[go: up one dir, main page]

JPS63149508A - Apparatus for measuring head levitation gap - Google Patents

Apparatus for measuring head levitation gap

Info

Publication number
JPS63149508A
JPS63149508A JP29626686A JP29626686A JPS63149508A JP S63149508 A JPS63149508 A JP S63149508A JP 29626686 A JP29626686 A JP 29626686A JP 29626686 A JP29626686 A JP 29626686A JP S63149508 A JPS63149508 A JP S63149508A
Authority
JP
Japan
Prior art keywords
image
head
monochromatic
lens
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29626686A
Other languages
Japanese (ja)
Inventor
Yasuhiro Koshimoto
越本 泰弘
Tetsuo Mikazuki
哲郎 三日月
Junichi Kishigami
順一 岸上
Toshibumi Okubo
俊文 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP29626686A priority Critical patent/JPS63149508A/en
Publication of JPS63149508A publication Critical patent/JPS63149508A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Supporting Of Heads In Record-Carrier Devices (AREA)

Abstract

PURPOSE:To measure the levitation gap of a head in a short time by a simple constitution, by a method wherein a monochromatic filter provided with an optically transparent window is interposed in the illumination system of a metal microscope and a spectroscope is arranged to the image forming position of an image forming system to irradiate a photodetector. CONSTITUTION:The levitation state of the floatable head 21 levitating on a rotary disc 20 is illuminated by a white light source 1 through an objective lens 3 and a reflected image is observed through an eyepiece 5. The formed image passing through an image forming lens 4 is spectrally diffracted by the spectral prism 8 arranged at the image forming position thereof to be again formed into an image by a converging lens 10 and said image is detected by a unidimensional photodetector 11 to detect light spectrum intensity distribution. A monchromatic filter having an optical transparent window provided to a part thereof is used in an illumination system and the image thereof is projected on the head 21 to subject a whole image visually observed to monochromatic illumination and the density of monochromatic interference is observed corresponding to the gap between head 21 and the disc 20 and only an objective part is illuminated by a while spot. Therefore, a measuring place is easily confirmed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気ディスク用浮動ヘッドの浮上すきまの測
定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a device for measuring the flying clearance of a floating head for a magnetic disk.

(従来の技術とその問題点) 従来、磁気ディスク用の浮動ヘッドではその浮上すきま
をチェックするため、該浮動ヘッドを透明なガラス円板
などの上で浮上させ、白色干渉による干渉色彩を観察す
ることで行っていた( C,Lin and R,P、
5ullivan、”An Application 
of’ソ旧teLight Interreromet
ry in Th1n Film Measureme
nts”lBM J、RES、Deverop、Vol
lB 、p269(1972)) 、この方法は通常の
顕微鏡で浮動ヘッドの浮上状態を観察し、別途形成した
基準の色彩−すきま構成表と比較することにより浮上す
きまを評価するため、簡便でかつ短時間に測定できる反
面、すきまが0゜3μm以下となる領域では色彩判別精
度が低下する欠点があった。このため、低浮上すきま領
域では単色光による光干渉強度測定法が用いられる(J
、M、Pleischer and C,Lin、In
rrared La5er Interf’erome
ter f’or  Measuring Air−B
earing 5eparat ton″IBM J、
Rcs、Devcrop、VollB、p 529(1
974) )。
(Prior art and its problems) Conventionally, in order to check the flying clearance of a floating head for a magnetic disk, the floating head is floated on a transparent glass disk, etc., and the interference color due to white interference is observed. (C, Lin and R, P,
5ullivan, “An Application
of'Seo teLight Interreromet
ry in Th1n Film Measureme
nts”lBM J, RES, Develop, Vol.
1B, p. 269 (1972)), this method is simple and quick, as it evaluates the flying clearance by observing the flying state of the floating head using an ordinary microscope and comparing it with a standard color-gap composition table prepared separately. Although it is possible to measure time, it has the disadvantage that color discrimination accuracy decreases in areas where the gap is 0.3 μm or less. For this reason, an optical interference intensity measurement method using monochromatic light is used in the low flying clearance region (J
, M. Pleischer and C. Lin, In.
rrared La5er Interf'erome
ter f'or Measuring Air-B
earing 5eparat ton''IBM J,
Rcs, Devcrop, Vol.B, p 529(1
974) ).

これは、単一波長(λ)での光干渉強度がS (λ)−
S、+32−s、−・S2xeos(4π〒)・・・(
1) ただしSL −3o XNl N1:透明円板の反射率 S2− (SO−3l )xN2 N2:ヘッド浮上面の反射率 SO:入射光強度 で表わせるから、単一波長光源(たとえばレーザーなど
)を用い、光の強度から浮上すきまを計算する方法と、
可変波長光源(たとえばモノクロメータ−など)を用い
、光強度が最大または最小となる波長を見つけて浮上す
きまを計算する方法とが用いられている(丸山「波長ス
キャン方式を用いたスペーシング測定装置」 昭和60
年度通信学会部門全国大会 N058.1985 )。
This means that the optical interference intensity at a single wavelength (λ) is S (λ)−
S, +32-s, -・S2xeos(4π〒)...(
1) However, SL -3o A method of calculating the floating gap from the intensity of light using
A method is used to calculate the flying clearance by using a variable wavelength light source (such as a monochromator) to find the wavelength at which the light intensity is maximum or minimum (Maruyama ``Spacing measurement device using wavelength scanning method''). ” Showa 60
National Conference of the Communications Society of Japan No. 058.1985).

しかし、前者は単一の波長を用いる結果、測定感度が極
端に低下する領域(dmmλ/4.m;正整数)がすき
まの大きさに対し周期的にあって、測定器として一般的
には使えないこと、後者は波長をスキャンするために回
折格子などを機械的に動かすため、数十秒から数分にわ
たる時間を要する欠点があった。このため、例えば起動
時あるいは停止時のような、連続的に周速が変化し、そ
れに連れて浮動ヘッドの浮上すきまも変化するような動
的な観測が不可能であった。また、いずれにしてもヘッ
ドの設定状態を観察するために、別途白色干渉で浮上状
態を観測するための顕微鏡が必要であり、測定系が重く
かつ大きくなる欠点があった。通常、浮上測定は水平に
配置した回転円板の下に浮動ヘッドを配し、上方から観
測するため、測定系がオーバーハングする形となり、測
定系の重量が重いことは、振動による測定誤差の増大を
もたらすために、軽量化が必要であるが、従来の単波長
干渉による方法では困難であった。
However, as a result of using a single wavelength in the former method, there is a region where the measurement sensitivity is extremely reduced (dmmλ/4.m; a positive integer) periodically with respect to the size of the gap, and it is generally not suitable for use as a measuring instrument. The latter had the drawback of requiring time ranging from tens of seconds to several minutes, as the latter requires mechanical movement of a diffraction grating to scan wavelengths. For this reason, it has been impossible to dynamically observe, for example, when the circumferential speed changes continuously, such as when starting or stopping, and the flying clearance of the floating head also changes accordingly. Furthermore, in any case, in order to observe the setting state of the head, a separate microscope is required to observe the flying state using white interference, which has the drawback that the measurement system becomes heavy and large. Normally, in floating measurements, a floating head is placed below a rotating disk placed horizontally, and the observation is made from above, resulting in an overhanging measurement system. In order to achieve this increase, weight reduction is necessary, but this has been difficult with conventional single-wavelength interference methods.

本発明の目的は、コンパクトな構成で、浮動ヘッドの微
小浮上すきまを高精度に、かつ短時間にM1定すること
ができるヘッド浮上すきま測定装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a head flying clearance measuring device which has a compact configuration and is capable of determining M1 of a minute flying clearance of a floating head with high precision and in a short time.

(問題点を解決するための手段) 本発明は上記の目的を達成するため、回転する透明な円
板の一の面に浮動ヘッドを配し、該円板の他の面に近接
して金属顕微鏡を備えたヘッド浮動すきま測定装置にお
いて、前記金属顕微鏡の照明系の一部に光学的に透明な
窓を設けた単色フィルタを介在させるとともに、前記金
属顕微鏡の結像系に配設さ恥%一の分光器により分光さ
れた一部の光が結像される結像位置に分光器を配置し、
該分光器からの光を受光する一次元受光素子を設けたこ
とを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention disposes a floating head on one side of a rotating transparent disk, and places a floating head in close proximity to the other side of the disk. In a head floating gap measuring device equipped with a microscope, a monochromatic filter provided with an optically transparent window is interposed in a part of the illumination system of the metallurgical microscope, and is disposed in the imaging system of the metallurgical microscope. A spectrometer is placed at an imaging position where a part of the light separated by one spectrometer is imaged,
It is characterized by providing a one-dimensional light receiving element that receives light from the spectroscope.

(作用) 前記構成によれば、照明系に配設された単色フィルタの
窓を透過し、浮動ヘッドの一部位をスポット照明すると
ともに、残りの光は単色フィルタを透過し、同様に浮動
ヘッドの全体を照明することにより、接眼レンズを通し
て浮動ヘッドの全体像を観察できる。また結像系の結像
位置に配設された分光器により分光することにより受光
素子に単色で照射できる。
(Function) According to the above configuration, the light passes through the window of the monochromatic filter disposed in the illumination system to spot illuminate a part of the floating head, and the remaining light passes through the monochromatic filter and similarly illuminates the floating head. By illuminating the entire area, the entire image of the floating head can be observed through the eyepiece. Further, by separating the light using a spectrometer disposed at the imaging position of the imaging system, the light receiving element can be irradiated with a monochromatic light.

(実施例) 物レンズ、4は結像レンズ、5は接眼レンズ、6は分光
プリズム、7は支持鏡筒、8は分光プリズム、9はアパ
ーチャ、10は収束レンズ、11は一次元受光素子、1
2は集光レンズ、13は単色フィルタ、14は収束レン
ズ、20は駆動軸によって回転される透明な円板、21
は円板20の下に配設された浮動ヘッド、22は該浮動
ヘッドを支持するジンバルバネを示す。前述の構成部分
1から7にて通常の金属顕微鏡が構成されており、該顕
微鏡は前記円板の上面側の前記浮動ヘッドと対向する位
置に配設されている。前記分光プリズム8はアパーチャ
9の外に設定された前記金属顕微鏡の結像系の結像位置
に配設され、また−次元設される。また前記単色フィル
タ13は前記金属顕微鏡の照明系である前記集光レンズ
12と前記収束レンズ14との間の一部に配設される。
(Example) Object lens, 4 is an imaging lens, 5 is an eyepiece lens, 6 is a spectroscopic prism, 7 is a support barrel, 8 is a spectroscopic prism, 9 is an aperture, 10 is a converging lens, 11 is a one-dimensional light receiving element, 1
2 is a condensing lens, 13 is a monochromatic filter, 14 is a converging lens, 20 is a transparent disk rotated by a drive shaft, 21
2 shows a floating head disposed under the disk 20, and 22 a gimbal spring that supports the floating head. The above-mentioned components 1 to 7 constitute an ordinary metallurgical microscope, and the microscope is arranged at a position facing the floating head on the upper surface side of the disk. The spectroscopic prism 8 is arranged at an imaging position of the imaging system of the metallurgical microscope set outside the aperture 9, and is arranged in a -dimensional manner. Further, the monochromatic filter 13 is disposed in a part between the condenser lens 12 and the convergent lens 14, which are the illumination system of the metallurgical microscope.

回転する円板20上で浮上する浮動ヘッド21の浮上状
態は、対物レンズ3、円板20を通して白色光源1によ
り照明され、反射像が接眼レンズ5で観測できると共に
、結像レンズ4を通して結像位置に結像される。該結像
は結像位置に配置した分光プリズム8で分光されたのち
、収束レンズ10で再度結像され、−次元受光素子11
で検出される。分光プリズム8と収束レンズ10の位置
関係は当然逆でもよい。
The floating state of the floating head 21 floating on the rotating disk 20 is illuminated by the white light source 1 through the objective lens 3 and the disk 20, and the reflected image can be observed with the eyepiece 5, and an image is formed through the imaging lens 4. imaged at the location. After the image is separated by a spectroscopic prism 8 placed at the image forming position, it is again imaged by a converging lens 10 and sent to a -dimensional light receiving element 11.
Detected in Naturally, the positional relationship between the spectroscopic prism 8 and the converging lens 10 may be reversed.

通常の照明系は、視野全体が均一に照らされるようにな
っているため、目的とする部分のみを白色光で照明する
必要がある。通常、この目的のために照明系に視野絞り
を設けるが、視野絞りを用いた場合には全体観測が不可
能となる。そこで、本発明では一部に光学的に透明な窓
(例えば穴)を設けた単色フィルタ(例えば550nm
透過フィルタ)13を用い、窓に相当する位置のみを白
色照明できるようにすれば、目視で全体像の観測をしつ
つ分光することが出来る。すなわち、単色フィルタ13
の像を被観測体である浮動ヘッド21上に投影すること
により、目視観測される全体像は、単色で照明され、浮
上ヘッド21と円板21とのすきまに対応して単色干渉
の濃淡が観測され、かつ目的とする部分のみが白色のス
ポット照明される形となるから、計測場所の確認も容易
である。分光された結果は第2図に示すように単色のス
ペクトル部分(この例では550nm)が強く出てくる
が、予測できる波長のみであることから、測定結果から
除去して考えればよく、問題はない。単色フィルタ13
は多層誘電膜の一般的なもので十分である。
In a normal illumination system, the entire field of view is uniformly illuminated, so it is necessary to illuminate only the target area with white light. Usually, a field stop is provided in the illumination system for this purpose, but using a field stop makes it impossible to observe the entire object. Therefore, in the present invention, a monochromatic filter (for example, a 550 nm filter) partially provided with an optically transparent window (for example, a hole)
By using a transmission filter 13 to illuminate only the position corresponding to the window with white light, it is possible to perform spectroscopy while visually observing the entire image. That is, the monochromatic filter 13
By projecting the image onto the floating head 21, which is the object to be observed, the entire visually observed image is illuminated in a monochromatic color, and the shading of the monochromatic interference corresponds to the gap between the floating head 21 and the disk 21. Since only the area to be observed and targeted is illuminated with a white spot, it is easy to confirm the measurement location. As shown in Figure 2, the spectroscopic results show a strong monochromatic spectral part (550 nm in this example), but since this is the only wavelength that can be predicted, it can be removed from the measurement results and the problem can be solved. do not have. Monochrome filter 13
A common multilayer dielectric film is sufficient.

分光プリズム8の大きさは、例えば目的とする計111
1領域を0.01mm、顕微鏡倍率を100倍とすると
、実像の大きさは1mmとなり、それより少し大きい程
度、例えば1.5mm程度で有ればよく、対物レンズ3
や、支持鏡筒7の重量に比べ無視できる重さである。支
持鏡筒7内で発生する迷光を阻止する程度の開口を持つ
アパーチャ9を通過した光は白色光源1から出た光のう
ち、特定の波長(λ−d)がヘッドスライダ面と透明円
板20面との間の多重干渉により強調されているため、
式(1)と同じスペクトル強度分布になる。
The size of the spectroscopic prism 8 is, for example, a total of 111
If one area is 0.01 mm and the microscope magnification is 100 times, the size of the real image will be 1 mm.It only needs to be a little larger than that, for example about 1.5 mm, and the objective lens 3
The weight is negligible compared to the weight of the supporting lens barrel 7. The light that passes through the aperture 9, which has an opening large enough to block stray light generated within the support barrel 7, is emitted from the white light source 1, and a specific wavelength (λ-d) is transmitted to the head slider surface and the transparent disc. Because it is emphasized by multiple interference with the 20th plane,
This results in the same spectral intensity distribution as in equation (1).

すなわち、波長λがλ−4d/mの関係で極値を取るこ
とから、目的とする位置のスペクトル強度が最大または
最小となる波長を見つけることで浮上すきまが評価でき
る。
That is, since the wavelength λ takes an extreme value in the relationship λ-4d/m, the flying clearance can be evaluated by finding the wavelength at which the spectral intensity at the target position is maximum or minimum.

光が分光プリズム8を通過すると、該先は分光プリズム
8を通過する波長により空間的に分光されるから、これ
を−次元受光素子11で受けると一度に光のスペクトル
強度分布が電気的に検出できる。−次元受光素子11に
はフォトダイオードアレイや一次元CODが使えるが、
例えば一般的な512素子、クロック4 M HzのC
ODを用いた場合には8KHzの繰り返しでスペクトル
強度分布が測定できることになり、最大または最小の波
長を見つけることは極めて容易である。このときの計測
波長範囲を例えば0.25μmから0゜75μmとする
と、観測可能すきま範囲は最小0゜0625μmでかつ
分解能は5オングストロームとなり、精度も十分高い。
When light passes through the spectroscopic prism 8, it is spatially separated by the wavelength that passes through the spectroscopic prism 8, so when this is received by the -dimensional light receiving element 11, the spectral intensity distribution of the light is electrically detected at once. can. - Although a photodiode array or one-dimensional COD can be used as the dimensional light receiving element 11,
For example, a general 512 element C with a clock of 4 MHz
When OD is used, the spectral intensity distribution can be measured at a repetition rate of 8 KHz, and it is extremely easy to find the maximum or minimum wavelength. If the measurement wavelength range at this time is, for example, 0.25 μm to 0°75 μm, the minimum observable gap range is 0°0625 μm, the resolution is 5 angstroms, and the accuracy is sufficiently high.

1回の測定が極めて短時間に行えることから、起動およ
び停止のような動的測定はもちろん、1回転中でのすき
ま変動も本方式では可能であり、ディスク振動の影響な
どの研究にもそのまま使えるなど、適用範囲が広い。
Since one measurement can be performed in an extremely short time, this method not only allows dynamic measurements such as starting and stopping, but also clearance fluctuations during one rotation, and is also suitable for research on the effects of disk vibration. It can be used in a wide range of applications.

前述したように、本発明では照明系・対物接眼系は従来
の白色干渉法で用いられていた顕微鏡光学系と同じ構成
であるから、浮動ヘッド全体を目視観測することはもち
ろん可能であり、浮動ヘッドの設定チェックのための新
たな光学系はいっさい必要としない。このため、重量増
は殆どないから、新たな振動対策も必要としない。
As mentioned above, in the present invention, the illumination system and objective eyepiece system have the same configuration as the microscope optical system used in conventional white light interferometry, so it is of course possible to visually observe the entire floating head. No new optical system is required to check head settings. Therefore, since there is almost no increase in weight, no new vibration countermeasures are required.

ここでは分光プリズム8と収束レンズ10を用いて説明
したが、これらの代わりに例えば第3図に示すような、
プリズム作用とレンズ作用を兼ねる収束プリズム30を
用いても良い。この様なプリズムはプラスチックの射出
整形で簡単に得られることは周知である。また、プリズ
ムでは極短波長または長波長領域では材質の透過率が悪
くなる場合があるが、その場合には分光特性の平坦な回
折格子を用い、第4図に示すような、集光を兼ねること
が出来る凹面回折格子40を用いてももちろん良い。こ
の場合、分光効率をよくするためには大型の回折格子が
必要となるため、M1定系がやや大きくなるが、構造は
簡単である。
Although the spectroscopic prism 8 and the converging lens 10 have been explained here, instead of these, for example, as shown in FIG.
A converging prism 30 having both a prism function and a lens function may be used. It is well known that such prisms can be easily obtained by injection molding of plastics. In addition, when using a prism, the transmittance of the material may be poor in the extremely short wavelength or long wavelength region, but in that case, a diffraction grating with flat spectral characteristics is used, which also serves as light condensing, as shown in Figure 4. Of course, a concave diffraction grating 40 that can be used may also be used. In this case, a large diffraction grating is required to improve the spectral efficiency, so the M1 constant system becomes somewhat large, but the structure is simple.

また、ここでは単色フィルタによるスペクトルをデータ
より差し引くことで計測することを説明したが、この差
引は計算上で行ってもよいし、電気的に行ってもよく、
また、分光系に上記単色フィルタの補色フィルタを挿入
して補正することもちろん可能である。
In addition, although we have explained here that measurement is performed by subtracting the spectrum from the monochromatic filter from the data, this subtraction may be performed computationally or electrically.
Furthermore, it is of course possible to insert a complementary color filter to the above-mentioned monochromatic filter into the spectroscopic system for correction.

(発明の効果) 以上説明したように、本発明によれば、回転する透明な
円板の一の面に浮動ヘッドを配し、該円板の他の面に近
接して金属顕微鏡を備えたヘッド浮動すきま測定装置に
おいで、前記金属顕微鏡の照明系の一部に光学的に透明
な窓を設けた単色フィルタを介在させるとともに、前記
金属顕微鏡の〔− 結像系に配設さi一の分光器により分光された一部の光
が結像される結像位置に第二の分光器を配置し、該第二
の分光器からの光を受光する一次元受光素子を設けたの
で、高速・高精度の測定系が小型・軽口に構成でき、従
来の単色光源を用いる場合に問題となった測定系の振動
による精度低下の心配もない。また、白色干渉allJ
定と光学系を共用することから、操作性もよく、安価に
構成できる利点がある。
(Effects of the Invention) As explained above, according to the present invention, a floating head is disposed on one surface of a rotating transparent disk, and a metallurgical microscope is provided close to the other surface of the disk. In the head floating gap measuring device, a monochromatic filter provided with an optically transparent window is interposed in a part of the illumination system of the metallurgical microscope, and a monochromatic filter provided with an optically transparent window is provided in a part of the illumination system of the metallurgical microscope. A second spectrometer is placed at the imaging position where part of the light separated by the spectrometer is imaged, and a one-dimensional light-receiving element is provided to receive the light from the second spectrometer. - A high-precision measurement system can be configured to be compact and lightweight, and there is no need to worry about deterioration in accuracy due to vibration in the measurement system, which was a problem when using conventional monochromatic light sources. In addition, white interference allJ
Since the optical system and optical system are shared, it has the advantage of being easy to operate and can be constructed at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による浮上すきま測定装置の原理構成図
、第2図は測定結果の電気出力例、第3図は収束プリズ
ムを用いたときの分光部の他の構成図、第4図は凹面回
折格子を用いたときの分光部の構成図を示す。 1・・・白色光源、2・・・ハーフミラ−13・・・対
物レンズ、4・・・結像レンズ、5・・・接眼レンズ、
6・・・分光プリズム、7・・・支持鏡筒、8・・・分
光プリズム、9・・・アパーチャ、10・・・収束レン
ズ、11・・・−次元受光素子、12・・・集光レンズ
、13・・・単色フィルタ、14・・・収束レンズ、2
0・・・透明円板、21・・・浮動ヘッド、30・・・
収束プリズム、40・・・凹面回折格子、矢印は光の進
行を示す。
Figure 1 is a diagram showing the principle of the floating gap measuring device according to the present invention, Figure 2 is an example of the electrical output of the measurement results, Figure 3 is another diagram of the configuration of the spectroscopic section when a converging prism is used, and Figure 4 is A configuration diagram of a spectroscopic section when using a concave diffraction grating is shown. DESCRIPTION OF SYMBOLS 1... White light source, 2... Half mirror 13... Objective lens, 4... Imaging lens, 5... Eyepiece lens,
6... Spectroscopic prism, 7... Support barrel, 8... Spectroscopic prism, 9... Aperture, 10... Converging lens, 11... -dimensional light receiving element, 12... Condensing light Lens, 13... Monochromatic filter, 14... Convergent lens, 2
0... Transparent disk, 21... Floating head, 30...
Converging prism, 40... concave diffraction grating, arrows indicate the progress of light.

Claims (1)

【特許請求の範囲】[Claims] 回転する透明な円板の一の面に浮動ヘッドを配し、該円
板の他の面に近接して金属顕微鏡を備えたヘッド浮動す
きま測定装置において、前記金属顕微鏡の照明系の一部
に光学的に透明な窓を設けた単色フィルタを介在させる
とともに、前記金属顕微鏡の結像系に配設された第一の
分光器により分光された一部の光が結像される結像位置
に第二の分光器を配置し、該第二の分光器からの光を受
光する一次元受光素子を設けたことを特徴とするヘッド
浮動すきま測定装置。
In a head floating gap measuring device that includes a floating head disposed on one surface of a rotating transparent disk and a metallurgical microscope provided in close proximity to the other surface of the disk, a part of the illumination system of the metallurgical microscope is provided. A monochromatic filter provided with an optically transparent window is interposed, and a part of the light separated by the first spectrometer disposed in the imaging system of the metallurgical microscope is formed at an imaging position. 1. A head floating clearance measuring device, characterized in that a second spectrometer is disposed, and a one-dimensional light receiving element for receiving light from the second spectrometer is provided.
JP29626686A 1986-12-12 1986-12-12 Apparatus for measuring head levitation gap Pending JPS63149508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29626686A JPS63149508A (en) 1986-12-12 1986-12-12 Apparatus for measuring head levitation gap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29626686A JPS63149508A (en) 1986-12-12 1986-12-12 Apparatus for measuring head levitation gap

Publications (1)

Publication Number Publication Date
JPS63149508A true JPS63149508A (en) 1988-06-22

Family

ID=17831344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29626686A Pending JPS63149508A (en) 1986-12-12 1986-12-12 Apparatus for measuring head levitation gap

Country Status (1)

Country Link
JP (1) JPS63149508A (en)

Similar Documents

Publication Publication Date Title
US4844617A (en) Confocal measuring microscope with automatic focusing
US4411525A (en) Method of analyzing an object by use of scattering light
US5923423A (en) Heterodyne scatterometer for detecting and analyzing wafer surface defects
US3804521A (en) Optical device for measuring surface roughness
US4674883A (en) Measuring microscope arrangement for measuring thickness and line width of an object
US5486701A (en) Method and apparatus for measuring reflectance in two wavelength bands to enable determination of thin film thickness
US5703692A (en) Lens scatterometer system employing source light beam scanning means
US20120120485A1 (en) Interference microscope and measuring apparatus
US4744660A (en) Apparatus for measuring difference in shallow level
US6900900B2 (en) Apparatus and method for enabling high resolution film thickness and thickness-uniformity measurements
WO1999052005A1 (en) Apparatus and methods for fourier spectral analysis in a scanning spot microscope
Furst The XL-I analytical ultracentrifuge with Rayleigh interference optics
JP2533514B2 (en) Depth / thickness measuring device
JP2001021810A (en) Interference microscope
WO2010147300A2 (en) Ellipsometer using half mirror
JPS63149508A (en) Apparatus for measuring head levitation gap
CN114236799B (en) Real-time sample focusing device and method for super-oscillation annular-band confocal imaging system
JPH01145504A (en) Optically measuring apparatus
Hiramoto et al. Quantitative studies on the polarization optical properties of living cells. I. Microphotometric birefringence detection system.
JPS63241407A (en) Method and device for measuring depth of fine recessed part
Mykura Interference microscopy at high wedge angles
JPS6391503A (en) Apparatus for measuring head levitation gap
JP5363976B2 (en) Measuring apparatus and method for characteristic evaluation by reflectance measurement
Li et al. Spatial imaging identification in a fiber-bundle confocal fluorescence microspectrometer
SU125060A1 (en) Micropolar rimeter to determine small film thicknesses