[go: up one dir, main page]

JPH04116158A - Film forming device - Google Patents

Film forming device

Info

Publication number
JPH04116158A
JPH04116158A JP23869690A JP23869690A JPH04116158A JP H04116158 A JPH04116158 A JP H04116158A JP 23869690 A JP23869690 A JP 23869690A JP 23869690 A JP23869690 A JP 23869690A JP H04116158 A JPH04116158 A JP H04116158A
Authority
JP
Japan
Prior art keywords
vapor
deposited
electrodes
substrate holder
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23869690A
Other languages
Japanese (ja)
Inventor
Nobutaka Koshirakawa
古白川 信孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23869690A priority Critical patent/JPH04116158A/en
Publication of JPH04116158A publication Critical patent/JPH04116158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To recognize the state of the vapor deposited film to be formed on the surface of a material to be vapor-deposited by providing plural electrodes on a supporting member which supports the material to be vapor-deposited and measuring the currents flowing in these electrodes. CONSTITUTION:The plural electrodes 31 are provided on the supporting member 13 of the device for depositing an ionized material for vapor deposition on the material 14 to be vapor-deposited supported by using the supporting member 13. The electrodes 31 are insulated from each other by an insulator 32 and the above-mentioned material for vapor deposition is deposited by evaporation on the electrodes 31. The currents flowing in the above-mentioned electrodes 31 are measured to know the vapor deposition rate of the material for vapor deposition vapor depositing on the electrodes 31. The state of the material for vapor deposition vapor-depositing on the material 14 to be vapor-deposited is thus recognized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は膜を形成する膜形成装置、特にイオンクラス
タビーム蒸着装置等の膜形成装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a film forming apparatus for forming a film, particularly to a film forming apparatus such as an ion cluster beam evaporation apparatus.

〔従来の技術〕[Conventional technology]

第3図〜第5図は例えば、文献「イオンクラスタビーム
蒸着装置の自動運転技術(AUTOMATTCOPER
ATION TECI−INIQLIES OF l0
NIZED CLLISTERBEAMDEPOSIT
ION APPARATUS) J  (Proc、1
0th Symp。
Figures 3 to 5 are, for example, illustrated in the literature ``Automatic operation technology for ion cluster beam evaporation equipment (AUTOMATTCOPER)''.
ATION TECI-INIQLIES OF l0
NIZED CLISTER BEAM DEPOSIT
ION APPARATUS) J (Proc, 1
0th Symp.

on l5AT’86)の1図及び8図に示された従来
の膜形成装置であるイオンクラスタビーム(ICB)蒸
着装置(以下ICB蒸着装置という)を示すものであり
、第3図は装置の構成図、第4図は基板ホルダ部の平面
図、第5図は第4図の切断面■−■における基板ホルダ
の断面図である0図において、(1)は蒸着物質(2)
を収容した円筒形のルツボ、(3]はるつぼ(1)の上
面に設けられたノズルであり、るつぼ(1)を介して加
熱された蒸着物質(2)が蒸発して噴出する。(イ)は
このノズル(3)から噴出する蒸気であり、一部にクラ
スター(4a)を含んでいる。
Figures 1 and 8 of 15AT'86) show an ion cluster beam (ICB) evaporation apparatus (hereinafter referred to as ICB evaporation apparatus), which is a conventional film forming apparatus, and Fig. 3 shows the configuration of the apparatus. 4 is a plan view of the substrate holder part, and FIG. 5 is a cross-sectional view of the substrate holder along the cut plane ■-■ in FIG.
(3) is a nozzle installed on the top surface of the crucible (1), and the vapor deposition material (2) heated through the crucible (1) evaporates and spouts out. ) is the steam ejected from this nozzle (3) and partially contains clusters (4a).

(5]はるつぼ(1)を電子衝撃によって加熱するフィ
ラメント、(6)はこのフィラメント((5)に電流を
流して高温にし熱電子を放出させる交流電源、■はフィ
ラメント(51によって放出される電子がるつぼ(1)
に衝突するようにるつぼ(1)の電位をフィラメント(
9の電位よりも高く保つバイアス電圧を与えている第1
の直流電源、矧は蒸気(4)の一部を電子衝突によって
正電荷に電離するための電子を放出するイオン化フィラ
メント、(9)はイオン化フィラメントB)から放出さ
れた熱電子eを加速して、るつぼ(1)から噴出してき
た蒸気(2)に衝突させるグリッド、αO)はイオン化
フィラメント8を発熱させる交流電源、(11)はイオ
ン化フィラメント(8)の電位をグリッド(9)の電位
よりも低く保つ第2の直流電源、く12)は電離された
蒸気(イ)を加速する加速電極、(13)は支持部材で
ある金属製の基板ホルダ、(14)はこの基板ホルダ(
13)に支持された被蒸着物である4枚の円板状の基板
(第4図、第5図参照)、(15)はこの基板(14)
及び基板ホルダ(13)の表面に形成された膜である蒸
着膜、(16)は加速電極(12)の電位をグリッド(
9)の電位よりも低い値に保つ第3の直流電源、(17
)はフィラメント(9と同電位に保たれたるつぼ(1)
の熱シールド板、(18)はるつぼ(1)、蒸着物質■
、基板ホルダ(13)、基板(14)等を収容し減圧雰
囲気下におくための真空槽である。
(5) A filament that heats the crucible (1) by electron bombardment, (6) is an AC power source that passes current through this filament ((5) to raise it to a high temperature and emit thermionic electrons, and ■ is a filament (emitted by 51). Electron crucible (1)
Change the potential of the crucible (1) so that it impinges on the filament (
The first voltage is applied with a bias voltage that is kept higher than the potential of 9.
A DC power source is an ionizing filament that emits electrons to ionize a part of the steam (4) into a positive charge by electron collision. , a grid that collides with the steam (2) ejected from the crucible (1), αO) is an AC power source that causes the ionization filament 8 to generate heat, and (11) is a grid that makes the potential of the ionization filament (8) lower than the potential of the grid (9). 12) is an accelerating electrode that accelerates the ionized vapor (A); (13) is a metal substrate holder that is a support member; (14) is this substrate holder (
13) are supported by four disk-shaped substrates (see Figures 4 and 5), which are the objects to be deposited, and (15) is this substrate (14).
and a vapor deposited film (16) formed on the surface of the substrate holder (13), the potential of the accelerating electrode (12) is adjusted to the grid (
a third DC power supply that maintains the potential at a value lower than the potential of (17);
) is a crucible (1) kept at the same potential as the filament (9)
heat shield plate, (18) crucible (1), vapor deposition material■
, a substrate holder (13), a substrate (14), etc., and is a vacuum chamber for placing them in a reduced pressure atmosphere.

(19)は基板ホルダ(13)の端部に設けられ基板ホ
ルダ(13)の温度を検出するシース熱電対であり、シ
ース(19a)(第5図)が図示しないねじによって基
板ホルダ(13)に固着されかつ電気的に接続されてい
る。(20)はシース熱電対(19)で検出された温度
を指示する温度指示計、(21)は基板ホルダ(13)
及び基板(14)に流入するイオン電流を測定するイオ
ン電流計(21)で、シース熱電対(19)のシース(
19a)を導体として利用し基板ホルダ(13)をイオ
ン電流計(21)に接続している。
(19) is a sheathed thermocouple installed at the end of the substrate holder (13) to detect the temperature of the substrate holder (13), and the sheath (19a) (Fig. 5) is attached to the substrate holder (13) by a screw (not shown). is fixed to and electrically connected to. (20) is a temperature indicator that indicates the temperature detected by the sheath thermocouple (19), (21) is the substrate holder (13)
and an ion ammeter (21) that measures the ion current flowing into the substrate (14).
19a) as a conductor to connect the substrate holder (13) to the ion ammeter (21).

なお、図示していないが、シース熱電対(19)で測定
された基板ホルダ(13)の温度やイオン電流計(21
)で測定されたイオン電流等の計測データを記憶、制御
、表示する計測制御盤が別途設けられている。
Although not shown, the temperature of the substrate holder (13) measured with a sheath thermocouple (19) and the ion ammeter (21)
) A measurement control panel is separately provided to store, control, and display measurement data such as ion current measured by the ion current.

次に動作について説明する。フィラメント(町は交流電
源(6)により加熱され熱電子が放出され、放出された
熱電子は第1の直流電源(至)によってるつぼ(1)に
与えられた正の電圧により熱電子がるつぼ(1)に衝突
してるつぼ(1)を加熱する。るつぼ(1)内の蒸着物
質口はるつぼ(1)を介して加熱されて蒸発し、ノズル
(3)より減圧雰囲気中に噴出する。噴出した蒸気(4
)は、イオン化フィラメント(8)から飛び出しグリッ
ド(9)に引き出された電子eと衝突して、電離されて
正電荷を有するイオンになる。この正イオンは加速電極
(12)による電界によって加速され基板(14)に衝
突し蒸着膜(15)が形成される。
Next, the operation will be explained. The filament (town) is heated by the AC power supply (6) and thermionic electrons are emitted, and the emitted thermionic electrons are transferred to the crucible (1) by the positive voltage applied to the crucible (1) by the first DC power supply (to). 1) and heats the crucible (1).The evaporated material in the crucible (1) is heated and evaporated through the crucible (1), and is ejected into the reduced pressure atmosphere from the nozzle (3).Gushing steam (4
) collides with the electron e which has jumped out from the ionized filament (8) and has been drawn out to the grid (9), and is ionized into positively charged ions. These positive ions are accelerated by the electric field generated by the accelerating electrode (12) and collide with the substrate (14) to form a deposited film (15).

この時、基板(14)と基板ホルダ(13)とに流れ込
んでくる(基板(14)は基板ホルダ(13)に電気的
に接続されている)イオン電流の量は、シース熱電対(
19)のシース(19a)を通してイオン電流計(21
)に導かれて計測される。また、基板ホルダ(13)の
温度はシース熱電対(19)によって検出され、温度指
示計(20)により計測される。
At this time, the amount of ion current flowing into the substrate (14) and substrate holder (13) (the substrate (14) is electrically connected to the substrate holder (13)) is determined by the amount of ion current flowing into the sheathed thermocouple (
The ion ammeter (21) is passed through the sheath (19a) of the
) is guided and measured. Further, the temperature of the substrate holder (13) is detected by a sheathed thermocouple (19) and measured by a temperature indicator (20).

なお、るつぼ(1)内から蒸発し基板(14)や基板ホ
ルダ(13)に到達する電離された蒸気(イ)の単位面
積当りの量、すなわちイオン電流密度は基板ホルダ(1
3)上の全蒸着面積に亘って一定ではなく、蒸着条件等
によって個別の分布を有しており、この例においては基
板ホルダ(13)上の主として半径方向に偏った分布を
持っている。
Note that the amount per unit area of ionized vapor (a) that evaporates from inside the crucible (1) and reaches the substrate (14) and substrate holder (13), that is, the ion current density, is
3) It is not constant over the entire evaporation area on the substrate holder (13), but has an individual distribution depending on the evaporation conditions, etc. In this example, it has a distribution mainly biased in the radial direction on the substrate holder (13).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の薄膜形成装置は以上のように構成されているので
、基板(14)と基板ホルダ(13)とを合せた全体に
到達する合計のイオン電流量しか測定できず、個々の基
板(14)に到達するイオン電流量を測定することがで
きず、また、基板ホルダ(13)上の例えば半径方向の
分布、すなわち基板(14)上の分布を知ることもでき
なかった。従って、基板(14)に形成される膜の状態
を的確に把握することが困難であった。
Since the conventional thin film forming apparatus is configured as described above, it is possible to measure only the total amount of ion current that reaches the entire substrate (14) and substrate holder (13), and only the amount of ion current that reaches the entire substrate (14) and the substrate holder (13). It was not possible to measure the amount of ion current reaching the ion current, and it was also not possible to know the distribution, for example, in the radial direction on the substrate holder (13), that is, the distribution on the substrate (14). Therefore, it has been difficult to accurately grasp the state of the film formed on the substrate (14).

この発明は上記のような問題点を解消するためになされ
たものであり、被蒸着物に形成される膜の状態を知るこ
とができる膜形成装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it is an object of the present invention to provide a film forming apparatus that allows the state of a film formed on an object to be deposited to be known.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る膜形成装置は、被蒸着物を支持する支持
部材に互いに絶縁され蒸発物質が蒸着する複数の電極を
設けこの各電極に流れる電流を知ることができるように
したものである。
In the film forming apparatus according to the present invention, a plurality of electrodes that are insulated from each other and on which an evaporation substance is deposited are provided on a support member that supports an object to be deposited, and the current flowing through each electrode can be determined.

〔作用〕[Effect]

二の発明においては、電極を流れる電流を知ることによ
り各電極に蒸着する蒸発物質の蒸着速度が分かる。各電
極は支持部材に被蒸着物とともに配設されているのて、
各電極に蒸着する蒸発物質の蒸着速度を知って被蒸着物
への蒸着物質の蒸着状態を把握できる。
In the second invention, by knowing the current flowing through the electrodes, the deposition rate of the vaporized substance deposited on each electrode can be determined. Since each electrode is disposed on the support member together with the material to be deposited,
By knowing the deposition rate of the evaporation substance deposited on each electrode, the state of the evaporation substance on the object to be evaporated can be grasped.

〔発明の実施例〕[Embodiments of the invention]

第1図、第2図はこの発明の一実施例の要部を示すもの
であり、第1図は基板ホルダ部の平面図、第2図は第1
図における切断面■−■における断面を示す断面図であ
る。(31)は電極であるイオン電流検出板、(32)
は絶縁碍子であり、イオン電流検出板(31)は絶縁碍
子(32)を介して基板ホルダ(13)に支持され、第
1図に示されるように基板ホルダ(13)上の基板(1
4)の間に十字状に計9個配設されている。(33)は
イオン電流計[1!であり、イオン電流検出板(31)
に流入するイオン電流を図示しないイオン電流計に個別
に導く。
1 and 2 show essential parts of an embodiment of the present invention, FIG. 1 is a plan view of the substrate holder section, and FIG.
FIG. 2 is a sectional view showing a cross section taken along the cutting plane ■-■ in the figure. (31) is an ion current detection plate which is an electrode, (32)
is an insulator, and the ion current detection plate (31) is supported by the substrate holder (13) via the insulator (32), and as shown in FIG.
A total of 9 pieces are arranged in a cross shape between 4). (33) is an ion ammeter [1! and an ion current detection plate (31)
The ion current flowing into the ion current is individually guided to an ion ammeter (not shown).

その他の構成については、第4図に示された従来例と同
様であるので、相当するものに同一符号を付して説明を
省略する。
The rest of the structure is the same as that of the conventional example shown in FIG. 4, so corresponding parts are given the same reference numerals and explanations will be omitted.

以咥のように構成されたICB蒸着装置において、るつ
ぼ(1)内から発生しt離された蒸気4が基板(14)
、基板ホルダ(13)及びイオン電流検出板(31)に
到達して蒸着される。従って、イオン電流検出板(31
)を流れるイオン電流を測定することによりイオン電流
検出板(31)に蒸着する蒸着物質の量を知ることがで
き、基板ホルダ(13)上のイオン電流密度の分布が分
る。
In the ICB vapor deposition apparatus configured as shown above, vapor 4 generated from inside the crucible (1) and separated from the substrate (14)
, reaches the substrate holder (13) and the ion current detection plate (31) and is deposited. Therefore, the ion current detection plate (31
) By measuring the ion current flowing through the ion current detection plate (31), it is possible to know the amount of evaporation material deposited on the ion current detection plate (31), and the distribution of ion current density on the substrate holder (13) can be determined.

これに基づいて基板(14)に流入するイオン電流の密
度、分布、総量を計算により求めて、基板(14)上に
形成される膜の状態を推測できる。
Based on this, the density, distribution, and total amount of ion current flowing into the substrate (14) are calculated, and the state of the film formed on the substrate (14) can be estimated.

また、基板(14)上に所期の膜が形成されていること
を把握することにより膜の品質を保証することができる
Further, by knowing that the desired film is formed on the substrate (14), the quality of the film can be guaranteed.

さらに、膜の状態を把握して必要に応じて装置の調整を
行なうこともできる。
Furthermore, it is also possible to grasp the state of the membrane and adjust the device as necessary.

なお、第1区に示された一実施例において、各基板(1
4)を絶縁物を介して基板ホルダ(13)に支持させて
各基板(14)に流れる電流を測定し、基板(14)の
状態を全体的に把握し、あるいは上記計算結果と対比さ
せて確認する方法を併用しても良い。
In addition, in one embodiment shown in the first section, each substrate (1
4) is supported by the substrate holder (13) via an insulator, and the current flowing through each substrate (14) is measured to understand the overall condition of the substrate (14) or to compare it with the above calculation results. You may also use a confirmation method.

なお、上記実施例ではICB蒸着装置を例にとって説明
したが、他のイオンビーム装置、たとえば、イオンブレ
ーティング装置、イオン注入装置等に適用しても同様の
効果を奏する。
Although the above embodiments have been explained using an ICB deposition apparatus as an example, similar effects can be obtained even if the present invention is applied to other ion beam apparatuses, such as ion blating apparatuses and ion implantation apparatuses.

また、この発明においては、蒸発は固体からの蒸発(昇
華)を含むものとして用いている。
Further, in this invention, evaporation is used to include evaporation (sublimation) from a solid.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、被蒸着物を支持する支
持部材に互いに絶縁され蒸発物質が蒸着する複数の電極
を設けこの各電極に流れる電流を知ることができるよう
にしたので、被蒸着物に形成される膜の状態を把握する
ことができる。
As described above, according to the present invention, a plurality of electrodes that are insulated from each other and on which the evaporation material is deposited are provided on the support member that supports the object to be evaporated, and it is possible to know the current flowing through each electrode. It is possible to understand the state of films formed on objects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はこの発明の一実施例の要部を示すもの
で、第1図は基板ホルダ部の平面図、第2図は第1図に
おける切断面■−■における断面図、第3図〜第5図は
従来のJCB蒸着装置を示すもので、第3図はICB蒸
着装置の構成図、第4図は基板ホルダ部の平面図、第5
図は第4図における切断面■−■における断面図である
。 図において、(2)は蒸着物質、(2)は蒸気、(8)
はイオン化フィラメント、(9)はグリッド、(13)
は基板ホルダ、(14)は基板、(15)は蒸着膜(3
1)はイオン電流検出板、(32)は絶縁碍子、(33
)はイオン電流計測線である。 なお、各図中同一符号は同−又は相当部分を示す。
1 and 2 show essential parts of an embodiment of the present invention, FIG. 1 is a plan view of the substrate holder section, FIG. 2 is a cross-sectional view taken along the cut plane ■-■ in FIG. 3 to 5 show a conventional JCB evaporation apparatus, in which FIG. 3 is a configuration diagram of an ICB evaporation apparatus, FIG. 4 is a plan view of the substrate holder section, and FIG.
The figure is a sectional view taken along the section line ■--■ in FIG. 4. In the figure, (2) is the vapor deposition material, (2) is the vapor, and (8)
is an ionized filament, (9) is a grid, (13)
is a substrate holder, (14) is a substrate, and (15) is a deposited film (3).
1) is an ion current detection plate, (32) is an insulator, (33)
) is the ion current measurement line. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  電離された蒸発物質を支持部材により支持された被蒸
着物に蒸着させる模形成装置において、上記支持部材に
互いに絶縁され上記蒸発物質が蒸着する複数の電極を設
けこの各電極を流れる電流を知る得るようにしたことを
特徴とする模形成装置。
In a modeling apparatus for depositing an ionized evaporative substance onto an object to be evaporated supported by a supporting member, a plurality of electrodes are provided on the supporting member and are insulated from each other and on which the evaporative substance is deposited, and it is possible to determine the current flowing through each electrode. A model forming device characterized by:
JP23869690A 1990-09-05 1990-09-05 Film forming device Pending JPH04116158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23869690A JPH04116158A (en) 1990-09-05 1990-09-05 Film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23869690A JPH04116158A (en) 1990-09-05 1990-09-05 Film forming device

Publications (1)

Publication Number Publication Date
JPH04116158A true JPH04116158A (en) 1992-04-16

Family

ID=17033941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23869690A Pending JPH04116158A (en) 1990-09-05 1990-09-05 Film forming device

Country Status (1)

Country Link
JP (1) JPH04116158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6009645A (en) * 1997-06-02 2000-01-04 Matsushita Electric Industrial Co., Ltd. Steam iron with spray mist

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6009645A (en) * 1997-06-02 2000-01-04 Matsushita Electric Industrial Co., Ltd. Steam iron with spray mist

Similar Documents

Publication Publication Date Title
JP5160730B2 (en) Beam plasma source
US5656141A (en) Apparatus for coating substrates
JPH0132627B2 (en)
JPH08505434A (en) Equipment for plasma-assisted fast electron beam evaporation
JPS5843861B2 (en) Ion beam bombardment device
JP2619068B2 (en) Thin film forming equipment
JPH04358060A (en) Method and apparatus for forming thin film
JPH04235276A (en) Device for coating substrate
Boxman et al. Characterization of a 1 kA vacuum arc plasma gun for use as a metal vapour deposition source
JPH04116158A (en) Film forming device
JPS63472A (en) Vacuum device for forming film
JP2977862B2 (en) Plasma generator
Akan et al. Variation in thickness of copper films deposited at various distances and angles using the thermionic vacuum arc
JPH0826456B2 (en) Ion source and diamond-like carbon thin film manufacturing apparatus equipped with this ion source
Golan et al. Novel method of low-vacuum plasma triode sputtering
JP2768960B2 (en) Thin film forming equipment
JP2906420B2 (en) Thickness gauge for vapor deposition equipment
JPS6199670A (en) Ion plating device
JPH04120271A (en) Method and device for generating cluster ion beam
JP2702235B2 (en) Thin film forming equipment
JPH04168266A (en) Method and device for ion beam film formation
JPS6311808A (en) Film thickness monitor
JPH0466378B2 (en)
JP2000357452A (en) Manufacture for cold cathode element
JPH03247756A (en) Method and device for generating ionized cluster beam