[go: up one dir, main page]

JPS6311808A - Film thickness monitor - Google Patents

Film thickness monitor

Info

Publication number
JPS6311808A
JPS6311808A JP15656586A JP15656586A JPS6311808A JP S6311808 A JPS6311808 A JP S6311808A JP 15656586 A JP15656586 A JP 15656586A JP 15656586 A JP15656586 A JP 15656586A JP S6311808 A JPS6311808 A JP S6311808A
Authority
JP
Japan
Prior art keywords
substrate
probe
head
cluster
ion current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15656586A
Other languages
Japanese (ja)
Inventor
Hiromoto Ito
弘基 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15656586A priority Critical patent/JPS6311808A/en
Publication of JPS6311808A publication Critical patent/JPS6311808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To enable application of the title monitor even under a high temperature along with an extended life, by providing a probe for detecting an ion current of a cluster reaching a substrate, a detector and an arithmetic control section. CONSTITUTION:A substrate S is mounted on a holder 23 arranged at an evaporation area C of a vacuum tank 10. A probe 1 in which is formed by fitting a leg 1b at the center of one side of a disc-shaped head 1a, both being made of conductive material, is mounted to a hole 23a cut close to the periphery of a holder 23 through an insulating material 1c and the position of the head 1a is so set that the head 1a almost is flush with the front surface of the substrate S. A ammeter 2 for small current is electrically connected between the leg 1b and the tank 10 grounded and detects current generated as a cluster 25 reaches the head 1a to send the detection value to an arithmetic control section 3, which 3 calculates an ion current density based on an ion current and the area of the head 1a to compute a thickness or the like of the surface of the substrate S according to a specified expression. This enables repeated use of the probe 1 to obtain a high measuring accuracy without being affected by atmospheric temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はイオンクラスタビーム(ICB >蒸着装置、
イオンブレーティング装置等に用いる膜厚監視装置に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an ion cluster beam (ICB) vapor deposition device,
This invention relates to a film thickness monitoring device used in ion blating devices and the like.

〔技術的背景〕[Technical background]

真空層内で蒸着すべき物質を入れた閉鎖型のルツボを加
熱し、ルツボ内における蒸着物質の蒸気を熱的平衡状態
に保持しつつ噴射口から真空槽内の低ガス圧領域に噴射
させ、そのときの断熱膨張による過冷却状態及びこれに
基づく過飽和状態による凝縮作用を利用して200〜1
000個の原子からなる塊状原子集団、所謂クラスタを
形成した後、これをイオン化し、目的とする基板面に向
けて加速衝突させ、成膜を行うクラスタイオンビーム蒸
着装置が提案されている(特公昭54−9592号)。
A closed crucible containing a substance to be evaporated is heated in a vacuum layer, and the vapor of the evaporation substance in the crucible is maintained in a thermal equilibrium state while being injected from an injection port into a low gas pressure region in a vacuum chamber. By using the supercooled state due to adiabatic expansion at that time and the condensation effect due to the supersaturated state based on this,
A cluster ion beam evaporation apparatus has been proposed, which forms a lumpy atomic group consisting of 1,000 atoms, a so-called cluster, ionizes the atomic mass, accelerates the collision toward the target substrate surface, and forms a film. Publication No. 54-9592).

このクラスタイオンビーム蒸着装置は概略第1図に示す
如く構成されている。第1回は本発明に係る膜厚監視装
置を適用したクラスタイオンビーム蒸着装置の模式図で
あるが、クラスタイオンビーム蒸着装置自体は従来知ら
れた一般的な構成であり、これを参照して説明する。
This cluster ion beam evaporation apparatus is constructed as schematically shown in FIG. The first part is a schematic diagram of a cluster ion beam evaporation apparatus to which the film thickness monitoring device according to the present invention is applied, but the cluster ion beam evaporation apparatus itself has a conventionally known general configuration, so please refer to this. explain.

図中10は真空槽を示しており、図示しない排気系にて
適宜の真空度に設定可能としである。真空槽10の内部
は蒸着すべき物質を収容したルツボ14を加熱し、蒸気
を噴出させる加熱域A、噴出された蒸気を凝縮させてク
ラスタ25を形成し、クラスタ25をイオン化し、基板
S側に向けて加速する加速域B及びイオン化されたクラ
スタ25を基板Sに衝突させて成膜する蒸着域Cに区分
されている。
In the figure, numeral 10 indicates a vacuum chamber, which can be set to an appropriate degree of vacuum using an exhaust system (not shown). The interior of the vacuum chamber 10 includes a heating area A in which a crucible 14 containing a substance to be deposited is heated and steam is spouted out, and a heating zone A in which the spouted steam is condensed to form clusters 25, the clusters 25 are ionized, and the substrate S side is heated. The area is divided into an acceleration area B where the ionized clusters 25 are accelerated towards the substrate S, and a deposition area C where the ionized clusters 25 are made to collide with the substrate S to form a film.

加熱域Aには真空槽10の周壁に沿うよう筒形の電極1
1が配設され、その内側には小径の噴出口14aを電極
12の開口部12aに対向させて蒸着用物質を収容した
ルツボ14が、またこのルツボ14と電極11との間に
はルツボ14を直接1間接に加熱するためのボンバード
フィラメント15が配設されている。
A cylindrical electrode 1 is provided in the heating area A along the peripheral wall of the vacuum chamber 10.
A crucible 14 is disposed inside the crucible 14 containing a vapor deposition material with a small-diameter ejection port 14 a facing the opening 12 a of the electrode 12 . A bombarded filament 15 is provided for directly and indirectly heating.

ルツボ14と電極11との間には正極をルツボ14側に
してバイアス用の第1直流電源17が、またボンバード
フィラメント15にはこれを2000℃程度に加熱する
交流電源16が設けられている。
A first DC power supply 17 for biasing is provided between the crucible 14 and the electrode 11 with the positive electrode facing the crucible 14, and an AC power supply 16 for heating the bombarded filament 15 to about 2000° C. is provided.

加速域Bには真空槽IOの周壁に沿う筒形をなし下部は
中央の開口部12aを除いて閉鎖された電極12の内側
に開口部12aと同心状に電子を放出するイオン化フィ
ラメント18及び放出された電子をクラスタ25に衝突
させるグリッド19が配設されている。イオン化フィラ
メント18にはこれを加熱するための交流型i20が、
また電極12とグリッド19との間にはバイアス用の第
2直流電源21が設けられている。
In the acceleration region B, there is an ionization filament 18 that emits electrons concentrically with the opening 12a inside the electrode 12, which has a cylindrical shape along the peripheral wall of the vacuum chamber IO and whose lower part is closed except for the central opening 12a. A grid 19 is provided that causes the generated electrons to collide with the cluster 25. The ionization filament 18 has an AC type i20 for heating it.
Further, a second bias DC power source 21 is provided between the electrode 12 and the grid 19.

蒸発域Cは中央部に開口部13aを備えた円盤形の電極
13にて加速域Bと区分されており、その上方にはホル
ダ23が配設され、このホルダ23に’U +FtSが
着脱可能に装着されている。
The evaporation zone C is separated from the acceleration zone B by a disk-shaped electrode 13 with an opening 13a in the center, and a holder 23 is disposed above it, and the 'U +FtS can be attached and detached to this holder 23. is installed on.

電極13及びホルダ23とグリッド19及びルツボ14
との間には電極13に対してグリッド19及びルツボ1
4の電位を正にバイアスする第3直流電源22が設けら
れている。電極13及びホルダ23はいずれも接地され
ており、電極13はイオン化されたクラスタ25を電極
13に加速するようになっている。
Electrode 13, holder 23, grid 19, and crucible 14
A grid 19 and a crucible 1 are connected to the electrode 13 between
A third DC power supply 22 that positively biases the potential of No. 4 is provided. Both the electrode 13 and the holder 23 are grounded, and the electrode 13 accelerates the ionized clusters 25 to the electrode 13.

而して上述の如きクラスタイオンビーム蒸着装置にあっ
ては図示しない排気系を作動して真空槽10内を10−
 hTorr程度の真空度に設定し、交流電源16にて
ボンバードフィラメント15を加熱し、その副射熱にて
ルツボ14を直接加熱する外、ボンバードフィラメント
15の加熱によってこれから熱電子を放射させ、この熱
電子を第1の直流電源17によってボンバードフィラメ
ント15に対し正電位にバイアスされているルツボ14
に衝突させ、この衝突によってルツボ14を間接的に加
熱する。
In the cluster ion beam evaporation apparatus as described above, an exhaust system (not shown) is operated to vacuum the inside of the vacuum chamber 10.
The degree of vacuum is set to about hTorr, and the bombarded filament 15 is heated with the AC power supply 16, and the crucible 14 is directly heated with the side radiation heat. The crucible 14 has electrons biased to a positive potential with respect to the bombarded filament 15 by a first DC power source 17.
The crucible 14 is indirectly heated by this collision.

ルツボ14内に収容されている蒸着させるべき物質は熱
的平衡状態を維持するよう加熱蒸発せしめられ、噴出口
14aから加熱域A、更には開口部12aを通して加熱
域B内に噴出され、ルツボ14内部と真空槽10内との
圧力差による断熱膨張によって過冷却状態となり、これ
に基づく過飽和状態での凝縮作用により200〜100
0個程度の原子が凝縮したクラスタ25を形成する。
The substance to be deposited housed in the crucible 14 is heated to evaporate so as to maintain a thermal equilibrium state, and is ejected from the ejection port 14a into the heating area A and further into the heating area B through the opening 12a. Adiabatic expansion due to the pressure difference between the inside and the inside of the vacuum chamber 10 results in a supercooled state, and due to the condensation action in the supersaturated state based on this, 200 to 100
A cluster 25 is formed in which about 0 atoms are condensed.

このクラスタ25には加速域B内で第2直流電源21に
よりグリッド19に対して電位を負にバイアスされたイ
オン化フィラメン目8から放出され、グリッド19で加
速された電子が衝突せしめられて正電荷をもったクラス
タイオンに変換され、電極13によって基板S側に向う
運動エネルギを与えられ、基板S表面に到達してここに
堆積し薄膜を形成する。
This cluster 25 is charged with a positive charge by colliding with electrons emitted from the ionized filament 8 whose potential is negatively biased with respect to the grid 19 by the second DC power supply 21 within the acceleration region B and accelerated by the grid 19. The cluster ions are converted into cluster ions having , are given kinetic energy toward the substrate S by the electrode 13, reach the surface of the substrate S, and are deposited thereon to form a thin film.

〔従来技術〕[Prior art]

基板上に薄膜を形成する場合、薄膜の形成速度は膜品質
と密接な関係にあり、その成膜速度、或いは膜厚は膜品
質の向上を図るうえで欠かすことが出来ない管理項目と
なっている。
When forming a thin film on a substrate, the thin film formation speed is closely related to the film quality, and the film formation speed or film thickness is an essential control item in order to improve the film quality. There is.

このため従来にあっては第5図に示す如く真空槽10を
貫通させて水晶振動子型のプローブ31をホルダ23に
取り付けた基板Sの直前であってクラスタ25の飛来域
中に位置させ、このプローブ31にクラスタ25が衝突
付着することによる振動周波数の変化を演算制御部32
にて求め、基板Sに対する膜厚を算出する構成が採られ
ている(特開昭57−39171号)。
For this reason, conventionally, as shown in FIG. 5, a crystal oscillator type probe 31 is placed in the flying area of the cluster 25 immediately in front of the substrate S attached to the holder 23 by penetrating the vacuum chamber 10. The calculation control unit 32 calculates the change in vibration frequency due to the cluster 25 colliding and adhering to the probe 31.
, and calculates the film thickness for the substrate S (Japanese Unexamined Patent Publication No. 57-39171).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで上述した如き従来の装置にあってはプローブ3
1自体は蒸着域C内にあって、当然これにもクラスタ2
5が衝突付着するため、数回反復使用するとこれに堆積
したクラスタ25のために誤差が大きくなり、その機能
が失われることとなって交換せざるを得す、寿命が極め
て短く、そのうえ数百℃以上の高温下での使用が出来な
いなどの問題があった。
By the way, in the conventional device as mentioned above, the probe 3
1 itself is within the deposition area C, and naturally cluster 2 also exists here.
5 collides and adheres to it, so if it is used several times, errors will become large due to the clusters 25 deposited on it, and its function will be lost and it will have to be replaced. There were problems such as the inability to use it at high temperatures above ℃.

本発明はかかる事情に鑑みなされたものであって、その
目的とするところは寿命が長く長期にわたって使用が可
能であり、しかも高温下でも不都合なく使用し得る膜厚
監視装置を提供するにある。
The present invention has been made in view of the above circumstances, and its object is to provide a film thickness monitoring device that has a long life span, can be used for a long period of time, and can be used without any inconvenience even at high temperatures.

〔問題点を屏決するための手段〕[Means for deciding issues]

本発明にあっては基板に到達するイオン化された原子又
はそのクラスタのイオン電流を検出するプローブ、検出
器及びこれによる検出値に基づき膜厚を算出する演算制
御部を設ける。
The present invention includes a probe and a detector that detect the ion current of ionized atoms or clusters thereof reaching the substrate, and an arithmetic control unit that calculates the film thickness based on the detected value.

〔作用〕[Effect]

本発明にあってはこれによってプローブへの原子又はそ
のクラスタの堆積に何ら影響されることなく継続的に使
用でき、また蒸着速度と密接な関係にあるイオン電流密
度を検出して膜厚を求める。
This allows the present invention to be used continuously without being affected by the deposition of atoms or their clusters on the probe, and to determine the film thickness by detecting the ion current density, which is closely related to the deposition rate. .

〔実施例〕〔Example〕

以下本発明を第1図に示した如きクラスタイオンビーム
蒸着装置に適用した構成につき具体的に説明する。第2
図は本発明に係る膜厚監視装置(以下本発明装置という
)の模式図、第3図はプローブの取付状態を示す部分拡
大断面図である。
Hereinafter, a configuration in which the present invention is applied to a cluster ion beam evaporation apparatus as shown in FIG. 1 will be explained in detail. Second
The figure is a schematic diagram of a film thickness monitoring device according to the present invention (hereinafter referred to as the device of the present invention), and FIG. 3 is a partially enlarged sectional view showing the state in which the probe is attached.

真空槽10の蒸着域Cに配設したホルダ23の中央部に
は基板Sが着脱可能に装着されるが、このホルダ23の
周縁部寄りの位置であって基極Sと接触しないよう若干
の間隙を隔てて本発明装置を構成するプローブ1が装着
され、該プローブ1にはイオン電流を検出する微小電流
計2が、更にこの微小電流計2には検出したイオン電流
に基づき基板Sの膜厚を算出し制御する演算制御部3が
設けられている。
A substrate S is removably attached to the center of a holder 23 disposed in the evaporation area C of the vacuum chamber 10, but the substrate S is located near the periphery of the holder 23 and is slightly spaced so that it does not come into contact with the base electrode S. A probe 1 constituting the device of the present invention is mounted across a gap, and a microcurrent meter 2 for detecting an ion current is attached to the probe 1, and a microcurrent meter 2 further detects the film of the substrate S based on the detected ion current. An arithmetic control section 3 that calculates and controls the thickness is provided.

プローブ1は導電性材料にて円板形の頭部1aの片面中
央に足部1bを設けて構成されており、ホルダ23の周
縁部寄りの位置であって、且つクラスタ25の飛来域内
に穿った孔23aにセラミックス等で形成した絶縁材I
Cを介在させてホルダ23と絶縁状態に装着されており
、頭部1aの位置はホルダ23の下面側であってここに
固定した基板Sの前面と路面−となるように設定しであ
る。
The probe 1 is composed of a disk-shaped head 1a made of a conductive material, and a foot 1b provided at the center of one side of the head 1a. An insulating material I formed of ceramic or the like is placed in the hole 23a.
The head 1a is mounted in an insulated state from the holder 23 with a C interposed therebetween, and the head 1a is positioned on the lower surface side of the holder 23, and is set to be between the front surface of the substrate S fixed thereto and the road surface.

微小電流計2は前記プローブ10足部1bと接地された
真空槽10との間に電気的に接続されており、正電荷を
有するクラスタが頭部1aに到達することにより生起さ
れる電流を検知して表示すると共に、その検出値は演算
制御部3に取り込まれるようになっている。
The microammeter 2 is electrically connected between the foot 1b of the probe 10 and the grounded vacuum chamber 10, and detects the current generated when the positively charged cluster reaches the head 1a. At the same time, the detected value is taken into the arithmetic control section 3.

演算制御部3はイオン電流及びプローブ1の頭部1aの
面積に基づき単位面積当たりのイオン電流、即ちイオン
電流密度を算出し、これに基づき予め求めたイオン電流
密度と蒸着速度との関係式等に従って基板Sに対するク
ラスタ25の蒸着速度、更には膜厚を算出し、算出した
膜厚を予め定めた成膜スケジュールと比較し、成膜スケ
ジュールにおける膜厚と一致するよう、例えばルツボ1
4の温度を加熱用ボンバードフィラメン1−15に対す
る交流電源16の調節によって制御し、蒸着速度を修正
するようになっている。
The arithmetic control unit 3 calculates the ion current per unit area, that is, the ion current density, based on the ion current and the area of the head 1a of the probe 1, and based on this calculates the relational expression between the ion current density and the vapor deposition rate, etc., determined in advance. Accordingly, the deposition rate and film thickness of the cluster 25 on the substrate S are calculated, and the calculated film thickness is compared with a predetermined film-forming schedule.
The temperature of the heating bombarded filament 1-15 is controlled by adjusting the AC power source 16 to modify the deposition rate.

第4図はイオン電流密度(A/ms”)と物質の蒸着速
度(入/分)との関係を示すグラフであり、前者を縦軸
に、また後者を横軸にとって示しである。グラフには加
速電圧を夫々1kV、  3kV、  5kVの如く設
定したときの夫々についての関係を示しである。
Figure 4 is a graph showing the relationship between ion current density (A/ms'') and material deposition rate (input/min), with the former plotted on the vertical axis and the latter plotted on the horizontal axis. shows the relationship when the accelerating voltage is set to 1 kV, 3 kV, and 5 kV, respectively.

このグラフから明らかなように加速電圧を一定にすれば
イオン電流密度と蒸着速度、即ち膜厚とが略一定の関係
にあることが解る。
As is clear from this graph, if the accelerating voltage is kept constant, the ion current density and the deposition rate, that is, the film thickness, have a substantially constant relationship.

従ってこのような加速電圧毎に関係式又は比例係数を演
算制御部3に予め与えておくことによってイオン電流密
度に基づき蒸着速度が容易に算出されることとなる。
Therefore, by providing the relational expression or proportionality coefficient for each acceleration voltage to the calculation control section 3 in advance, the deposition rate can be easily calculated based on the ion current density.

而して上述の如く構成された本発明装置にあっては第1
.2.3図に示した如くルツボ14の噴出口14aから
噴出した蒸気が、ルツボ14内、外の気圧差、温度差に
よって断熱膨張して過冷却状態となり、これに基づく過
飽和状態のために原子が凝縮されてクラスタ25となり
、加速域B内にてイオン化され、電極13により加速さ
れて基板S表面に衝突付着せしめられるが、その一部は
プローブ1の頭部1a表面にも衝突付着することとなり
、プローブ1にはクラスタ25に帯電せしめられている
正電荷に基づくイオン電流が生起される。このイオン電
流は微小電流計2にて検出され、その検出値は演算制御
部33に取り込まれる。
Therefore, in the device of the present invention configured as described above, the first
.. As shown in Figure 2.3, the steam ejected from the spout 14a of the crucible 14 expands adiabatically due to the difference in pressure and temperature between the inside and outside of the crucible 14 and becomes a supercooled state, and due to the supersaturated state based on this, atoms is condensed to form a cluster 25, which is ionized in the acceleration region B, accelerated by the electrode 13, and is made to collide and adhere to the surface of the substrate S, but some of it also collides and adheres to the surface of the head 1a of the probe 1. Therefore, an ionic current is generated in the probe 1 based on the positive charge charged on the cluster 25. This ion current is detected by the microammeter 2, and the detected value is taken into the calculation control section 33.

演算制御部33はプローブ1の頭部1aの面積等に基づ
きイオン電流密度を算出し、次いで第4図に示す如き関
係に基づきイオン電流密度から蒸着速度(人/分)を算
出し、成膜時間を考慮して膜厚を算出すると共に、算出
した膜厚を予め定めである成膜スケジュールと比較し、
適正な膜厚が否かを判断し、膜厚が小さく、又は大きい
ときは成膜速度を調節すべく例えばルツボ14の加熱用
交流電源16を調節し、成膜速度を自動的に制御する。
The arithmetic control unit 33 calculates the ion current density based on the area of the head 1a of the probe 1, etc., and then calculates the deposition rate (person/min) from the ion current density based on the relationship shown in FIG. The film thickness is calculated taking time into account, and the calculated film thickness is compared with a predetermined film formation schedule.
It is determined whether or not the film thickness is appropriate, and if the film thickness is small or large, the heating AC power source 16 of the crucible 14 is adjusted, for example, to adjust the film formation speed, and the film formation speed is automatically controlled.

なお、上述の実施例はプローブ31をホルダ23に単1
個設置する構成を説明したが基板Sの周縁部に沿うよう
複数個設置し、その平均値に基づいて膜厚を求める構成
としてもよい。また上述の実施例ではプローブ31をホ
ルダ23に固定する構成とした場合につき説明したが、
何らこれに限るものではなく、例えば真空槽1の周壁か
らクラスタの飛来域に張り出したアームに取り付ける構
成としてもよい。
In addition, in the above embodiment, the probe 31 is attached to the holder 23.
Although a configuration in which a single layer is installed has been described, a configuration may also be adopted in which a plurality of layers are installed along the peripheral edge of the substrate S and the film thickness is determined based on the average value. Furthermore, in the above embodiment, the probe 31 is fixed to the holder 23.
The configuration is not limited to this at all, and the configuration may be such that it is attached to an arm extending from the peripheral wall of the vacuum chamber 1 to the area where the clusters fly.

更に、上述の実施例では、クラスタイオンビーム蒸着装
置に適用した構成につき説明したが、これに限らず、例
えばイオンブレーティング装置等にも適用し得ることは
言うまでもない。
Furthermore, in the above-described embodiments, the configuration has been described as applied to a cluster ion beam evaporation apparatus, but it goes without saying that the present invention is not limited to this, and can also be applied to, for example, an ion blating apparatus.

〔効果〕〔effect〕

以上の如く本発明装置にあっては、導電性のプローブに
イオン化された原子又はそのクラスタが到達して生起さ
れるイオン電流を検出して基板面に形成される膜のIt
さを求めることとしているから、反復使用が可能で寿命
が長く、雰囲気温度に殆ど影ツされず、しかも高い測定
精度が得られるなど本発明は優れた効果を奏するもので
ある。
As described above, in the apparatus of the present invention, the ion current generated when ionized atoms or clusters thereof reach the conductive probe is detected, and the It
The present invention has excellent effects such as being able to be used repeatedly, having a long life, being almost unaffected by ambient temperature, and achieving high measurement accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用したクラスタイオンビーム蒸着装
置の一般的な構成を示す模式図、第2図は第1図に示す
クラスタイオンビーム蒸着装置に本発明装置を取り付け
た状態を示す模式図、第3図はホルダに対するプローブ
の取付態様を示す部分拡大断面図、第4図はイオン電流
密度と蒸着速度との関係を示すグラフ、第5図は第1図
に?示すクラスタイオンビーム蒸着装置に従来装置を取
り付けた状態を示す模式図である。 1・・・プローブ 1a・・・頭部 1b・・・足部 
1c・・・絶縁物 2・・・微小電流計 3・・・演算
制御部 S・・・基板10・・・真空槽 11,12.
13・・・電極 14・・・ルツボ15・・・ボンバー
ドフィラメント 16・・・交流電源17・・・第1直
流電源 18・・・イオン化フィラメント19・・・グ
リッド 20・・・交流電源 21・・・第2直流電源
23・・・ホルダ なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a schematic diagram showing the general configuration of a cluster ion beam evaporation apparatus to which the present invention is applied, and FIG. 2 is a schematic diagram showing the state in which the present invention apparatus is attached to the cluster ion beam evaporation apparatus shown in FIG. 1. , FIG. 3 is a partially enlarged sectional view showing how the probe is attached to the holder, FIG. 4 is a graph showing the relationship between ion current density and deposition rate, and FIG. 5 is similar to FIG. 1? FIG. 2 is a schematic diagram showing a state in which a conventional device is attached to the cluster ion beam evaporation device shown in FIG. 1... Probe 1a... Head 1b... Feet
1c...Insulator 2...Micro ammeter 3...Calculation control unit S...Substrate 10...Vacuum chamber 11,12.
13... Electrode 14... Crucible 15... Bombarded filament 16... AC power supply 17... First DC power supply 18... Ionization filament 19... Grid 20... AC power supply 21... -Second DC power supply 23...Holder In the drawings, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1、基板に蒸着すべき物質の原子又はそのクラスタをイ
オン化し、これを基板に到達せしめて基板面に形成され
る膜の厚さを監視する装置において、前記イオン化され
た原子又はそのクラスタの飛来方向に向けて配設した導
電性のプローブと、該プローブにイオン化された原子又
はそのクラスタが到達して生起されるイオン電流を検出
する検出器と、該検出器の検出値に基づき基板面の膜の
厚さを求める演算制御部とを具備することを特徴とする
膜厚監視装置。
1. In a device that ionizes atoms or clusters of a substance to be deposited on a substrate, allows them to reach the substrate, and monitors the thickness of a film formed on the substrate surface, the flying of the ionized atoms or clusters thereof A conductive probe arranged facing the direction, a detector that detects the ion current generated when ionized atoms or clusters thereof reach the probe, and 1. A film thickness monitoring device, comprising: an arithmetic control unit that determines the thickness of the film.
JP15656586A 1986-07-02 1986-07-02 Film thickness monitor Pending JPS6311808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15656586A JPS6311808A (en) 1986-07-02 1986-07-02 Film thickness monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15656586A JPS6311808A (en) 1986-07-02 1986-07-02 Film thickness monitor

Publications (1)

Publication Number Publication Date
JPS6311808A true JPS6311808A (en) 1988-01-19

Family

ID=15630561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15656586A Pending JPS6311808A (en) 1986-07-02 1986-07-02 Film thickness monitor

Country Status (1)

Country Link
JP (1) JPS6311808A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889794A (en) * 1972-02-09 1973-11-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889794A (en) * 1972-02-09 1973-11-22

Similar Documents

Publication Publication Date Title
US4311725A (en) Control of deposition of thin films
JP2739080B2 (en) Method for performing cathodic sputtering and atomizing device for cathodic sputtering
Biersack et al. Sputtering of potassium chloride by H, He, and Ar ions
JP2989432B2 (en) Aggregated beam generator
Mueller et al. Direct gravimetric calibration of a quartz crystal microbalance
US7368739B2 (en) Multilayer detector and method for sensing an electron beam
KR840005549A (en) Thin Film Thickness Measurement
Mayo et al. Electrostatic measurement of plasma plume characteristics in pulsed laser evaporated carbon
JPS6311808A (en) Film thickness monitor
Hirsch On the mechanism of the Penning discharge
GB2029017A (en) Control of deposition of thin films
JPH11222670A (en) Film thickness monitor and film forming device using this
EP0160479B1 (en) Method and apparatus for forming a thin film
JPH04120270A (en) Method and device for generating cluster ion beam
JPH04116158A (en) Film forming device
Urban III et al. Formation of gold clusters in the ionized clusterbeam deposition technique
JPH0413870A (en) Device for measuring molecule radiation density
JP2688488B2 (en) Micro probe surface analyzer
JP2906420B2 (en) Thickness gauge for vapor deposition equipment
JPH05295541A (en) Vacuum film forming device
JPH0466378B2 (en)
Wang et al. Diffusion of hydrogen into the (110) plane of a tungsten field emitter at low temperatures
JPS62211376A (en) Control device for film growth
JPS60215759A (en) Thin film forming device
JPH1171672A (en) Rod feed source pool height monitoring device