[go: up one dir, main page]

JPS6128859A - Detection of damage of machine member made of ferrite-containing stainless steel due to high temperature embrittlement - Google Patents

Detection of damage of machine member made of ferrite-containing stainless steel due to high temperature embrittlement

Info

Publication number
JPS6128859A
JPS6128859A JP14951284A JP14951284A JPS6128859A JP S6128859 A JPS6128859 A JP S6128859A JP 14951284 A JP14951284 A JP 14951284A JP 14951284 A JP14951284 A JP 14951284A JP S6128859 A JPS6128859 A JP S6128859A
Authority
JP
Japan
Prior art keywords
ferrite
embrittlement
degree
stainless steel
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14951284A
Other languages
Japanese (ja)
Inventor
Hideya Anzai
安斎 英哉
Shizuka Shimanuki
静 島貫
Jiro Kuniya
国谷 治郎
Isao Masaoka
正岡 功
Hideyo Saito
斎藤 英世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14951284A priority Critical patent/JPS6128859A/en
Publication of JPS6128859A publication Critical patent/JPS6128859A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To detect the degree of embrittlement effectively, by magnetically measuring the amount of ferrite after prolonged use of machine members made of ferrite-containing stainless steel to determine the degree of toughness from a master curve between the amount of ferrite and the degree of toughness. CONSTITUTION:As there is a certain correlation between the degree of embrittlement and the amount of ferrite, the relationship between the degree of embrittlement and the amount of ferrite is determined experimentally to prepare a master curve. Then, the amount of ferrite is measured with a ferrite scope after prolonged 500 deg.C heating treatment of a cylindrical member made of 20% Cr-10% Ni ferrite-austenite 2-phase stainless steel to detect the degree of embrittlement based on the master curve. Thus, the degree of embrittlement of the machine member is detected in a non-destructive manner and quickly to prevent damage due to embrittlement thereby elevating the safety margin.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は高温環境下で使用される光学プラント及び原子
カプラントに係り、特にそこにおいて使用されている含
フェライトステンレス鋼実機部材の高温脆化損傷検知方
法に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to optical plants and atomic couplants used in high-temperature environments, and in particular to high-temperature embrittlement damage detection of ferrite-containing stainless steel actual machine parts used therein. Regarding the method.

〔発明の背景〕[Background of the invention]

含フェライトステンレス鋼は高温長時間の使用により時
効脆化を起すことはすでに知られている。
It is already known that ferrite-containing stainless steels suffer from aging embrittlement when used at high temperatures for long periods of time.

これはおよそ600℃以上の比較的高温においてはσ相
の析出に起因するσ相脆化が、また400〜500℃の
範囲においてはいわゆる475℃脆性が生ずることによ
る。以上の脆化要因のうち、特に475℃脆性について
はその機構がよくわかっていないのが現状である。
This is because σ phase embrittlement occurs due to the precipitation of σ phase at relatively high temperatures of about 600°C or higher, and so-called 475°C embrittlement occurs in the range of 400 to 500°C. Among the above-mentioned embrittlement factors, the mechanism of 475°C embrittlement is currently not well understood.

従来、上記の脆化損傷に対処する方法としては含フェラ
イトステンレス鋼部材の前記温度範囲における熱処理の
施工を回避すること、あるいはその温度範囲における実
機長時間使用を回避することなどが行なわれている。
Conventionally, methods for dealing with the above-mentioned embrittlement damage include avoiding heat treatment of ferrite-containing stainless steel members in the above temperature range, or avoiding long-term use of actual equipment in that temperature range. .

しかしながら、前記の如く475℃脆性は400℃以下
の温度範囲においても長時間使用中に生じうる゛可能性
があり、含フェライトステンレス実機部材の高温での使
用には十分の配慮が必要と思われる。
However, as mentioned above, there is a possibility that 475°C embrittlement may occur during long-term use even in the temperature range below 400°C, and it seems that sufficient consideration is required when using ferrite-containing stainless steel parts at high temperatures. .

しかるに従来の状況をみると、含フェライトステンレス
鋼実機部材の脆化損傷の程度を非破壊的に検知する有効
な方法はない。
However, in the conventional situation, there is no effective method for non-destructively detecting the degree of embrittlement damage in ferrite-containing stainless steel actual machine parts.

〔発明の目的〕[Purpose of the invention]

本発明の目的は高温環境下で使用する含フェラストステ
ンレス鋼実機部材脆化の程度を効果的かつ非破壊的に検
知できる方法を提供することにある。
An object of the present invention is to provide a method that can effectively and nondestructively detect the degree of embrittlement of an actual ferrous stainless steel component used in a high-temperature environment.

〔発明の概要〕[Summary of the invention]

含フェライトステンレス鋼は耐応力腐食割れ性にすぐれ
かつ比較的安価であることから広く用いられ始めている
が、高温長時間の使用によりフェライト相が分解し、脆
いσ相あるいはα′相を形成するため脆化を生ずる。ま
た、使用温度によっては475℃脆性を生ずる場合もあ
る。
Ferrite-containing stainless steels have begun to be widely used because they have excellent stress corrosion cracking resistance and are relatively inexpensive, but when used at high temperatures for long periods of time, the ferrite phase decomposes and forms brittle σ or α′ phases. Causes embrittlement. Furthermore, depending on the operating temperature, 475°C brittleness may occur.

本発明は、前記のような含フェライトステンレス鋼実機
部材の高温長時間使用による脆化損傷の程度を非破壊的
に検知することを特徴とするものである。。
The present invention is characterized in that it non-destructively detects the degree of embrittlement damage caused by long-term use at high temperatures in ferrite-containing stainless steel actual machine parts as described above. .

発明者らは含フェライトステンレス鋼の高温加熱による
脆化について種々検討した結果、脆化の程度とフェライ
ト量の間に一定の相関関係のあることを見い出した。こ
の現象を利用すれば含フェライトステンレス鋼の脆化度
をきわめて簡単に評価できる。すなわち、本発明によれ
ば、あらかじめ脆化度とフェライト量との関係を実験的
に求め。
As a result of various studies on the embrittlement of ferrite-containing stainless steel due to high temperature heating, the inventors found that there is a certain correlation between the degree of embrittlement and the amount of ferrite. By utilizing this phenomenon, the degree of embrittlement of ferrite-containing stainless steel can be evaluated very easily. That is, according to the present invention, the relationship between the degree of embrittlement and the amount of ferrite is determined experimentally in advance.

マスターカーブを作製しておけば、部材中のフェライト
量を測定することによって、脆化の進行程度を検知する
ことができる。
If a master curve is prepared, the degree of progress of embrittlement can be detected by measuring the amount of ferrite in the member.

含フェライトステンレス鋼実機部材のフェライト量の測
定には例えばフェライトスコープ等による磁気的測定法
を用いることにより簡便かつ非破壊的に行なうことがで
きる。
The amount of ferrite in an actual ferrite-containing stainless steel member can be easily and non-destructively measured by using a magnetic measuring method using a ferrite scope, for example.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について説明する。 An embodiment of the present invention will be described below.

第1表は2o%Cr−10%Niフェライト−オーステ
ナイト2相スデンレス鋼の受入のまま及び受入機各種高
温熱処理を施した試料のフェライト量を示す。フェライ
ト量はフェライトスコープによる磁気的測定によった。
Table 1 shows the amount of ferrite in the as-received 20% Cr-10% Ni ferrite-austenite two-phase stainless steel samples and the samples subjected to various high-temperature heat treatments in the receiving machine. The amount of ferrite was measured magnetically using a ferrite scope.

高温熱処理による受入れ材のフェライトは分解して減少
することが認められる。第1図は前記供試材の各時効熱
処理後のフェライト量とシャルビ吸収エネルギの関係を
示す。これによればフェライト量とシャルビ吸収エネル
ギに良い対応関係があることがわかる。
It is observed that ferrite in the received material decomposes and decreases due to high-temperature heat treatment. FIG. 1 shows the relationship between the amount of ferrite and Charby absorbed energy after each aging heat treatment of the sample material. According to this, it can be seen that there is a good correspondence between the amount of ferrite and the Charby absorbed energy.

次に20%Cr−40%Niフェライト−オーステナイ
ト2相ステンレス鋼からなる円筒形部材の500”C長
時間加熱処理後のフェライト量をフェライトスコープに
より測定し、第1図からこの測定値に対応するシャルビ
吸収エネルギーを予測した。その結果、予測値と実験値
により対応が認められた。
Next, the amount of ferrite of the cylindrical member made of 20%Cr-40%Ni ferrite-austenite duplex stainless steel after long-term heat treatment at 500"C was measured using a ferrite scope, and the value corresponding to this measurement is shown in Fig. 1. The absorption energy of Charbi was predicted.As a result, a correspondence was found between the predicted value and the experimental value.

第  1  表 8 磁気的測定(フェライトスコープによる。)〔発明
の効果〕 以上述べたように本発明によれば、高温で使用される全
フェライトステンレス鋼実機部材の脆化の程度を非破壊
的にかつ迅速に検知できるので脆化損傷を未然に防ぐこ
とが可能であり、実機の安全性を高めることができる。
No. 1 Table 8 Magnetic measurement (by ferrite scope) [Effects of the invention] As described above, according to the present invention, the degree of embrittlement of all ferritic stainless steel actual machine parts used at high temperatures can be measured non-destructively. Moreover, since it can be detected quickly, it is possible to prevent embrittlement damage, thereby increasing the safety of the actual machine.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】 1、含フェライトステンレス鋼実機部材の高温長時間使
用後のフェライト量変化を磁気的に測定することによつ
て当該部の脆化の進行度を検知することを特徴とする含
フェライトステンレス鋼実機部材の高温脆化損傷検知方
法。 2、特許請求の範囲第1項において、当該部のフェライ
ト量変化を測定し、フェライト量と靭性度とのマスター
カーブから靭性度を求めることによつて、当該部の脆化
の進行度を測定することを特徴とする含フェライトステ
ンレス鋼実機部材の脆化損傷検知方法。
[Claims] 1. The method is characterized by detecting the degree of embrittlement of the ferrite-containing stainless steel part by magnetically measuring the change in the amount of ferrite after long-term use at high temperatures. A method for detecting high-temperature embrittlement damage in ferrite-containing stainless steel parts. 2. In claim 1, the degree of embrittlement of the part is measured by measuring the change in the amount of ferrite in the part and determining the degree of toughness from a master curve of the amount of ferrite and the degree of toughness. A method for detecting embrittlement damage in ferrite-containing stainless steel actual machine parts.
JP14951284A 1984-07-20 1984-07-20 Detection of damage of machine member made of ferrite-containing stainless steel due to high temperature embrittlement Pending JPS6128859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14951284A JPS6128859A (en) 1984-07-20 1984-07-20 Detection of damage of machine member made of ferrite-containing stainless steel due to high temperature embrittlement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14951284A JPS6128859A (en) 1984-07-20 1984-07-20 Detection of damage of machine member made of ferrite-containing stainless steel due to high temperature embrittlement

Publications (1)

Publication Number Publication Date
JPS6128859A true JPS6128859A (en) 1986-02-08

Family

ID=15476759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14951284A Pending JPS6128859A (en) 1984-07-20 1984-07-20 Detection of damage of machine member made of ferrite-containing stainless steel due to high temperature embrittlement

Country Status (1)

Country Link
JP (1) JPS6128859A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167463A (en) * 1988-09-16 1990-06-27 Hitachi Ltd Method and device for predicting deterioration extent of equipment and deterioration diagnostic system for plant
US5059903A (en) * 1987-09-21 1991-10-22 Hitachi, Ltd. Method and apparatus utilizing a magnetic field for detecting degradation of metal material
US5117184A (en) * 1988-06-23 1992-05-26 Allison Sidney G Magnetic remanence method and apparatus to test materials for embrittlement
JPH05333189A (en) * 1991-06-06 1993-12-17 Hitachi Ltd Remaining life estimating method for material exposed to radiation environment and its device
US5598451A (en) * 1994-11-11 1997-01-28 Dkk Corporation Apparatus for measuring the sulfur component contained in oil

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059903A (en) * 1987-09-21 1991-10-22 Hitachi, Ltd. Method and apparatus utilizing a magnetic field for detecting degradation of metal material
US5134368A (en) * 1987-09-21 1992-07-28 Hitachi, Ltd. Apparatus for magnetically detecting degradation of metal material using superconductor sensor system and reference material data comparison
US5117184A (en) * 1988-06-23 1992-05-26 Allison Sidney G Magnetic remanence method and apparatus to test materials for embrittlement
JPH02167463A (en) * 1988-09-16 1990-06-27 Hitachi Ltd Method and device for predicting deterioration extent of equipment and deterioration diagnostic system for plant
JPH05333189A (en) * 1991-06-06 1993-12-17 Hitachi Ltd Remaining life estimating method for material exposed to radiation environment and its device
US5598451A (en) * 1994-11-11 1997-01-28 Dkk Corporation Apparatus for measuring the sulfur component contained in oil

Similar Documents

Publication Publication Date Title
Wilson et al. The effect of loading rate and temperature on fracture initiation in 1020 hot-rolled steel
JPS6128859A (en) Detection of damage of machine member made of ferrite-containing stainless steel due to high temperature embrittlement
Parker et al. Stress corrosion cracking of a low alloy steel in high purity steam
Jaske et al. Long-life fatigue of type 316 stainless steel at temperatures up to 593 C
Dally et al. Measuring the stress intensity factor for propagating cracks with strain gages
Pinder Oxide characterization for service failure investigations
JPS55141653A (en) Deterioration state deciding method of strong precipitation hardness type iron base alloy
JPS6311844A (en) Detection of high temperature embrittlement damage of stainless steel member containing ferrite
Dobmann et al. Micromagnetic and electromagnetic NDT for lifetime management by monitoring ageing of structural materials
JPS595860B2 (en) Method for determining embrittlement of austenitic stainless steel weld metal
JPS5542060A (en) Method of detecting sensitivity to intergranular corrosion and stress corrosion cracking
JPS62147356A (en) Sigma phase inspection method for stainless steel materials
JPH03170036A (en) Temperature hysteresis indicator
Schmigalla et al. Determination of critical pitting temperatures for Ni Cr Mo alloys using electrochemical noise measurements
JPH03218456A (en) Carburization thickness measurement method and measuring probe
SU1719976A1 (en) Magnetic method of non-destructive testing
Hernas et al. Degradation of superheater tubes made of austenitic T321H steel after long term service
JPS6264945A (en) Method for detecting damage sensitivity of heat transfer pipe of heat exchanger
Lai et al. The development of a novel temperature indicator
Endoh et al. Development of Nondestructive Inspection Instrument of Effective Case Depth
SU1350483A1 (en) Method of determining internal stresses in specimens made of ferromagnetic materials
Loginow Evaluation of Intergranular Corrosion in Stainless Steel
JPS5546133A (en) Sound measuring method
Yamaguchi et al. Electron Diffraction Study of Terromagnetic Inclusion in Austenitic Stainless Steel
Hatch et al. Experimental Electromagnetic Test Methods for the Nondestructive Evaluation of Carburized Steel Parts