JPS603445A - Method of controlling air-fuel ratio of internal- combustion engine - Google Patents
Method of controlling air-fuel ratio of internal- combustion engineInfo
- Publication number
- JPS603445A JPS603445A JP11244983A JP11244983A JPS603445A JP S603445 A JPS603445 A JP S603445A JP 11244983 A JP11244983 A JP 11244983A JP 11244983 A JP11244983 A JP 11244983A JP S603445 A JPS603445 A JP S603445A
- Authority
- JP
- Japan
- Prior art keywords
- fuel ratio
- air
- deltane
- deviation
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D31/00—Use of speed-sensing governors to control combustion engines, not otherwise provided for
- F02D31/001—Electric control of rotation speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1473—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
- F02D41/1475—Regulating the air fuel ratio at a value other than stoichiometry
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は内燃機関の空燃比制御装置に係り、特に、車両
用エンジンの空燃比を、車速が急激に変化する過渡時に
理論空燃比近傍に制御し、車速変化の定常時には希薄空
燃比に制御するのに好適力内燃機関の空燃比制御装置に
関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an air-fuel ratio control device for an internal combustion engine, and in particular, to a device for controlling the air-fuel ratio of a vehicle engine to near the stoichiometric air-fuel ratio during a transient period when the vehicle speed rapidly changes. The present invention also relates to an air-fuel ratio control device for an internal combustion engine that is suitable for controlling the air-fuel ratio to a lean air-fuel ratio during steady changes in vehicle speed.
自動車などの車両において、燃費及び排気ガス浄化性能
の向上を図るために、エンジンの運転状態に応じて空燃
比を制御することが行なわれている。例えば、車速が急
激に変化する過渡時に、排気ガス中の酸素濃度を検出す
る酸素濃度センサの検出出力に基づいて空燃比を理論空
燃比近傍にフィードバック制御し、車速変化の定常時K
I′i、酸素濃度センサの検出出力によらず空燃比を希
薄空燃比にオープンルーズ制御することが行なわれてい
る。過渡時に、空燃比を理論空燃比近傍にフィードバッ
ク制御すれば、排気ガス中に含まれる一酸化炭素、炭化
水素、窒素酸化物の有害ガスを三元触媒により無害な二
酸化炭素、水蒸気、窒素に清浄化することができる。一
方、定常時に、空燃比を希薄空燃比にオープンルーズ制
御すれは、排気ガス浄化性能を損なうこと々くエンジン
を運転することができるので、燃費の向上を図ることが
できる。In vehicles such as automobiles, in order to improve fuel efficiency and exhaust gas purification performance, the air-fuel ratio is controlled according to the operating state of the engine. For example, during a transient period when the vehicle speed changes rapidly, the air-fuel ratio is feedback-controlled to near the stoichiometric air-fuel ratio based on the detection output of an oxygen concentration sensor that detects the oxygen concentration in exhaust gas.
I'i, open-loose control of the air-fuel ratio to a lean air-fuel ratio is performed regardless of the detection output of the oxygen concentration sensor. By feedback controlling the air-fuel ratio to near the stoichiometric air-fuel ratio during transient conditions, the harmful gases such as carbon monoxide, hydrocarbons, and nitrogen oxides contained in the exhaust gas can be purified into harmless carbon dioxide, water vapor, and nitrogen using a three-way catalyst. can be converted into On the other hand, when the air-fuel ratio is controlled to be open-loose to a lean air-fuel ratio during steady state, the engine can be operated without impairing the exhaust gas purification performance, thereby improving fuel efficiency.
ところで、前述した空燃比制御方法が適用されたエンジ
ンシステムておいて、ディストリビュータに内蔵された
回転角センサの検出出力によるエンジン回転数を基に過
渡時か否かを判定し、この判定結果に応じて空燃比を理
論空燃比近傍又は希薄空燃比に制御する方法がとられて
いた。しかし、従来のシステムでは、過渡時か否かの判
定を、エンジン回転数の一定時間毎の変化量と一定値と
を比較する方法がとられていたので、クランク軸を駆動
するためのギヤにバックラッシュなどが発生するとエン
ジン回転数が変動し、車速の変化が定常状態であっても
過渡時と誤判定したり、逆に過渡状態にもかかわらず定
常状態と誤判定したシする恐れがあった。又、エンジン
回転数が高い領域においては変動幅が大きくなるので、
誤判定する頻度が多く彦る恐れがある。そのため、従来
の空燃比制御方法が適用されたエンジンシステムにおい
ては、誤判定によって空燃比が制御される恐れがあるの
で、車両が運転者の意に反して動き出す恐れがあり、又
、ドライバビリティ及びエミッション性能が低下する恐
れがあった。By the way, in an engine system to which the above-described air-fuel ratio control method is applied, it is determined whether or not it is in a transient state based on the engine speed detected by the rotation angle sensor built into the distributor, and the A method of controlling the air-fuel ratio to near the stoichiometric air-fuel ratio or a lean air-fuel ratio has been used. However, in conventional systems, the determination of whether or not a transient is occurring is made by comparing the amount of change in the engine speed over a certain period of time with a constant value. When a backlash occurs, the engine speed fluctuates, and there is a risk that a change in vehicle speed may be mistakenly judged as a transient state even though it is in a steady state, or conversely, that it may be mistakenly judged as a steady state even though it is a transient state. Ta. In addition, the fluctuation range becomes larger in the region where the engine speed is high, so
There is a risk that false judgments will be made more frequently. Therefore, in engine systems to which conventional air-fuel ratio control methods are applied, there is a risk that the air-fuel ratio may be controlled due to erroneous determination, which may cause the vehicle to start moving against the driver's will, and drivability may be affected. There was a risk that emission performance would deteriorate.
本発明は、前記従来の課題に鑑みて為されたものであり
、その目的は、車両状態の変化の過渡時と定常時に分け
て空燃比を理論空燃比近傍又は希薄空燃比に制御するシ
ステムにおいて、車両状態の変化の過渡時か定常時かの
判定を確実に行カい、ドライバビリティ及びエミッショ
ン性能の向−トが図れる内燃機関の空燃比制御装置を提
供することにある。The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to provide a system for controlling the air-fuel ratio to near the stoichiometric air-fuel ratio or to a lean air-fuel ratio during transient and steady periods of changes in vehicle conditions. An object of the present invention is to provide an air-fuel ratio control device for an internal combustion engine, which can reliably determine whether a change in vehicle state is in a transient state or a steady state, and can improve drivability and emission performance.
前記目的を達成するために本発明は、車両状態が急激に
変化する過渡時に排気ガス中の酸素濃度を検出する酸素
濃度センサの検出出力だ基づいて空燃比を理論空燃比近
傍にフィードバック制御1.、車両状態が定常時には理
論空燃比より希薄空燃比に制御する内燃機関の空燃比制
御装置において、内燃機関回転数を検出する第1の手段
と、一定期間間隔毎に内燃機関回転数の偏差をめる第2
の手段と、前記偏差と内燃機関回転数に応じて設定され
た値とを比較する第3の手段と、前記偏差が前記設定値
よりも大きいときは理論空燃比近傍へ、小さいときは理
論空燃比より薄い空燃比へ制御する第4の手段とを持つ
ことを特徴とする。In order to achieve the above object, the present invention provides feedback control of the air-fuel ratio to near the stoichiometric air-fuel ratio based on the detection output of an oxygen concentration sensor that detects the oxygen concentration in exhaust gas during transient times when vehicle conditions rapidly change. , an air-fuel ratio control device for an internal combustion engine that controls the air-fuel ratio to a leaner air-fuel ratio than the stoichiometric air-fuel ratio when the vehicle condition is steady; 2nd part
and a third means for comparing the deviation with a value set according to the internal combustion engine rotation speed; when the deviation is larger than the set value, the air-fuel ratio is moved to the vicinity of the stoichiometric air-fuel ratio, and when the deviation is smaller than the set value, the air-fuel ratio is moved to the vicinity of the stoichiometric air-fuel ratio. It is characterized by having a fourth means for controlling the air-fuel ratio to be thinner than the fuel ratio.
以下、図面に基づいて本発明の好適な実施例を説明する
。Hereinafter, preferred embodiments of the present invention will be described based on the drawings.
第1図には、本発明を適用したエンジンシステムの構成
が示されている。FIG. 1 shows the configuration of an engine system to which the present invention is applied.
第1図において、エンジン1oの吸気系にはエアフロメ
ータ12、スロットル弁14などが設けられており、エ
アフロメータ12を介して吸入された空気はスロットル
弁14を介してインティクマニホールド1Gに供給され
、燃料噴射弁18から噴射される燃料と混合する。この
混合気は吸入弁20を介して燃焼室22に供給され、シ
リンダヘッド24に設けられた点火プラグ26によって
燃焼され排気弁18を介して排気系に排出される。In FIG. 1, the intake system of an engine 1o is provided with an air flow meter 12, a throttle valve 14, etc., and air taken in via the air flow meter 12 is supplied to an intake manifold 1G via the throttle valve 14. , and mixes with the fuel injected from the fuel injection valve 18. This air-fuel mixture is supplied to a combustion chamber 22 through an intake valve 20, is combusted by a spark plug 26 provided in a cylinder head 24, and is discharged to an exhaust system through an exhaust valve 18.
排気系には、排気ガス中の酸素濃度を検出する酸素′a
度センサ(以下o2センサと称する)30が設けられて
おり、このo2センサの検出出力に基づいて、後述する
制御装置によって混合気の空燃比が理論空燃比近傍にフ
ィードバック制御されると、排気系に設けられる三元触
媒コンバータ(図示省略)により排気ガス中に含まレル
有害カスが浄化されて排出される。The exhaust system includes an oxygen 'a' which detects the oxygen concentration in the exhaust gas.
An air-fuel ratio sensor (hereinafter referred to as an O2 sensor) 30 is provided, and when the air-fuel ratio of the air-fuel mixture is feedback-controlled to near the stoichiometric air-fuel ratio by a control device to be described later based on the detection output of this O2 sensor, the exhaust system A three-way catalytic converter (not shown) provided in the exhaust gas purifies and exhausts harmful residue contained in the exhaust gas.
シリンダブロック32には、エンジン水温を検出する水
温センサ34が設けられている。The cylinder block 32 is provided with a water temperature sensor 34 that detects engine water temperature.
又、イグナイタ36からの点火信号を各気筒に分配する
ディストリビュータ38には気筒1J別センサ40、回
転角センサ42が内蔵されている。Further, a sensor 40 for each cylinder 1J and a rotation angle sensor 42 are built into the distributor 38 that distributes the ignition signal from the igniter 36 to each cylinder.
02センサ30など、エンジンの各種運転状態を検出す
るセンサの検出出力は、制御装置44に供給されている
。Detection outputs of sensors such as the 02 sensor 30 that detect various operating states of the engine are supplied to the control device 44.
第2図には、制御装置44にマイクロコンピュータを用
いた場合の構成が示されている。FIG. 2 shows a configuration in which a microcomputer is used as the control device 44.
制御装置44は、第2図に示されるように、CPU50
.RAM52、R,0M54、人出カポ−)56.58
、出力ポートロ0,62、A/D変換器64、マルチプ
レクサ66.1駆動回路68゜70、波形整形回FNJ
72、入力回路74から構成されておシ、CPU50.
11(、AM52、ROM54、入出カポ−)56,5
8、出力ポートロ0゜62がそれぞれパスライン76で
接続されている。The control device 44 includes a CPU 50 as shown in FIG.
.. RAM52, R, 0M54, crowd capo) 56.58
, output port 0, 62, A/D converter 64, multiplexer 66.1 drive circuit 68°70, waveform shaping circuit FNJ
72, an input circuit 74, and a CPU 50.
11 (, AM52, ROM54, input/output capo) 56,5
8 and output ports 0°62 are connected to each other by a pass line 76.
エアフロメータ12、水温センサ14の検出出力はマル
チプレクサ66、A/D変換器64を介して入出力ボー
ト56に供給される。気筒判別センサ40、回転角セン
サ42の検出出力は波形整形回路72を介して入出力ボ
ート58に供給される。又、0□センサ30の検出出力
は、入力回路74を介して入出力ボート58に供給され
る。The detection outputs of the air flow meter 12 and water temperature sensor 14 are supplied to the input/output boat 56 via a multiplexer 66 and an A/D converter 64. The detection outputs of the cylinder discrimination sensor 40 and the rotation angle sensor 42 are supplied to the input/output boat 58 via the waveform shaping circuit 72. Further, the detection output of the 0□ sensor 30 is supplied to the input/output port 58 via the input circuit 74.
イグナイタ36は、出力ポートロ0、駆動回路68を介
して供給される制御信号によシディストリビュータ38
に点火信号を供給することができる。燃料噴射弁18は
、出力ポートロ2、駆動回路70を介して供給される制
御信号により燃料噴射時間を制御することができる。The igniter 36 is connected to the distributor 38 by a control signal supplied via the output port 0 and the drive circuit 68.
The ignition signal can be supplied to the The fuel injection valve 18 can control the fuel injection time by a control signal supplied via the output port 2 and the drive circuit 70.
又、11,0M54には、制御装置44の演算処理プロ
グラム、車速の変化が過渡状態か否かを判定するだめの
判定レベルの数値データ、車速の変化の過渡状態の基準
値を示す数値データ及び空燃比を理論空燃比近傍又は希
薄空燃比に制御するための燃料噴射弁18に対する燃料
噴射時間の数値データなど各種のデータが格納されてい
る。Further, 11,0M54 contains an arithmetic processing program for the control device 44, numerical data of a determination level for determining whether or not a change in vehicle speed is in a transient state, numerical data indicating a reference value for a transient state of a change in vehicle speed, and Various data such as numerical data of fuel injection time for the fuel injection valve 18 for controlling the air-fuel ratio to near the stoichiometric air-fuel ratio or a lean air-fuel ratio are stored.
本実施例は以上の構成からなり、次にその作用を説明す
る。The present embodiment has the above configuration, and its operation will be explained next.
第3図には、第1図に示されるエンジンシステムに本発
明を適用した場合の制御装置44による処理ルーチンの
一例が示されている。FIG. 3 shows an example of a processing routine performed by the control device 44 when the present invention is applied to the engine system shown in FIG.
本実施例における処理ルーチンは、エンジンクランク軸
が1回転するごとに行なわれるルーチンであり、まずス
テップ100においてエンジンクランク軸が1回転する
毎に、回転角センサ42の検出出力に基づく最新のエン
ジン回転数Neを取り込み、ステップ102に移る。ス
テップ102 ’%ζにおいてはクランク軸1回転前の
エンジン回転数Ne’をRAM52から読み出しステッ
プ104に移る。ステップ104においてハ、ステップ
100で検出されたエンジン回転数NeをNe’として
RA、M52に格納してステップ106に移る。ステッ
プ106においては、ステップ100で検出されたエン
ジン回転数Neとステップ102でRAM52から読み
出されたエンジン回転数N e ’とを比較してその偏
差△Neをめステップ108に移る。ステップ108に
おいては、車速変化の過渡状態の基準値を現時点のエン
ジン回転数によシ更新して適正な過渡状態の判定レベル
を算出するための処理が行なわれる。即ち、車速変化の
過渡状態の基準値(定数)と最新のエンジン回転数Ne
とを乗算して過渡状態の判定レベル△Ne’を算出しス
テップll0K移る。ステップIIOにおいては、ステ
ップ106とステップ108で算出された偏差△Neと
判定レベルΔNe’との大小の比較が行なわれる。そし
て、このステップにおいて、△Ne(△Ne’ と判定
され、車速の変化が定常状態のときにはステップ112
に移シ、空燃比が希薄(リーン)空燃比に制御され、排
気ガス浄化性能を損々うことなくエンジンが運転され、
燃費の向上が図られる。The processing routine in this embodiment is a routine that is performed every time the engine crankshaft makes one revolution. First, in step 100, every time the engine crankshaft makes one revolution, the latest engine rotation based on the detection output of the rotation angle sensor 42 is detected. The number Ne is taken in and the process moves to step 102. In step 102 '%ζ, the engine rotational speed Ne' one revolution before the crankshaft is read out from the RAM 52 and the process moves to step 104. In step 104, the engine rotation speed Ne detected in step 100 is stored as Ne' in RA, M52, and the process moves to step 106. In step 106, the engine speed Ne detected in step 100 is compared with the engine speed Ne' read out from the RAM 52 in step 102, and the deviation ΔNe is determined, and the process moves to step 108. In step 108, a process is performed to update the reference value for the transient state of vehicle speed change according to the current engine rotational speed and calculate an appropriate determination level for the transient state. That is, the reference value (constant) of the transient state of vehicle speed change and the latest engine speed Ne
The determination level ΔNe' of the transient state is calculated by multiplying by , and the process moves to step 110K. In step IIO, the deviation ΔNe calculated in steps 106 and 108 is compared with the determination level ΔNe'. In this step, if it is determined that △Ne (△Ne') and the change in vehicle speed is in a steady state, step 112
The air-fuel ratio is controlled to a lean air-fuel ratio, and the engine is operated without impairing exhaust gas purification performance.
Fuel efficiency will be improved.
一方、ステップ110において△Ne)ΔNe′と判定
され、車速の変化の過渡時にはステップ114に移る。On the other hand, in step 110, it is determined that ΔNe)ΔNe', and the process moves to step 114 when the change in vehicle speed is transient.
ステップ114においては02センサ30の検出出力に
基づいて空燃比が理論空燃比近傍にフィードバック制御
され、排気ガスが浄化された状態でのエンジンの運転が
行々われる。In step 114, the air-fuel ratio is feedback-controlled to near the stoichiometric air-fuel ratio based on the detection output of the 02 sensor 30, and the engine is operated with the exhaust gas purified.
以上の処理によってエンジンクランク軸1回転の処理ル
ーチンが終了する。With the above processing, the processing routine for one revolution of the engine crankshaft is completed.
このように本実施例においては、車速の変化が過渡時か
否かを判定するに際して、現時点のエンジン回転数Ne
とエンジンクランク軸1回転前のエンジン回転数Ne′
とを比較してその偏差をめると共に、車速変化の過渡状
態の基準値を現時点のエンジン回転数Neにより更新し
て過渡状態の判定レベル△Ne’をめ、この判定レベル
ΔNe’と前記偏差ΔNeとを比較するようにしている
ので、クランク軸を駆動するためのギヤにノ(ツクラッ
シュなどが発生した場合でも、過渡時か否かの判定を確
実に行なうことができ、この判定結果に応じて空燃比を
理論空燃比近傍又は希薄空燃比に制御することができる
。そのため、ドライバビリティ及びエミッション性能の
向上を図ることができる。In this way, in this embodiment, when determining whether the change in vehicle speed is in a transient period, the current engine speed Ne
and the engine speed Ne′ before one revolution of the engine crankshaft.
In addition, the reference value for the transient state of vehicle speed change is updated with the current engine rotation speed Ne to determine the determination level ΔNe' for the transient state, and this determination level ΔNe' and the deviation ΔNe is compared, so even if a crash occurs in the gear that drives the crankshaft, it is possible to reliably determine whether or not a transient is occurring, and this determination result can be used to Accordingly, the air-fuel ratio can be controlled to be near the stoichiometric air-fuel ratio or to a lean air-fuel ratio.Therefore, drivability and emission performance can be improved.
なお、前記実施例においては、エンジン回転数を検出す
ることについて述べたが、現時点の吸気管圧力と所定時
間前の吸気管圧力を検出してその偏差をめ、負荷の過渡
状態の基準値を現時点の吸気管圧力によって更新して過
渡状態の判定レベルを算出し、この判定レベルと前記偏
差とを比較して前記偏差が判定レベル以下のときは負荷
の変化が定常状態にあることを判定し、前記偏差が判定
レベルを越えたときには負荷の変化が過渡状態にあるこ
とを判定し、この判定結果に応じて空燃比を制御するよ
うにすることも可能である。In addition, in the above embodiment, it was described that the engine speed is detected, but the current intake pipe pressure and the intake pipe pressure a predetermined time ago are detected, the deviation is calculated, and the reference value for the transient state of the load is determined. A determination level for a transient state is calculated by updating it based on the current intake pipe pressure, and this determination level is compared with the deviation, and if the deviation is less than the determination level, it is determined that the change in load is in a steady state. It is also possible to determine that the load change is in a transient state when the deviation exceeds a determination level, and to control the air-fuel ratio in accordance with this determination result.
なお、前記実施例では、L−JEFI(電子制御式燃料
噴射装置)について述べたが、D −J EFI及びD
−J SPI (SinglePoint Inje
ction) 、 D −JEFTにも前記実施例を適
用することは可能である。In the above embodiment, L-JEFI (electronically controlled fuel injection device) was described, but D-J EFI and D
-J SPI (SinglePoint Inje)
It is also possible to apply the above embodiment to D-JEFT.
L −J EFIは、エアフロメータで吸入空気量を検
あり、D・’、 −J EFIは吸気管負圧を負圧セン
サにより絶対圧で検出し、マツプより吸気管負圧に応じ
た基本噴射量をめるタイプのものである。父、D −J
SPIはキャプレタの位置にインジェクタを設けて、
インジェクタ1本で燃料噴射を行なうタイプであり、こ
のタイプのものは、キャブレタを用いたものより制御性
に優れ、又コスト面で有利である。L-J EFI detects the amount of intake air with an air flow meter, D・', -J EFI detects the intake pipe negative pressure as an absolute pressure with a negative pressure sensor, and performs basic injection according to the intake pipe negative pressure from the map. It is the type that you can measure. Father, D-J
SPI has an injector installed at the capretor position,
This type performs fuel injection with a single injector, and this type has better controllability than one using a carburetor, and is also advantageous in terms of cost.
以上説明したように、本発明によれば、車速変化の過渡
状態の基準値を現時点のエンジンN転数により更新して
過渡状態の判定レベルを算出するようにしたので、車速
変化の過渡状態か否かの誤判定を防止することができ、
過渡時に空燃比を理論空燃比近傍に、又定常時(4:空
燃比を希薄空燃比に制御することが確実に行なえ、ドラ
イバビリティ及びエミッション性能の向上を図ることが
できるという優れた効果がある。As explained above, according to the present invention, the reference value for the transient state of vehicle speed change is updated by the current engine N rotation speed to calculate the determination level of the transient state. It is possible to prevent misjudgment as to whether or not the
It has the excellent effect of being able to reliably control the air-fuel ratio to near the stoichiometric air-fuel ratio during transient periods and to a lean air-fuel ratio during steady-state conditions (4: Lean air-fuel ratio), improving drivability and emission performance. .
第1図は本発明を適用したエンジンのシステム構成図、
第2図Vi第1図に示す装置の構成を説明するためのブ
ロック図、第3図は本発明に係る作用を説明するための
フローチャートである。
10・・・エンジン 12・・・エアフロメータ18・
・・燃料噴射弁 30・・・02センサ34・・・水温
センサ 42・・・回転角センサ44・・・制御装置。
代理人 鵜 沼 辰 之
(ほか1名)
第2図
4,4
第3図FIG. 1 is a system configuration diagram of an engine to which the present invention is applied;
FIG. 2 is a block diagram for explaining the configuration of the apparatus shown in FIG. 1, and FIG. 3 is a flow chart for explaining the operation of the present invention. 10... Engine 12... Air flow meter 18.
...Fuel injection valve 30...02 sensor 34...Water temperature sensor 42...Rotation angle sensor 44...Control device. Agent Tatsuyuki Unuma (and 1 other person) Figure 2 4, 4 Figure 3
Claims (1)
酸素濃度を検出する酸素濃度センサの検出出力に基づい
て空燃比を理論空燃比近傍にフィードバック制御し、車
両状態が定常時には理論空燃比よシ希薄空燃比に制御す
る内燃機関の空燃比制御装置において、内燃機関回転数
を検出する第1の手段と、一定期間間隔毎に内燃機関回
転数の偏差をめる第2の手段と、前記偏差と内燃機関回
転数に応じて設定された値とを比較する第3の手段と、
前記偏差が前記設定値よりも太きいときは理論空燃比近
傍へ、小さいときは理論空燃比よシ薄い空燃比へ制御す
る第4の手段とを持つことを特徴とする内燃機関の空燃
比制御装置。(1) The air-fuel ratio is feedback-controlled to near the stoichiometric air-fuel ratio based on the detection output of the oxygen concentration sensor that detects the oxygen concentration in exhaust gas during transient periods when vehicle conditions change rapidly, and when the vehicle condition is steady, the air-fuel ratio is controlled to be close to the stoichiometric air-fuel ratio. In an air-fuel ratio control device for an internal combustion engine that controls the air-fuel ratio to a highly lean air-fuel ratio, a first means for detecting the internal combustion engine rotation speed, a second means for calculating a deviation in the internal combustion engine rotation speed at regular intervals, third means for comparing the deviation with a value set according to the internal combustion engine rotation speed;
Air-fuel ratio control for an internal combustion engine, characterized in that it has a fourth means for controlling the air-fuel ratio to near the stoichiometric air-fuel ratio when the deviation is larger than the set value, and to control the air-fuel ratio to a thinner air-fuel ratio than the stoichiometric air-fuel ratio when it is small. Device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11244983A JPS603445A (en) | 1983-06-22 | 1983-06-22 | Method of controlling air-fuel ratio of internal- combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11244983A JPS603445A (en) | 1983-06-22 | 1983-06-22 | Method of controlling air-fuel ratio of internal- combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS603445A true JPS603445A (en) | 1985-01-09 |
Family
ID=14586905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11244983A Pending JPS603445A (en) | 1983-06-22 | 1983-06-22 | Method of controlling air-fuel ratio of internal- combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS603445A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5447137A (en) * | 1992-10-02 | 1995-09-05 | Hitachi, Ltd. | Lean burn control method and device for internal combustion engine and fuel injection quantity control method and device including same |
-
1983
- 1983-06-22 JP JP11244983A patent/JPS603445A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5447137A (en) * | 1992-10-02 | 1995-09-05 | Hitachi, Ltd. | Lean burn control method and device for internal combustion engine and fuel injection quantity control method and device including same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2893308B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPS60237142A (en) | Controller for internal-combustion engine | |
JP3170067B2 (en) | Lean combustion control device for internal combustion engine and fuel injection amount control device having the same | |
JPH0286940A (en) | Control unit for internal combustion engine | |
JPH04109021A (en) | Deterioration detecting device of catalytic converter rhodium (ccro) for internal combustion engine | |
JP2745754B2 (en) | Activity determination device for oxygen sensor | |
US7168240B2 (en) | Control apparatus for an internal combustion engine | |
JPH0555710B2 (en) | ||
JPH02125941A (en) | Engine air-fuel ratio control device | |
US4559915A (en) | Method of controlling air-fuel ratio and ignition timing in internal combustion engine and apparatus therefor | |
US4512313A (en) | Engine control system having exhaust gas sensor | |
JPS603445A (en) | Method of controlling air-fuel ratio of internal- combustion engine | |
JPH08218853A (en) | Exhaust purification catalyst deterioration diagnosis device | |
JP2570287B2 (en) | Function diagnosis display device for secondary air supply device | |
US4658785A (en) | Method of controlling air-fuel ratio and ignition timing in internal combustion engine and apparatus therefor | |
JP2004204716A (en) | Air-fuel ratio subfeedback control abnormality detector | |
JP2560275B2 (en) | Air-fuel ratio control device | |
JP4604361B2 (en) | Control device for internal combustion engine | |
JP2778392B2 (en) | Engine control device | |
JPH0233440A (en) | Air-fuel ratio control device for internal combustion engine | |
JPS63129140A (en) | Air-fuel ratio control device for internal combustion engine | |
JPS59131741A (en) | Air-fuel ratio controlling method for internal- combustion engine | |
JPS59136537A (en) | Method of controlling air-fuel ratio of internal-combustion engine | |
JP2697057B2 (en) | Abnormality diagnosis device for internal combustion engine | |
JPS61190146A (en) | Fuel injection controller of internal-combustion engine |