[go: up one dir, main page]

JPS63129140A - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JPS63129140A
JPS63129140A JP27410686A JP27410686A JPS63129140A JP S63129140 A JPS63129140 A JP S63129140A JP 27410686 A JP27410686 A JP 27410686A JP 27410686 A JP27410686 A JP 27410686A JP S63129140 A JPS63129140 A JP S63129140A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
value
load
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27410686A
Other languages
Japanese (ja)
Inventor
Kazuo Nakano
一男 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP27410686A priority Critical patent/JPS63129140A/en
Publication of JPS63129140A publication Critical patent/JPS63129140A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To permit a good feeling of acceleration to be obtained even when an engine is in moderate acceleration, by providing a load parameter detecting means while discriminating an increase direction of the detected engine load in no relation to the rate of its change and inhibiting a lean control in the load increasing direction. CONSTITUTION:While an engine is in operation, in a control circuit 20 having a load increase direction discriminating means 11 and a lean control inhibiting means 12, a detected value by a throttle sensor 10 is converted into a value TA by A/D conversion, and this value TA is discriminated for whether or not it increases from the preceding time value TA. When the discrimination is YES, next the increment of a counter, measuring a number of times of continuing an acceleration condition, is executed, and a degree of the counted value C is compared with a predetermined value (x). And in the time of a relation where C>x, a lean control of air-fuel ratio is inhibited by deciding the engine to be placed in an acceleration condition. In this way, the engine, increasing its fuel injection quantity from an arithmetic value for obtaining the preset air-fuel ratio in accordance with an operative condition of load or the like, controls air-fuel ratio to a rich state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関の空燃比制御装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an air-fuel ratio control device for an internal combustion engine.

〔従来技術と問題点〕[Prior art and problems]

従来、例えば自動車用の内燃機関において、燃費向上と
加速性等のドライバビリティとを両立させる方法の一つ
として、定常走行時では燃費のよいリーンバーン領域で
内燃機関を運転しくリーン制御)、一方、高負荷への変
化が所定値以上である様な急加速を必要とする場合には
リーン制御を禁止し、空燃比を理論空燃比以下の空燃比
(リッチ側)にして燃焼速度を増大しドライバビリティ
を確保する方法が採用されている。
Conventionally, for example, in internal combustion engines for automobiles, one method of achieving both improved fuel efficiency and drivability such as acceleration has been to use lean control, which allows the internal combustion engine to operate in a lean burn region with good fuel efficiency during steady driving. When rapid acceleration is required, such as when the change to a high load exceeds a predetermined value, lean control is prohibited and the air-fuel ratio is set to below the stoichiometric air-fuel ratio (rich side) to increase the combustion speed. A method is adopted to ensure drivability.

そしてこのリーン制御の実行禁止の切替点の判定は内燃
機関の回転数、吸入空気量、吸気管圧力、スロットル開
度、等、負荷パラメータの変化間の程度に基づいて行な
っていた。
The switching point for prohibiting execution of the lean control is determined based on the degree of change in load parameters such as the rotational speed of the internal combustion engine, intake air amount, intake pipe pressure, throttle opening, etc.

しかしながら特に負荷が定常か過渡かの境界付近である
極めてゆるい緩加速層はこれらのり−ン制御禁止条件に
あてはまらず、リーン制御が続行されるため、ドライバ
によるアクセル踏み込み旧に対し加速感が比例的に得ら
れず、ドライバビリティの不良という問題点があった。
However, especially in the extremely slow acceleration layer near the boundary between a steady load and a transient load, these lean control prohibition conditions do not apply, and lean control continues, so the acceleration feeling is proportional to the driver's accelerator pedal depression. However, there was a problem of poor drivability.

〔発明の目的〕[Purpose of the invention]

本発明は極めてゆるい緩加速時においても負荷パラメー
タの変化に対応した加速感が得られる様にリーン制御を
中止することが可能な内燃機関の空燃比制御装置の提供
を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an air-fuel ratio control device for an internal combustion engine that is capable of canceling lean control so that a feeling of acceleration corresponding to changes in load parameters can be obtained even during extremely slow acceleration.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するため本発明によれば、第1図に示
すように、機関の負荷状態に応じて空燃比を所望の値に
制御するため燃料供給手段を制御する空燃比制御回路4
9を備えた内燃機関において、負荷パラメータ検出手段
50と、負荷の変化率の大小にかかわらずその増加方向
を判別する手段49aと負荷増加方向においてリーン制
御を禁止する手段49bとを備えた、内燃a関の空燃比
fIil+御装置が従装置れる。
In order to solve the above problems, according to the present invention, as shown in FIG. 1, an air-fuel ratio control circuit 4 that controls the fuel supply means to control the air-fuel ratio to a desired value according to the load condition of the engine.
9, the internal combustion engine is equipped with a load parameter detection means 50, a means 49a for determining the direction of increase in the rate of change of the load regardless of its magnitude, and a means 49b for prohibiting lean control in the direction of increase in load. The air-fuel ratio fIil+ control device of the control a is operated as a slave device.

〔実施例〕〔Example〕

本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described based on the drawings.

第2図は本説明において燃料供給手段として燃料噴射装
置(インジェクタ)を備えた場合の概略構成図であって
、1はエンジン、2はエアクリーナ、3は吸気管、4は
スロットル弁、5はインジェクタ、6は排気マンホール
ド、7は排気管、8は吸入空気量を検出するエアフロメ
ータに内蔵されたポテンショメータ式の吸気量センサ、
9は吸気温センサ、10は負荷パラメータとしてスロッ
トル弁開度を検出するスロットルセンサ、11は今回検
出したスロットル弁開度を前回検出時のスロットル弁開
度と比較し増加を判別する手段、12は増加判別手段1
1からの情報によりリーン制御を禁止する手段、13は
エンジンlのクランク軸(図示せず)の回転速度に応じ
た周波数のパルス信号を出力する回転速度センサ、14
は水温センサ、15は02センサ又はリーンセンサ、1
6は三元触媒装置、20はマイクロコンピュータシステ
ムとして構成される制御回路である。
FIG. 2 is a schematic configuration diagram of a case in which a fuel injection device (injector) is provided as a fuel supply means in this explanation, and 1 is an engine, 2 is an air cleaner, 3 is an intake pipe, 4 is a throttle valve, and 5 is an injector. , 6 is an exhaust manhold, 7 is an exhaust pipe, 8 is a potentiometer-type intake air amount sensor built into the air flow meter that detects the intake air amount,
9 is an intake air temperature sensor; 10 is a throttle sensor that detects the throttle valve opening as a load parameter; 11 is a means for comparing the currently detected throttle valve opening with the throttle valve opening at the previous detection to determine an increase; 12 is a means for determining an increase; Increase determination means 1
means for prohibiting lean control based on the information from 1; 13 is a rotational speed sensor that outputs a pulse signal with a frequency corresponding to the rotational speed of the crankshaft (not shown) of the engine L; 14;
is the water temperature sensor, 15 is the 02 sensor or lean sensor, 1
6 is a three-way catalyst device, and 20 is a control circuit configured as a microcomputer system.

その作動は、空気はエアクリーナ2を介して吸気管3に
導入され、吸入空気量はスロットル弁4によってコント
ロールされ、スロットル弁4からの空気はインジェクタ
5により噴射される燃料と混合され、エンジン1の燃焼
室に送られる。そして燃焼した排気ガスは排気管7に設
けられた三元触媒装置16によって浄化される。インジ
ェクタ5は制御回路20によって制御される電磁弁(図
示せず)を有し噴射される燃料量がセンサ群からの運転
条件情報によって制御される。このセンサ群としては吸
気■センサ8、吸気温センサ9、回転速度センサ13、
水温センサ14、o2センサ(又はリーンセンサ)15
及びスロットルセンサ10、その他が含まれる。制御回
路20の作動を第3図に示すフローチャートで説明する
。尚、第3図のルーチンは一定時間毎に実行される。3
0はスロットルセンサ10により検出された値をA/D
変換してTAとして読み込むステップを表わす。31は
上記ステップ30にて読み込んだスロットル開度TAが
前回のスロットル開度TAOより増加しているか判別す
るステップを表わす。ステップ31にてTA>TAOと
判断されたならステップ32に移行する。32はカウン
タCのインクリメントを実行し、その結果がオーバフロ
ーするか否かのチェックをするステップである。ここに
カウンタCは加速条件(TA>TAO)の経続回数を計
測するカウンタである。オーバフローでないならばステ
ップ33に移行しインクリメント値がCに入れられる。
In its operation, air is introduced into the intake pipe 3 via the air cleaner 2, the amount of intake air is controlled by the throttle valve 4, the air from the throttle valve 4 is mixed with fuel injected by the injector 5, and the air is introduced into the intake pipe 3 through the air cleaner 2. sent to the combustion chamber. The combusted exhaust gas is then purified by a three-way catalyst device 16 provided in the exhaust pipe 7. The injector 5 has a solenoid valve (not shown) controlled by a control circuit 20, and the amount of fuel injected is controlled by operating condition information from a group of sensors. This sensor group includes an intake sensor 8, an intake air temperature sensor 9, a rotational speed sensor 13,
Water temperature sensor 14, O2 sensor (or lean sensor) 15
and throttle sensor 10, and others. The operation of the control circuit 20 will be explained with reference to the flowchart shown in FIG. Note that the routine shown in FIG. 3 is executed at regular intervals. 3
0 is the value detected by the throttle sensor 10.
This represents the step of converting and reading as TA. 31 represents a step of determining whether the throttle opening degree TA read in step 30 has increased from the previous throttle opening degree TAO. If it is determined in step 31 that TA>TAO, the process moves to step 32. 32 is a step of incrementing the counter C and checking whether or not the result overflows. Here, the counter C is a counter that measures the number of consecutive acceleration conditions (TA>TAO). If there is no overflow, the process moves to step 33 and the increment value is put into C.

34はカウンタ値Cが所定値X以上か否かを判定するス
テップを表わす。このXの値はTAの測定誤差、測定値
の振動あるいはノイズ等により加速と誤判定することが
ないように適当な値に設定される。ステップ34でカウ
ンタ値CがXより大の場合、機関は加速状態にあるとの
判断がなされステップ35へ移行し空燃比のリーン制御
が禁止される。例えば、空燃比り−ン制御禁止フラグが
セットされ、周知のため説明しない燃料噴射制御ルーチ
ン(0□センサからの空燃比信号に応じて設定空燃比な
るように噴射■を制御する)において、このフラグがセ
ットされていると、燃料噴射量は、負荷等の運転条件に
応じた設定空燃比を得るための演算値より増大される。
34 represents a step of determining whether the counter value C is greater than or equal to the predetermined value X. The value of this X is set to an appropriate value so as to prevent erroneous determination of acceleration due to measurement errors in TA, vibrations in measured values, noise, etc. If the counter value C is greater than X in step 34, it is determined that the engine is in an accelerating state, and the process proceeds to step 35, where lean control of the air-fuel ratio is prohibited. For example, when the air-fuel ratio control prohibition flag is set and the fuel injection control routine (controls injection ■ so that the set air-fuel ratio is reached according to the air-fuel ratio signal from the 0□ sensor) is not explained because it is well known, this When the flag is set, the fuel injection amount is increased from a calculated value for obtaining a set air-fuel ratio depending on operating conditions such as load.

その結果、空燃比はリッチとなる。そして、理論空燃比
以上の値(リッチ側)により加速フィーイングを確保し
て、ステップ36にてTAOに現在のTAを設定した後
処理が終了する。
As a result, the air-fuel ratio becomes rich. Then, the acceleration feeling is secured by a value equal to or higher than the stoichiometric air-fuel ratio (rich side), and the post-processing in which the current TA is set in the TAO in step 36 is completed.

一方、ステップ31にてスロットル開度TAが前回のス
ロットル開度TAOと等しい場合、例えば平坦地を一定
速度で走行している場合、或いはTAがTAOより小さ
い場合、即ち減速等の場合、機関は定常状態であるとし
て「NO」と判定され、次いでステップ37に移りカウ
ンタCがクリアされ、次いでステップ38にてリーン制
御が実行される。例えば、リーン制御禁止フラグがリセ
ットされ、前記燃料噴射ルーチンにおいてこのフラグが
リセットされていると、燃料噴射量は負荷等の運転条件
に応じた設定のリーン空燃比を得るための演算値に保持
される。その結果リーン制御が行なわれる。ステップ3
8におけるリーン制御はステップ34にてタウンタCが
所定値Xに満たないときにも実行される。このリーン制
御実行ステップもステップ35同様、ステップ36に移
行し、現在のTAをTAOに設定した後処理が終了する
ことになる。尚、前後するがステップ32において仮り
にC+1の値がオーバフローした場合、Cの値はそのま
ま保持されステップ34.35に移動し、制御禁止が続
行されることになる。
On the other hand, if the throttle opening TA is equal to the previous throttle opening TAO in step 31, for example when driving at a constant speed on a flat ground, or if TA is smaller than TAO, that is, when decelerating, etc., the engine The determination is "NO" as it is a steady state, and then the process moves to step 37, where the counter C is cleared, and then, in step 38, lean control is executed. For example, if the lean control prohibition flag is reset and this flag is reset in the fuel injection routine, the fuel injection amount is maintained at a calculated value to obtain a lean air-fuel ratio set according to the operating conditions such as load. Ru. As a result, lean control is performed. Step 3
The lean control in step 8 is also executed when the taunter C is less than the predetermined value X in step 34. Similar to step 35, this lean control execution step also proceeds to step 36, and the post-processing in which the current TA is set to TAO ends. Incidentally, if the value of C+1 overflows in step 32, the value of C is held as is and the process moves to steps 34 and 35, and control prohibition is continued.

第4回は制御回路20の作動を説明する模式的タイミン
グ図である。時刻t1で加速に移行すると(ハ)、カウ
ンタCの値は設定インターバル(例えば48m5ec毎
)に1づつ増加され(ロ)、t2閾値Xを越えるとリー
ンからリッチ制御に移行する(イ)。t、で減速に入る
と即座にリーン制御に復帰する。t4で再び加速に移行
すると、前記と同様な作動が繰り返され、C<xとなる
t5でリッチ制御に切替られる。
The fourth time is a schematic timing diagram illustrating the operation of the control circuit 20. When the engine shifts to acceleration at time t1 (c), the value of the counter C is incremented by 1 at a set interval (for example, every 48 m5ec) (b), and when the t2 threshold value X is exceeded, the control shifts from lean to rich control (a). When deceleration begins at t, lean control is immediately restored. When the vehicle shifts to acceleration again at t4, the same operation as described above is repeated, and at t5, when C<x, the control is switched to rich control.

〔発明の効果〕〔Effect of the invention〕

本発明によれば負荷が少しでも増加方向にあるときでも
加速状態と認識するため、従って極度にゆるい緩加速状
態でもリーン制御を禁止でき、従ってドライバビリティ
も良好な結果を得ることができる。
According to the present invention, even when the load is in an increasing direction, it is recognized as an acceleration state, so lean control can be prohibited even in an extremely slow acceleration state, and good drivability can therefore be obtained.

尚、本実施例ではドライバーの意志に最も近い負荷パラ
メータとしてスロットル開度変化を用いたが、この他に
吸気管負圧、Q/Nエンジン回転数或いは車速を用いて
も良く、上述の効果を奏するものである。又、本実施例
ではドライバビリティ改善のためリーン制御を禁止して
空燃比をリッチ側へ変化させているが、上記ドライバビ
リティ改善に加え、排気エミッション改善も考慮してリ
ーン制御と理論空燃比との間での制御でもよい。
In this example, the change in throttle opening was used as the load parameter closest to the driver's intention, but intake pipe negative pressure, Q/N engine speed, or vehicle speed may also be used, and the above effects can be achieved. It is something to play. In addition, in this example, lean control is prohibited and the air-fuel ratio is changed to the rich side in order to improve drivability, but in addition to the above-mentioned drivability improvement, lean control and stoichiometric air-fuel ratio are also taken into consideration to improve exhaust emissions. It is also possible to control between

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の空燃比制御装置の概略構成図;第2図
は本発明の具体的実施例を示す機関構成図;第3図は第
2図に示した制御回路のフローチャート図; 第4図は制御回路の作動を示す模式的タイミング図。 1・・・エンジン、   5・・・インジェクタ、10
・・・スロットルセンサ、 20・49・・・空燃比制御回路、 11・49a・・・負荷増加方向判別手段、12・49
b・・・リーン制御禁止手段50・・・負荷パラメータ
検出手段。 b○ 第1図 49−  空燃比制御回路 49a−m−負荷増加方向判別手段 49b−−−リーン制御禁止手段 第3図 t1t2   t3t4t5 時間 第4図
FIG. 1 is a schematic configuration diagram of an air-fuel ratio control device of the present invention; FIG. 2 is an engine configuration diagram showing a specific embodiment of the present invention; FIG. 3 is a flowchart diagram of the control circuit shown in FIG. 2; FIG. 4 is a schematic timing diagram showing the operation of the control circuit. 1... Engine, 5... Injector, 10
...Throttle sensor, 20.49..Air-fuel ratio control circuit, 11.49a..Load increase direction determination means, 12.49
b...Lean control prohibition means 50...Load parameter detection means. b○ Fig. 1 49- Air-fuel ratio control circuit 49a-m-Load increase direction determining means 49b---Lean control prohibition means Fig. 3 t1t2 t3t4t5 Time Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 機関の負荷状態に応じて空燃比を所望の値に制御するた
め燃料供給手段を制御する空燃比制御回路を備えた内燃
機関において、負荷パラメータ検出手段と、負荷の変化
率の大小にかかわらずその増加方向を判別する手段と、
負荷増加方向においてリーン制御を禁止する手段とを備
えた、内燃機関の空燃比制御装置。
In an internal combustion engine equipped with an air-fuel ratio control circuit that controls a fuel supply means to control the air-fuel ratio to a desired value according to the load condition of the engine, a load parameter detection means and a means for determining the direction of increase;
An air-fuel ratio control device for an internal combustion engine, comprising means for prohibiting lean control in a direction of increasing load.
JP27410686A 1986-11-19 1986-11-19 Air-fuel ratio control device for internal combustion engine Pending JPS63129140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27410686A JPS63129140A (en) 1986-11-19 1986-11-19 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27410686A JPS63129140A (en) 1986-11-19 1986-11-19 Air-fuel ratio control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS63129140A true JPS63129140A (en) 1988-06-01

Family

ID=17537087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27410686A Pending JPS63129140A (en) 1986-11-19 1986-11-19 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63129140A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271047A (en) * 1989-04-11 1990-11-06 Toyota Motor Corp Air-fuel ratio controller of internal combustion engine
US5080074A (en) * 1990-01-31 1992-01-14 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control device of an internal combustion engine
JP2012021443A (en) * 2010-07-13 2012-02-02 Yanmar Co Ltd Engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271047A (en) * 1989-04-11 1990-11-06 Toyota Motor Corp Air-fuel ratio controller of internal combustion engine
US5080074A (en) * 1990-01-31 1992-01-14 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control device of an internal combustion engine
JP2012021443A (en) * 2010-07-13 2012-02-02 Yanmar Co Ltd Engine

Similar Documents

Publication Publication Date Title
JP3878398B2 (en) Engine self-diagnosis device and control device
US5996547A (en) Control apparatus for direct injection spark ignition type internal combustion engine
US4440119A (en) Electronic fuel injecting method and device for internal combustion engine
US4628883A (en) Air-fuel ratio control system
US4667631A (en) Method and apparatus for controlling air-fuel ratio in internal combustion engine
US4469073A (en) Electronic fuel injecting method and device for internal combustion engine
JPS5834657B2 (en) Air fuel ratio control device
JPS63129140A (en) Air-fuel ratio control device for internal combustion engine
JPH0243910B2 (en)
US4646699A (en) Method for controlling air/fuel ratio of fuel supply for an internal combustion engine
KR19990059819A (en) Fuel control method for acceleration and deceleration of lean combustion engine
JP2976563B2 (en) Air-fuel ratio control device for internal combustion engine
JP2531157B2 (en) Fuel supply amount control device for electronic fuel injection engine
JP2741689B2 (en) Vehicle fuel judging device
JPH07117023B2 (en) Engine controller
JP2778392B2 (en) Engine control device
JP2683418B2 (en) Air-fuel ratio control device
JP4314158B2 (en) Engine air-fuel ratio control device
KR19990025462A (en) How to reduce exhaust gas of a car
JPS603445A (en) Method of controlling air-fuel ratio of internal- combustion engine
JP2566880Y2 (en) Engine air-fuel ratio control device
JPH0631155Y2 (en) Air-fuel ratio controller for engine
JP3886658B2 (en) Engine torque detection device
JPH11311173A (en) Ignition timming controller for internal combustion engine
JPH01125567A (en) Controller for engine