[go: up one dir, main page]

JPS6311844A - High-temperature embrittlement damage detection method for ferrite-containing stainless steel members - Google Patents

High-temperature embrittlement damage detection method for ferrite-containing stainless steel members

Info

Publication number
JPS6311844A
JPS6311844A JP15407786A JP15407786A JPS6311844A JP S6311844 A JPS6311844 A JP S6311844A JP 15407786 A JP15407786 A JP 15407786A JP 15407786 A JP15407786 A JP 15407786A JP S6311844 A JPS6311844 A JP S6311844A
Authority
JP
Japan
Prior art keywords
ferrite
stainless steel
embrittlement
containing stainless
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15407786A
Other languages
Japanese (ja)
Inventor
Hideya Anzai
安斎 英哉
Jiro Kuniya
国谷 治郎
Isao Masaoka
正岡 功
Hideyo Saito
斎藤 英世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15407786A priority Critical patent/JPS6311844A/en
Publication of JPS6311844A publication Critical patent/JPS6311844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高温環境下で使用される工学プラント及び原子
カプラントに係り、特に、そこにおいて使用されている
含フェライトステンレス鋼実機部材の高温脆化損傷検知
方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to engineering plants and atomic couplants used in high-temperature environments, and particularly to high-temperature embrittlement of ferrite-containing stainless steel actual machine parts used therein. Relating to a damage detection method.

〔従来の技術〕[Conventional technology]

含フェライトステンレス鋼は高温長時間の使用により時
効脆化を起すことが知られている。特に、475℃脆性
は比較的低温でも長時間の時効で脆化が進行するため、
その脆化度を実機で非破壊的に検知する技術が必要であ
るが、これについては特開昭61−28859号公報が
認められるのみである。
Ferrite-containing stainless steel is known to suffer from aging embrittlement when used at high temperatures for long periods of time. In particular, 475°C embrittlement progresses with long-term aging even at relatively low temperatures.
There is a need for a technique to non-destructively detect the degree of embrittlement using an actual device, but the only technology that can be found in this regard is Japanese Patent Application Laid-Open No. 61-28859.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

含フェライトステンレス鋼は高温長時間の使用により時
効脆化を起すことはすでに知られている。
It is already known that ferrite-containing stainless steels suffer from aging embrittlement when used at high temperatures for long periods of time.

これi±およそ600℃以上の比較的高温では・相の析
出に起因するσ相脆化が、また、400〜500℃の範
囲では、いわゆる、475℃脆性が生じることによる。
At a relatively high temperature of about 600° C. or higher, σ phase embrittlement occurs due to the precipitation of a phase, and in a range of 400 to 500° C., so-called 475° C. embrittlement occurs.

以上の脆化要因のうち、475℃脆性についてはその機
構がよくわかっていない。
Among the above embrittlement factors, the mechanism of 475°C embrittlement is not well understood.

従来、脆化損傷に対処するには、含フェライトステンレ
ス鋼部材の前述の温度範囲における熱処理の施工を回避
すること、あるいは、その温度範囲における実機長時間
使用を回避することなどが行なわれている。
Conventionally, measures taken to deal with embrittlement damage include avoiding heat treatment of ferrite-containing stainless steel members in the above-mentioned temperature range, or avoiding long-term use of actual equipment in that temperature range. .

しかし、前述のように475℃脆性は400℃以下の温
度範囲でも長時間使用中に生じる可能性があり、含フェ
ライトステンレス実機部材の高温での使用には十分の考
慮が必要と思われる。
However, as mentioned above, 475° C. embrittlement may occur during long-term use even in a temperature range of 400° C. or lower, and it seems that sufficient consideration is required when using actual ferrite-containing stainless steel parts at high temperatures.

しかるに、従来、含フェライトステンレス鋼の実機部材
の脆化損傷の程度を非破壊的に検知する有効な方法はな
い。
However, conventionally, there is no effective method for non-destructively detecting the degree of embrittlement damage in actual machine parts made of ferrite-containing stainless steel.

本発明の目的は高温環境下で使用する含フェライトステ
ンレス鋼部材の脆化の程度を効果的かつ非破壊的に検知
できる方法を提供することにある。
An object of the present invention is to provide a method that can effectively and non-destructively detect the degree of embrittlement of a ferrite-containing stainless steel member used in a high-temperature environment.

゛ 〔作用〕 ゛ 含フェライトステンレス鋼は耐応力腐食割れ性にすぐれ
、かつ、比較的安価であるため広く用いられ始めている
が、高温長時間の使用によりフェライト相が分解し、脆
いσ相を形成するため脆化を生じる。また、使用温度に
よっては475℃脆性を生じる場合もある。
゛ [Function] ゛ Ferrite-containing stainless steel has excellent stress corrosion cracking resistance and is relatively inexpensive, so it is beginning to be widely used, but when used at high temperatures for long periods of time, the ferrite phase decomposes and forms a brittle σ phase. This causes embrittlement. Furthermore, depending on the operating temperature, 475°C brittleness may occur.

本発明は、含フェライトステンレス鋼部材の高温長時間
使用による脆化損傷のうち、特に、475℃脆化損傷の
程度を非破壊的に検知することを特徴とする。
The present invention is characterized by non-destructively detecting the degree of 475°C embrittlement damage, in particular, among the embrittlement damage caused by high-temperature, long-term use of ferrite-containing stainless steel members.

発明者らは含フェライトステンレス鋼の高温加熱による
脆化について種々検討した結果、脆化の進行に伴い、フ
ェライト域の腐食性が低下する現象を見い出した。この
現象を利用すれば含フェライトステンレス鋼の脆化度を
きわめて簡単に評価できる。すなわち1本発明によれば
、あらかじめ脆化度とフェライト域の腐食性との関係を
実験的に求めマスターカーブを作製しておけば、部材中
のフェライト量を測定することによって、脆化の進行程
度を検知することができる。
As a result of various studies on the embrittlement of ferrite-containing stainless steel caused by high-temperature heating, the inventors discovered a phenomenon in which the corrosivity of the ferrite region decreases as embrittlement progresses. By utilizing this phenomenon, the degree of embrittlement of ferrite-containing stainless steel can be evaluated very easily. In other words, according to the present invention, if the relationship between the degree of embrittlement and the corrosivity of the ferrite region is determined experimentally and a master curve is prepared in advance, the progress of embrittlement can be determined by measuring the amount of ferrite in the member. The degree can be detected.

フェライト域の耐食性評価は、この部材の一部を溶液中
に浸漬し、ポテンショスタットを用いて第3図のように
分極曲線をとる。即ち、腐食電位を自然電位よりアノー
ド側に分極し、その時の不働態化限界電流iCと不働態
化させた後先の自然電位に戻してゆく過程での再活性化
電流密度iHとの比iR/iCの大きさにより求めるの
が容易である。
To evaluate the corrosion resistance of the ferrite region, a part of this member is immersed in a solution, and a polarization curve is taken using a potentiostat as shown in FIG. That is, the ratio iR of the passivation limit current iC when the corrosion potential is polarized to the anode side from the natural potential and the reactivation current density iH in the process of returning to the previous natural potential after passivation. It is easy to determine by the size of /iC.

〔実施例〕〔Example〕

以下1本発明の一実施例について説明する。 An embodiment of the present invention will be described below.

表1は20%Cr −10%Niフェライト−′オース
テナイトニ相ステンレス鋼の受入のまま及び受入機各種
高温時効を施した試料の常温IN!(12sO4水溶液
中でのiR/iC比を示す。時効熱処理時間の増加に伴
い、iR/iC値が増加する傾向が認められる。第1図
は供試材の各時効熱処理後の、iR/iC比とシャルビ
吸収エネルギ(靭性値)の関係を示す、これによれば、
iR/iC比とシャルビ吸収エネルギに良い対応関係が
あることがわかる。
Table 1 shows the normal temperature IN values of 20%Cr-10%Ni ferrite-'austenitic duplex stainless steel as received and samples subjected to various high-temperature aging in the receiving machine. (This shows the iR/iC ratio in a 12sO4 aqueous solution. A tendency for the iR/iC value to increase as the aging heat treatment time increases. Figure 1 shows the iR/iC ratio of the sample material after each aging heat treatment. According to this, which shows the relationship between the ratio and Charby absorbed energy (toughness value),
It can be seen that there is a good correspondence between the iR/iC ratio and Charby absorbed energy.

次に、20%Cr−10%Niフエライトーオーステナ
イトニ相ステンレス鋼からなる円筒形部材 表  1 次に本実験結果に基づき含フエライ1−ステンレス鋼の
脆化損傷検知システムを作成した。第1図はそのブロッ
ク図を示す。腐食セル1において、部材の一部がポテン
ショスタット2により分極される。その結果得られる腐
食電流iは12og変換器3を通りコンピュータ5に入
る。また、腐食電位Ecはポテンショスタット2を通し
コンピュータ5に入る。得られるi、Ecに基づきコン
ビュータでポテンシャルスキャナ4を通し、ポテンショ
スタットをコントロールi、iC 、iRをそれぞれ求
め、ip/iC比を計算する。予め得られているiR/
iC比と脆化度とのマイタカーブより脆化度を計算し表
示板6に表示する。
Next, a cylindrical member made of 20% Cr-10% Ni ferrite-austenite dual-phase stainless steel was prepared. Next, based on the results of this experiment, an embrittlement damage detection system for ferrite-containing stainless steel was created. FIG. 1 shows its block diagram. In the corrosion cell 1, a part of the member is polarized by a potentiostat 2. The resulting corrosion current i passes through a 12og converter 3 and enters a computer 5. Further, the corrosion potential Ec enters the computer 5 through the potentiostat 2. Based on the obtained i and Ec, the potentiostat is controlled by a computer through the potential scanner 4 to obtain i, iC and iR, respectively, and calculate the ip/iC ratio. iR obtained in advance/
The degree of embrittlement is calculated from the miter curve of the iC ratio and the degree of embrittlement and displayed on the display board 6.

この検知システムを用いて20%Cr −10%Niフ
エライトーオーステナイトニ相ステシステンレス鋼る円
筒形部材の450℃長時間加熱時効処理後の脆化度を測
定した。その結果を表2に示す。予測値と実測値は良い
一致を示す。このように、本実施例によれば、フエライ
トーオーステナイトニ相ステンレス鋼の脆化度を非破壊
的に測定できる。
Using this detection system, the degree of embrittlement of a 20%Cr-10%Ni ferrite-austenite dual-phase stainless steel cylindrical member was measured after long-term heat aging treatment at 450°C. The results are shown in Table 2. The predicted value and the measured value show good agreement. As described above, according to this example, the degree of embrittlement of ferrite-austenite dual phase stainless steel can be measured non-destructively.

表     2 〔発明の効果〕 本発明によれば、高温で使用されるフェライトステンレ
ス鋼部材の脆化の程度を非破壊的に、かつ、迅速に検知
できるので脆化損傷を防ぐことができ、実機の安全性を
高めることができる。
Table 2 [Effects of the Invention] According to the present invention, the degree of embrittlement of ferritic stainless steel members used at high temperatures can be detected non-destructively and quickly, so embrittlement damage can be prevented. safety can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の脆化損傷検知システムのブ
ロック図、第2図は各時効熱処理条件における再活性化
電流(in ) /不働態化限界電流(iC )比と各
試験温度におけるシャルビ吸収エネルギの関係図、第3
図は脆化した含フェライトステンレス鋼の分極特性を示
す模式図である。 1・・・腐食セル、2・・・ポテンショスタット、3・
・・Qog変換器、4・・・ポテンシャルスキャナ、5
・・・コンピュータ、6・・・表示板。
Fig. 1 is a block diagram of an embrittlement damage detection system according to an embodiment of the present invention, and Fig. 2 shows the reactivation current (in)/passivation limit current (iC) ratio under each aging heat treatment condition and each test temperature. Relationship diagram of Charby absorbed energy in , 3rd
The figure is a schematic diagram showing the polarization characteristics of embrittled ferrite-containing stainless steel. 1... Corrosion cell, 2... Potentiostat, 3.
...Qog converter, 4...Potential scanner, 5
...computer, 6...display board.

Claims (1)

【特許請求の範囲】 1、含フェライトステンレス鋼部材の高温長時間使用に
おける脆化の進行度を前記含フェライトステンレス鋼の
電気化学的特性を測定することにより検知することを特
徴とする含フェライトステンレス鋼部材の高温脆化損傷
検知方法。 2、特許請求の範囲第1項において、 前記部材の溶液中における腐食電位を自然電位よりアノ
ード側に分極した時の不働態化限界電流i_Cと不働態
化させた後、元の自然電位に戻してゆく過程での再活性
化電流密度i_Rとの比i_R/i_Cの大きさより、
予め求めておいたi_R/i_Cと靭性値とのマスター
カーブから前記部材の靭性値を求め脆化損傷の可能性の
有無を判定することを特徴とする含フェライトステンレ
ス鋼部材の高温脆化損傷検知方法。 3、特許請求の範囲第2項において、 前記部材の前記i_R/i_Cを自動的に測定し予め与
えられた前記マスターカーブより脆化度を読みとりそれ
を表示する事を特徴とする含フェライトステンレス鋼部
材の高温脆化損傷検知方法。
[Claims] 1. A ferrite-containing stainless steel, characterized in that the degree of embrittlement of the ferrite-containing stainless steel member during high-temperature, long-term use is detected by measuring the electrochemical properties of the ferrite-containing stainless steel. A method for detecting high-temperature embrittlement damage in steel members. 2. In claim 1, the corrosion potential of the member in a solution is passedivated to the passivation limit current i_C when polarized toward the anode side from the natural potential, and then returned to the original natural potential. From the size of the ratio i_R/i_C to the reactivation current density i_R in the process of
High-temperature embrittlement damage detection for ferrite-containing stainless steel members, characterized in that the toughness value of the member is determined from a master curve of i_R/i_C and toughness values determined in advance, and the presence or absence of the possibility of embrittlement damage is determined. Method. 3. The ferrite-containing stainless steel according to claim 2, characterized in that the i_R/i_C of the member is automatically measured, and the degree of embrittlement is read from the master curve given in advance and displayed. A method for detecting high-temperature embrittlement damage in parts.
JP15407786A 1986-07-02 1986-07-02 High-temperature embrittlement damage detection method for ferrite-containing stainless steel members Pending JPS6311844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15407786A JPS6311844A (en) 1986-07-02 1986-07-02 High-temperature embrittlement damage detection method for ferrite-containing stainless steel members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15407786A JPS6311844A (en) 1986-07-02 1986-07-02 High-temperature embrittlement damage detection method for ferrite-containing stainless steel members

Publications (1)

Publication Number Publication Date
JPS6311844A true JPS6311844A (en) 1988-01-19

Family

ID=15576385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15407786A Pending JPS6311844A (en) 1986-07-02 1986-07-02 High-temperature embrittlement damage detection method for ferrite-containing stainless steel members

Country Status (1)

Country Link
JP (1) JPS6311844A (en)

Similar Documents

Publication Publication Date Title
Sun et al. A comparative study on potentiodynamic and potentiostatic critical pitting temperature of austenitic stainless steels
Zhang et al. Studies on the fracture mechanics parameters of weldment with mechanical heterogeneity
Scott et al. Corrosion fatigue crack growth in reactor pressure vessel steels in PWR primary water
JPH0648654B2 (en) Deterioration diagnosis method for insulating paper of oil-filled electrical equipment
JPS6311844A (en) High-temperature embrittlement damage detection method for ferrite-containing stainless steel members
JPS6128859A (en) High-temperature embrittlement damage detection method for ferrite-containing stainless steel actual machine parts
Fujii et al. The effect of oxidizing ions on the passivity of the valve metals in boiling nitric acid solutions
Shaikh et al. Effect of carbon content on eddy current response to sensitization and intergranular corrosion in simulated heat-affected zone of austenitic stainless steel
Chu et al. Investigation of stress corrosion cracking of the cast and forged steel in water
Morris et al. A solid-state potentiometric sensor for monitoring hydrogen in commercial pipeline steel
Pinder Oxide characterization for service failure investigations
Iskander et al. Effects of annealing time on the recovery of Charpy V-notch properties of irradiated high-copper weld metal
Carroll et al. A crevice-free electrode assembly for the determination of reproducible breakdown potentials for stainless steels in halide environments
Andersen et al. Critical pitting temperatures in sodium chloride and ferric chloride solutions-determined using the'Avesta cell'
Jargelius Chloride induced stress corrosion cracking of duplex stainless steels in concentrated chloride environments
Yamanaka et al. CHARACTERISTICS OF ESTIMATION OF THE SUSCEPTIBILITY TO STRESS CORROSION CRACKING WITH DIFFERENT TESTING METHODS FOR AUSTENITIC STAINLESS STEELS
Stahlkopf et al. Preliminary results of a program for developing fracture toughness data on ferritic nuclear pressure vessel steels
JPH021902B2 (en)
US4471296A (en) Measuring oxygen concentration
Fitterer et al. The Rapid Determination of Oxygen in Commercial Steel with the Solid Electrolyte Probe
Romaniv et al. Effect of stresses on the electrochemical corrosion of steel in aqueous media
Carpenter Study Explores Effects of H2S Scavenger Byproducts on Carbon Steel
JPS595860B2 (en) Method for determining embrittlement of austenitic stainless steel weld metal
Číhal Potentiodynamic methods of following up intercrystalline corrosion
Savage et al. Development and Qualification of Methods for the Determination of Diffusible Hydrogen Contents in Weldments