特性を持つ061μm程度の
浅い接合を形成する手法を提供するもので、半導体装置
の製造方法&Cおいて、半導体の電気特性に影響を与え
ない不活性な第一のイオンを注入し、半導体表面に非晶
質層を形成する工程と、前記第一のイオン注入により形
成された非晶質層の深さよりも浅く電気的に活性な第二
のイオンをイオン注入する工程と、前記第二のイオン注
入により導入した不純物を熱処理により拡散させ、前記
不純物の層の深さを前記非晶質層の深さよりも深くする
工程を含んでなることを特徴とし又いる。
The present invention solves the above-mentioned problems of conventional junction formation techniques and provides a method for forming a shallow junction of about 061 μm with good current-voltage characteristics. , a step of implanting inert first ions that do not affect the electrical characteristics of the semiconductor to form an amorphous layer on the semiconductor surface; and a step of forming an amorphous layer on the surface of the semiconductor, and A step of ion-implanting electrically active second ions to a shallower depth than that of the amorphous layer, and diffusing the impurity introduced by the second ion implantation through heat treatment, and increasing the depth of the impurity layer to the depth of the amorphous layer. It is characterized by including a process of making it deeper than it is.

〔作用〕[Effect]

本発明の詳細な説明する前に、まず、本発明に至った実
験事実について述べる。
Before explaining the present invention in detail, first, the experimental facts that led to the present invention will be described.

St基板にsiイオンを150 key、 2X 10
 cm  の条件でイオン注入した場合には、表面から
cL3μmの深さまで非晶質化されることが断面TEN
の観察から明らかとなった。このような試料を、例えば
900℃、60分の電気炉アニールあるいは、950 
℃。
Si ions on St substrate with 150 keys, 2X 10
When ions are implanted under the conditions of cm, the cross section TEN shows that the amorphous state is formed from the surface to a depth of cL3μm.
This became clear from observation. Such a sample is subjected to electric furnace annealing at 900°C for 60 minutes or 950°C.
℃.

15秒のランプアニールを行なうと、前記非晶質層とS
t結晶の界面、すなわち0.6μmの深さの所に結晶欠
陥が発生することがわかった。このような、非晶質化の
ためのイオン注入に伴う結晶欠陥の深さと接合のリーク
電流との関係を調べた結果、接合の深さが前記結晶欠陥
よりも深い場合は良好な接合特性を示し、接合の深さが
結晶欠陥の深さよりも浅い場合にはリーク電流が大きく
増大することがわかった。
When lamp annealing is performed for 15 seconds, the amorphous layer and S
It was found that crystal defects occur at the interface of the t-crystal, that is, at a depth of 0.6 μm. As a result of investigating the relationship between the depth of crystal defects associated with ion implantation for amorphousization and junction leakage current, it was found that good junction characteristics are obtained when the junction depth is deeper than the crystal defects. It was found that the leakage current increases significantly when the junction depth is shallower than the crystal defect depth.

本発明は以上の実験事実に基いてなされたもので、チャ
ネリングを完全に防止するために、非晶質層の深さが8
のイオン注入深さよりも深くなるように形成し、その後
の熱処理によりBを拡散させ、結晶欠陥の深さよりもや
や深い所を接合面とすることにより、良好な電流−電圧
特性を持つ接合を形成するものである。すなわち、本発
明は、第一のイオン注入により非晶質層を形成した後、
第二のイオン注入により不純物イオンを注入し接合を形
成する工程において、第二のイオンを、第一のイオン注
入により形成された非晶質層の深さよりも浅くイオン注
入した後、熱処理により、第二のイオン注入により導入
した不純物を拡散させ、不純物層の深さを前記非晶質層
の深さよりもやや深くすることを最も主要な特徴とする
。以下図面にもとづき実施例について説明する。
The present invention was made based on the above experimental facts, and in order to completely prevent channeling, the depth of the amorphous layer is 88.
By forming the bond to be deeper than the ion implantation depth, and then diffusing B through heat treatment, and making the junction surface slightly deeper than the depth of the crystal defect, a junction with good current-voltage characteristics is formed. It is something to do. That is, in the present invention, after forming an amorphous layer by first ion implantation,
In the step of implanting impurity ions by second ion implantation to form a junction, after implanting the second ions to a depth shallower than the depth of the amorphous layer formed by the first ion implantation, by heat treatment, The most important feature is that the impurity introduced by the second ion implantation is diffused to make the depth of the impurity layer slightly deeper than the depth of the amorphous layer. Examples will be described below based on the drawings.

〔実施例〕〔Example〕

第1図(a)乃至+e)は、本発明をMO8LSI製造
に適用した場合の一実施例であって、P−チャネルMO
S F E Tの製造工程を示すものである。図中、1
はN型81基板、2はフィールド酸化膜、3はゲート酸
化膜、4は低抵抗多結晶シリコンゲート電極、5は非晶
質層、6は21層(ソース、ドレイン)、7は非晶質層
形成のためのイオン注入に伴う結晶欠陥、8は層間絶縁
膜、9はA/、電極である。まず、第1図(a)に示す
ように、N型St基板1上に通常のMO8LSI[造工
程に従って厚さ5oooXのフイ−ルド酸化膜2を形成
した後、厚さ100Xのゲート酸化膜6を乾燥酸素中で
形成する。その後、ゲート電極として用いる低抵抗多結
晶シリコンを3000 Xの厚さに堆積し、通常のフォ
トリソグラフィあるいは電子ビームリングラフィな用い
てゲート電極4を形成する。次に、第1図(b)に示す
ように、ソース、ドレインとして用いるP+N接合形成
のためのイオン注入に先立って、Slイオンを40ke
V 、 2 X10”’++s−2の条件でイオン注入
し、N型S1基&1中に非晶質層5を形成する。ここに
示した条件でイオン注入した場合、非晶質m5の深さは
1000Xである。次に、第1図(c)に示すように、
ソース、ドレインとして用いるP←N接合形成のために
BF、イオンを15 kaV 、 2 X 1015c
rn−2の条件でイオン注入する。ここで、BF、イオ
ンを用いた理由は、低エネルギの8イオンを得るためで
、15keVのBF冨イオン注入は!1.4 keVの
Bイオン注入と同等でおる。上記のBF、イオン注入の
条件で、Bの注入深さは900 Kとなる。しかる後に
、950℃、15秒のランプアニールを行ないイオン注
入により導入されたBの活性化を行なうとともに、第1
図(d)に示すように、Bを拡散させ、非晶質層形成の
ためのイオン注入に伴う結晶欠陥7の深さ1oooXよ
り深い所に接合面を形成する。本実施例では、アニール
後のP+N接合を深さを1100又とした。また、この
アニールで非晶質層5の結晶性は回復し単結晶となるの
で、Slイオン注入はP十層6の抵抗等の電気特性には
影響を与えなくなる。
FIGS. 1(a) to +e) show an example in which the present invention is applied to MO8LSI manufacturing, and is a P-channel MO8LSI manufacturing example.
It shows the manufacturing process of SFET. In the figure, 1
is an N-type 81 substrate, 2 is a field oxide film, 3 is a gate oxide film, 4 is a low resistance polycrystalline silicon gate electrode, 5 is an amorphous layer, 6 is a 21 layer (source, drain), 7 is an amorphous Crystal defects due to ion implantation for layer formation; 8 is an interlayer insulating film; 9 is A/, an electrode. First, as shown in FIG. 1(a), a field oxide film 2 with a thickness of 500X is formed on an N-type St substrate 1 according to the manufacturing process of a normal MO8LSI, and then a gate oxide film 6 with a thickness of 100X is formed. is formed in dry oxygen. Thereafter, low-resistance polycrystalline silicon to be used as a gate electrode is deposited to a thickness of 3000×, and a gate electrode 4 is formed using ordinary photolithography or electron beam phosphorography. Next, as shown in FIG. 1(b), prior to ion implantation to form P+N junctions used as sources and drains, Sl ions were implanted at 40ke.
Ion implantation is performed under the conditions of V, 2 X 10'''++s-2 to form an amorphous layer 5 in the N-type S1 group &1.When ion implantation is performed under the conditions shown here, the depth of the amorphous m5 is is 1000X. Next, as shown in Figure 1(c),
To form a P←N junction used as a source and drain, BF and ions were heated at 15 kaV and 2×1015c.
Ion implantation is performed under rn-2 conditions. Here, the reason for using BF ions is to obtain 8 low energy ions, and 15 keV BF rich ion implantation is! This is equivalent to 1.4 keV B ion implantation. Under the above BF and ion implantation conditions, the B implantation depth is 900K. After that, lamp annealing is performed at 950°C for 15 seconds to activate the B introduced by ion implantation, and at the same time, the first
As shown in Figure (d), B is diffused to form a bonding surface deeper than the depth 1oooX of crystal defects 7 caused by ion implantation for forming an amorphous layer. In this example, the depth of the P+N junction after annealing was 1100 mm. Moreover, since the crystallinity of the amorphous layer 5 is restored by this annealing and becomes a single crystal, the Sl ion implantation does not affect the electrical characteristics such as the resistance of the P layer 6.

以上のような方法でソース、ドレイン用の浅いP+N接
合を形成した後は、通常のMO8LSI製造工程に従っ
て第1図(e)に示すように、層間絶縁膜8.AA電極
9を形成し、P−チャネルMO8FETが製造される。
After forming shallow P+N junctions for the source and drain using the method described above, the interlayer insulating film 8. AA electrode 9 is formed and a P-channel MO8FET is manufactured.

第2図ta+ 、 (b)は、本実施例で示したP←N
接合のBの深さ方向の濃度分布をSIMSで測定した結
果を示したもので、第2図(a)がイオン注入後熱処理
なしの場合、第2図(b)が950℃、15秒のランプ
アニール後である。また、第2図ta+に破線で示して
いるのは、比較のために測定したもので、Siイオン注
入を行なわないでBF、イオン注入のみを行なつた場合
である。第2図(1)に示すように、本実施例で示した
S1イオン注入を行なった場合は、Bの濃度分布はガウ
ス分布で表わされる急峻な分布になっておシ、チャネリ
ングは完全に防止できていることがわかる。一方、S1
イオン注入を行なわないものは、図に示すように、チャ
ネリングのために分布が拡が430.1μm程度の浅い
接合を形成することは不可能でおる。このように、非晶
質層の深さを8の注入深さよりも深くすることにより、
チャネリングを完全に防止した浅いP+N接合が形成で
きる。第2図(b)に示すように、ランプアニール後の
接合深さくB濃度が1o”m−3になる深さで定義する
)は1100Xとなる。次に、本実施例で示したP+N
接合の逆方向の電流−電圧特性を第6図に示す。図に示
すように、−5v印加時のリーク電流はI X 1O−
9A/ajと非常に小さい値であ)、良好な電流−電圧
特性を持つ浅い接合が得られている。前述したようにラ
ンプアニールでBは若干拡散するので、接合深さは1t
ooXと、非晶質層の深さ1oooXに比べてやや深く
なる。従って、本実施例では、非晶質層と結晶の界面に
発生する結晶欠陥の深さが接合の深さよりも浅くなるた
めに、第3図に示すような良好な電流−電圧特性が得ら
れる。比較のために、本発明によらない方法で形成した
P+N接合の逆方向の電流−電圧特性を第4図に示す。
Figure 2 ta+, (b) shows P←N shown in this example.
The results show the concentration distribution of B in the junction in the depth direction measured by SIMS. Figure 2 (a) shows the case without heat treatment after ion implantation, and Figure 2 (b) shows the result after ion implantation at 950°C for 15 seconds. After lamp annealing. What is shown by a broken line in FIG. 2 ta+ is a measurement for comparison, in which only BF and ion implantation were performed without Si ion implantation. As shown in FIG. 2 (1), when the S1 ion implantation shown in this example is performed, the concentration distribution of B becomes a steep Gaussian distribution, and channeling is completely prevented. You can see that it is done. On the other hand, S1
As shown in the figure, without ion implantation, it is impossible to form a shallow junction with a distribution spread of about 430.1 μm due to channeling. In this way, by making the depth of the amorphous layer deeper than the implantation depth of 8,
A shallow P+N junction can be formed that completely prevents channeling. As shown in FIG. 2(b), the junction depth after lamp annealing (defined as the depth at which the B concentration becomes 1o"m-3) is 1100X. Next, the P+N
The reverse current-voltage characteristics of the junction are shown in FIG. As shown in the figure, the leakage current when -5V is applied is I x 1O-
A shallow junction with good current-voltage characteristics was obtained with a very small value of 9 A/aj). As mentioned above, B diffuses slightly during lamp annealing, so the junction depth is 1t.
ooX is slightly deeper than the depth of the amorphous layer, 1oooX. Therefore, in this example, the depth of crystal defects occurring at the interface between the amorphous layer and the crystal is shallower than the depth of the junction, so that good current-voltage characteristics as shown in FIG. 3 can be obtained. . For comparison, FIG. 4 shows the reverse current-voltage characteristics of a P+N junction formed by a method not according to the present invention.

これは、非晶質層の深さを30[]OXとした場合であ
るが、接合の深さは同様に1100Xと浅い接合が得ら
れたが、結晶欠陥の深さが接合の深さよりも深いので、
第4図に示すように大きなIJ −り電流を示す。すな
わち、本発明を用いることにより、接合のリーク電流の
値を171000に減少させることができた。以上のよ
うに、本発明によれば、チャネリングを完全に防止し、
しかも良好な電流−電圧特性を持つ浅い接合が形成でき
る。
This is when the depth of the amorphous layer is 30[]OX, but the depth of the junction is 1100X, which is a shallow junction. However, the depth of the crystal defects is smaller than the depth of the junction. Because it is deep,
As shown in FIG. 4, a large IJ current is shown. That is, by using the present invention, the value of the junction leakage current could be reduced to 171,000. As described above, according to the present invention, channeling can be completely prevented,
Moreover, shallow junctions with good current-voltage characteristics can be formed.

なお、以上の説明では非晶質化のためのイオン注入のイ
オン種としてはSiの場合を述べたが、他にGe I 
Ar等、最終的に電気特性に影響を与えないものであれ
ば何でもよい。また、接合形成のためのイオン種として
はOF、の場合を述べたが、もちろんP+N接合の場合
はB等他のものでもよく、N+P接合の時には、A@、
P等を使用すればよい。
In the above explanation, Si was used as the ion species for ion implantation for amorphization, but Ge I
Any material, such as Ar, may be used as long as it does not ultimately affect the electrical characteristics. In addition, we have described the case of OF as the ion species for forming a junction, but of course, in the case of a P+N junction, other species such as B may be used, and in the case of an N+P junction, A@,
P etc. may be used.

さらに、熱処理としてはランプアニールを用いる場合を
述べたが、他のアニール方法、例えば電気炉アニール、
電子ビームアニール、レーザアニール等であってもよい
ことはいうまでもない。
Furthermore, although we have described the case where lamp annealing is used as the heat treatment, other annealing methods such as electric furnace annealing,
Needless to say, electron beam annealing, laser annealing, etc. may also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、接合を形成する
ためのイオンの注入深さよりも深い非晶質層を用いるの
で、イオン注入時のチャネリングを完全に防止でき、ま
たその後の拡散により、非晶質化のだめのイオン注入に
伴う結晶欠陥の影響がなくなるので、良好な電流−電圧
特性を持った浅い接合が形成できるという利点がある。
As explained above, according to the present invention, since an amorphous layer is used that is deeper than the depth of ion implantation for forming a junction, channeling during ion implantation can be completely prevented, and the subsequent diffusion Since the effects of crystal defects associated with ion implantation to prevent amorphization are eliminated, there is an advantage that shallow junctions with good current-voltage characteristics can be formed.

また、非晶質層へのイオン注入であるので、通常行なわ
れている斜めからのイオン注入を行なう必要がなく、垂
直方向からのイオン注入ができる。従って、斜め注入の
場合に問題となる素子特性の非対称性がない等、本発明
の効果は大きいものがおる。
Furthermore, since the ion implantation is into an amorphous layer, there is no need to perform the oblique ion implantation that is normally performed, and ion implantation can be performed from the vertical direction. Therefore, the present invention has great effects, such as eliminating the asymmetry of device characteristics that would be a problem in the case of oblique injection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示した図、第2図は本発明
により形成した接合の8の深さ方向の濃度分布の測定結
果を示す図、 第6図は本発明により形成した接合の逆方向の電流−電
圧特性を示す図、 第4図は本発明によらない従来の方法で形成した接合の
逆方向の電流−電圧特性を示す図でろる。 1・・・N型Si基板 2・・・フィールド酸化膜 6・・・ゲート酸化膜 4・・・低抵抗多結晶シリコンゲート電極5・・・非晶
質層 6・・・ソース、トレイン用p+m 7・・・非晶質層形成のためのイオン注入に伴う結晶欠
陥 8・・・層間絶縁膜 9・・・At*極 深さくμm) 本発明により形成した接合のBの深さ方自第  2 深さくμm) の濃度分布の測定結果を示す図 図
FIG. 1 is a diagram showing an example of the present invention, FIG. 2 is a diagram showing the measurement results of the concentration distribution in the depth direction of the junction formed according to the present invention, and FIG. FIG. 4 is a diagram showing the reverse current-voltage characteristics of a junction formed by a conventional method not according to the present invention. 1... N-type Si substrate 2... Field oxide film 6... Gate oxide film 4... Low resistance polycrystalline silicon gate electrode 5... Amorphous layer 6... p+m for source and train 7...Crystal defects accompanying ion implantation for forming an amorphous layer 8...Interlayer insulating film 9...At*extreme depth μm) The depth of B of the junction formed according to the present invention varies Diagram showing the measurement results of the concentration distribution at a depth of 2 μm)

Claims (1)

【特許請求の範囲】 半導体装置の製造方法において、 半導体の電気特性に影響を与えない不活性な第一のイオ
ンを注入し、半導体表面に非晶質層を形成する工程と、 前記第一のイオン注入により形成された非晶質層の深さ
よりも浅く電気的に活性な第二のイオンをイオン注入す
る工程と、 前記第二のイオン注入により導入した不純物を熱処理に
より拡散させ、前記不純物の層の深さを前記非晶質層の
深さよりも深くする工程を含んでなることを特徴とする
半導体装置の製造方法。
[Claims] A method for manufacturing a semiconductor device, comprising the steps of: implanting inert first ions that do not affect the electrical characteristics of the semiconductor to form an amorphous layer on the surface of the semiconductor; A step of ion-implanting electrically active second ions to a depth shallower than the depth of the amorphous layer formed by ion implantation, and diffusing the impurity introduced by the second ion implantation by heat treatment, and dispersing the impurity. A method of manufacturing a semiconductor device, comprising the step of making the depth of the layer deeper than the depth of the amorphous layer.
JP61303309A 1986-12-19 1986-12-19 Method for manufacturing semiconductor device Expired - Lifetime JPH0795535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61303309A JPH0795535B2 (en) 1986-12-19 1986-12-19 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61303309A JPH0795535B2 (en) 1986-12-19 1986-12-19 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS63155720A true JPS63155720A (en) 1988-06-28
JPH0795535B2 JPH0795535B2 (en) 1995-10-11

Family

ID=17919408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61303309A Expired - Lifetime JPH0795535B2 (en) 1986-12-19 1986-12-19 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0795535B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254484A (en) * 1990-11-10 1993-10-19 Telefunken Electronic Gmbh Method for recrystallization of preamorphized semiconductor surfaces zones
JPH07106276A (en) * 1993-09-30 1995-04-21 Nec Corp Manufacture of semiconductor device
JPH08306923A (en) * 1995-05-09 1996-11-22 Hyundai Electron Ind Co Ltd Method for manufacturing transistor of semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204229A (en) * 1983-05-04 1984-11-19 Sony Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204229A (en) * 1983-05-04 1984-11-19 Sony Corp Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254484A (en) * 1990-11-10 1993-10-19 Telefunken Electronic Gmbh Method for recrystallization of preamorphized semiconductor surfaces zones
JPH07106276A (en) * 1993-09-30 1995-04-21 Nec Corp Manufacture of semiconductor device
JPH08306923A (en) * 1995-05-09 1996-11-22 Hyundai Electron Ind Co Ltd Method for manufacturing transistor of semiconductor device

Also Published As

Publication number Publication date
JPH0795535B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
US4345366A (en) Self-aligned all-n+ polysilicon CMOS process
US5015593A (en) Method of manufacturing semiconductor device
JP2997791B2 (en) Method for manufacturing semiconductor device
JPS63155720A (en) Manufacture of semiconductor device
JPH02270335A (en) Semiconductor device and manufacture thereof
JPH0689870A (en) Manufacture of semiconductor element
JP2700320B2 (en) Method for manufacturing semiconductor device
JP2781989B2 (en) Method for manufacturing semiconductor device
JPH0526343B2 (en)
JPS6190431A (en) Manufacture of semiconductor device
JPH0444432B2 (en)
JPH04354328A (en) Production of semiconductor device
JP3384439B2 (en) Method for manufacturing semiconductor device
JPH04158529A (en) Fabrication of semiconductor element
JPS6321825A (en) Manufacture of semiconductor device
JPH06232066A (en) Formation of p-type layer
JPH06124960A (en) Manufacture of semiconductor device
KR100263455B1 (en) Manufacturing method of semiconductor device
JPH0595000A (en) Manufacture of semiconductor device
JPS60134469A (en) Manufacturing method of semiconductor device
JPH01232718A (en) Manufacture of semiconductor device
KR20010017518A (en) Formation method of device of mos field effect transistor
JPH0415950A (en) Complementary field-effect semiconductor device and manufacture thereof
JPH03218025A (en) Manufacture of semiconductor device
JPH0684816A (en) Manufacture of semiconductor device