[go: up one dir, main page]

JPS63114949A - Manufacturing method of high-strength aluminum alloy material with excellent weldability - Google Patents

Manufacturing method of high-strength aluminum alloy material with excellent weldability

Info

Publication number
JPS63114949A
JPS63114949A JP26057686A JP26057686A JPS63114949A JP S63114949 A JPS63114949 A JP S63114949A JP 26057686 A JP26057686 A JP 26057686A JP 26057686 A JP26057686 A JP 26057686A JP S63114949 A JPS63114949 A JP S63114949A
Authority
JP
Japan
Prior art keywords
welding
alloy
temperature
present
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26057686A
Other languages
Japanese (ja)
Inventor
Haruyumi Kosuge
張弓 小菅
Katsuaki Kamio
神尾 勝秋
Jiro Matsumoto
二郎 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP26057686A priority Critical patent/JPS63114949A/en
Publication of JPS63114949A publication Critical patent/JPS63114949A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「発明の目的」 産業上の利用分野 本発明は溶融池を十分に形成させて溶接するMIG、T
IG、スポット抵抗溶接等に使用する溶接性の良好な高
力アルミニウム合金材の製造法に関する。
Detailed Description of the Invention ``Object of the Invention'' Industrial Field of Application The present invention is directed to an MIG, T
This invention relates to a method of manufacturing a high-strength aluminum alloy material with good weldability for use in IG, spot resistance welding, etc.

従来の技術 アルミニウムまたはその合金を用い大型構造物を溶接し
て得るには、A5083 (Al−Mg系合金) 、7
N01  (Al−Zn−Mg系合金)の如きを用いる
ことが必要である。
Conventional technology In order to weld large structures using aluminum or its alloy, A5083 (Al-Mg alloy), 7
It is necessary to use a material such as N01 (Al-Zn-Mg alloy).

即ち溶接方法としては溶接部に溶融池を十分に形成させ
るMIG、TIG、スポット抵抗溶接法、および溶接部
に高エネルギーを付加して溶接部を可及的少量としたフ
ラッシュパッド溶接法、電子ビーム溶接法等多くの溶接
法が知られているが溶融池を充分に形成した溶接法で大
型構造物を得るには上記のような合金を用いることが必
要である。
In other words, the welding methods include MIG, TIG, spot resistance welding, which forms a sufficient molten pool in the weld, flash pad welding, which applies high energy to the weld to minimize the weld, and electron beam welding. Although many welding methods such as welding are known, it is necessary to use the above-mentioned alloys in order to obtain large structures by welding in which a sufficient molten pool is formed.

つまり溶融池を可及的少量とした溶接法は、溶融池が急
冷されることと、母材に対して熱影響が少ないことから
、溶融池が凝固する際に割れ易い素材であったり、母材
が熱影響を受けて割れ易い素材であったりするような場
合に優れた方法である。
In other words, welding methods with as small a molten pool as possible require the molten pool to be rapidly cooled and have little thermal effect on the base metal, which may cause the weld pool to solidify if the material is easily cracked or the base metal. This is an excellent method when the material is easily damaged by heat.

しかし前記フラッシュパッド溶接法は、溶接部全面に高
電圧を印加して瞬時に溶接する方法であるから、開先部
の加工精度が高く求められることと、溶接部全面に高エ
ネルギーを発生させる必要性から、溶接部の大きな構造
物をこの方法で溶接する場合は、開先部の高精度の加工
が困難であったり、高電圧印加設備の大きさに限界があ
るなど、何れの理由からしても溶接部の大きな構造物を
溶接できない。このことは前記電子ビーム溶接法におい
ても殆んど同然で、溶接部に電子ビームを照射して溶接
する方法であるので、溶接部間隙を狭くしかも均一にす
ることが必要であり、溶接部の大きな構造物をこの方法
で溶接する場合は、開先部のこのような高精度加工が困
難であって、溶接部の大きな構造物を溶接できないこと
は上記同様である。これらに対し、溶接部の溶融池を十
分に形成させる溶接法は溶融池の量を可及的に少量とし
た前記のものに比し、開先部の加工公差、電圧、電流、
または入熱量等の溶接条件を比較的広範囲に設定するこ
とができ、しかも設備費が低度であることから、小さい
構造物のみならず大きな構造物まで種々構造物の溶接に
広く適用されているが、そのためには上記A3083.
7NO1のような合金を採用すべきものとされている。
However, since the flash pad welding method applies high voltage to the entire surface of the welding area to perform instantaneous welding, it requires high precision in processing the groove and it is necessary to generate high energy over the entire surface of the welded area. Due to its nature, when welding structures with large welds using this method, it is difficult to process the groove with high precision, or there are limits to the size of high voltage application equipment, etc. However, structures with large welded areas cannot be welded. This is almost the same in the electron beam welding method mentioned above.Since the welding process is performed by irradiating the welded area with an electron beam, it is necessary to make the welding area narrow and uniform. When welding a large structure using this method, it is difficult to perform such high-precision machining of the groove, and as described above, a structure with a large welded portion cannot be welded. On the other hand, the welding method that forms a sufficient molten pool at the welded part requires the welding process to minimize the amount of molten pool as much as possible.
Alternatively, it is possible to set welding conditions such as heat input over a relatively wide range, and the equipment cost is low, so it is widely applied to welding various structures, not only small structures but also large structures. However, for that purpose, the above A3083.
It is said that an alloy such as 7NO1 should be used.

発明が解決しようとする問題点 一般に、A7075合金に代表されるAj?−Zn−M
g−Cu系合金は、アルミニウム合金の中でも最も強度
が高く、航空機を始めとして強度性の要求される構造材
として枢要である。然しこのAff−Zn −Mg−C
u系合金材を上述の溶接部に溶融池を十分に形成させて
溶接する溶接法で溶接した場合に、第1図に示すように
溶融池が凝固して形成される母材同志の溶着金属部1に
割れ2が発生し易く、また母材10における溶接熱形舌
部11に微細な割れ(以下、ミクロ割れと言う)12が
発生し易いことは公知の如くである。そのためにこの系
の合金母材を溶融池を十分に形成させて溶接する上述の
MIG、TIG、スポット抵抗溶接法等によって溶接し
、構造物に組み立てることができず、特に大型構造物の
場合においては前記のように溶融池の少い溶接が採用で
きないことから、専らリベットを用いた加工工数が大で
、生産性の低い方法で組立て接合することが要請される
Problems to be Solved by the Invention In general, the Aj? -Zn-M
G-Cu alloys have the highest strength among aluminum alloys, and are important as structural materials that require high strength, including aircraft. However, this Aff-Zn-Mg-C
When U-based alloy materials are welded by the above-mentioned welding method in which a molten pool is sufficiently formed in the welded part, the molten pool solidifies and the weld metal is formed between the base metals, as shown in Figure 1. It is well known that cracks 2 are likely to occur in the portion 1 and minute cracks (hereinafter referred to as micro-cracks) 12 are likely to occur in the hot welding tongue portion 11 of the base material 10. For this reason, it is not possible to assemble this type of alloy base material into a structure by welding it by the above-mentioned MIG, TIG, spot resistance welding method, etc., which sufficiently forms a molten pool, and especially in the case of large structures. Since welding with a small molten pool cannot be used as described above, it is required to assemble and join using a method that requires a large number of processing steps and has low productivity, exclusively using rivets.

「発明の構成」 問題点を解決するための手段 Zn: 5.0〜7.0wt%、Mg : 1. 0〜
3.0wt%、Cu : 0.5〜1.8wt%、Z 
r : 0.05〜0.20wt%、V : 0.03
〜0.20wt%、T i : 0.02〜0.15w
t%を含有し、しかもZr、■およびTiの合計含有量
を0.10〜0.40wt%の範囲となし、残部がA1
と不純物とよりなる鋳塊を、400〜460℃の温度で
8〜24時間保持して第1段階の均質化処理を施こし、
次いで480〜520°Cの温度で8〜24時間保持し
て第2段階の均質化処理を行い、爾後常法による展伸加
工処理を施こすことを特徴とする溶接性に優れた高力ア
ルミニウム合金材の製造法。
"Structure of the invention" Means for solving the problem Zn: 5.0 to 7.0 wt%, Mg: 1. 0~
3.0wt%, Cu: 0.5-1.8wt%, Z
r: 0.05-0.20wt%, V: 0.03
~0.20wt%, Ti: 0.02~0.15w
t%, and the total content of Zr, ■ and Ti is in the range of 0.10 to 0.40wt%, and the balance is A1.
The ingot consisting of impurities is held at a temperature of 400 to 460 ° C for 8 to 24 hours to perform the first stage homogenization treatment,
A high-strength aluminum with excellent weldability, characterized in that it is then held at a temperature of 480 to 520°C for 8 to 24 hours to perform a second stage homogenization treatment, and then subjected to a stretching treatment by a conventional method. Manufacturing method for alloy materials.

作用 Zn 、Mg 、Cuの含有量を、−t%(以下単に%
という)で、Zn  : 5.0〜7.0%、Mg:1
.0〜3.0°%、Cu  :o、s 〜1.8%とし
、前記したようなA 1− Zn −Mg−Cu系のア
ルミニウム高力合金としての強度を付与する。
The content of Zn, Mg, and Cu is -t% (hereinafter simply referred to as %).
), Zn: 5.0 to 7.0%, Mg: 1
.. 0 to 3.0°% and Cu: o, s to 1.8% to provide strength as an A 1-Zn-Mg-Cu-based aluminum high-strength alloy as described above.

又Zr % V、Tiの含有量を、Zr:0005〜0
.20%、V:0.03〜0.20%、Ti:0.02
〜0.15%とする共に、これらZ r 、、 V %
 T i の合計量を0.10〜0.40%とすること
によって、溶融池を充分に形成させて溶接するM I 
G、 TIG、スポット抵抗などの溶接法で溶接したと
きの溶着金属部に発生する割れを防止する。
In addition, the content of Zr % V, Ti, Zr: 0005 ~ 0
.. 20%, V: 0.03-0.20%, Ti: 0.02
~0.15% and these Z r ,, V %
By setting the total amount of T i to 0.10 to 0.40%, welding can be performed with sufficient formation of a molten pool.
Prevents cracks that occur in welded metal parts when welding using welding methods such as G, TIG, and spot resistance.

前記のような組成の鋳塊を400〜460℃の温度で8
〜24時間保持する第1段階の均熱処理でAj! −C
u−Mg系などの低融点化合物を再固溶させると共にZ
r 、Vを微細均一に析出させる。
An ingot having the composition as described above is heated at a temperature of 400 to 460°C.
~ Aj in the first stage soaking treatment held for 24 hours! -C
While redissolving low melting point compounds such as u-Mg, Z
r and V are precipitated finely and uniformly.

480〜520℃で8〜24時間の第2段階均熱処理に
よりAj2−Cu−Fe系などの高融点化合物および鋳
造時に偏析したZn 、Mg 、Cuを再固溶させ、し
かも均一に分布させる。
A second stage soaking treatment at 480 to 520° C. for 8 to 24 hours re-dissolves high melting point compounds such as Aj2-Cu-Fe and Zn, Mg, and Cu that were segregated during casting and uniformly distributes them.

これら第1.2段階による均熱処理の結果として溶接時
におけるミクロ割れを防止し、また展伸加工を容易にす
る。
As a result of the soaking treatment in steps 1 and 2, microcracking during welding is prevented and stretching is facilitated.

実施例 上記したような本発明について更に説明するならば、本
発明者等は従来技術の問題点に鑑み鋭意検討を重ねた結
果、アルミニウム合金材を溶融池を十分に形成させて溶
接するMIG、TIG、スポット抵抗溶接法等によって
溶接する場合に、割れおよびミクロ割れ発生しないAA
’−Zn −Mg−Cu系合金材を製造する方法を得る
ことに成功した。
EXAMPLES To further explain the present invention as described above, the inventors of the present invention have conducted extensive studies in view of the problems of the prior art, and have developed an MIG method for welding aluminum alloy materials by sufficiently forming a molten pool. AA that does not generate cracks or microcracks when welding by TIG, spot resistance welding, etc.
We succeeded in obtaining a method for producing a '-Zn-Mg-Cu alloy material.

先ず前述したような本発明に関して、そのAlに対する
各種合金元素に関する添加範囲の限定の理由を述べる以
下の如くである。
First, the reason for limiting the range of addition of various alloying elements to Al in the present invention as described above will be described below.

Zn  :5.0〜7.0% Znは合金材に強度を付与するためのもので、その含有
量が下限値以下ではその効果が十分でなく、またそれが
上限値以上となると応力腐食割れが発生し易くまた溶接
割れ感受性が増加するのでこのような範囲とする。
Zn: 5.0 to 7.0% Zn is used to impart strength to alloy materials, and if its content is below the lower limit, its effect will not be sufficient, and if it exceeds the upper limit, stress corrosion cracking will occur. This range is chosen because it tends to occur and the susceptibility to weld cracking increases.

Mg:1.0〜3.0% Mgも合金材に強度を付与するためのもので、その含有
量がZnと共にその下限値以下ではその効果が充分でな
い。又それが上限値以上となると応力腐食割れが発生し
易くなり、また母材のミクロ割れ発生域受性も増加する
のでこのような範囲とする。
Mg: 1.0 to 3.0% Mg is also used to impart strength to the alloy material, and its effect is not sufficient if its content, along with Zn, is below its lower limit. Moreover, if it exceeds the upper limit, stress corrosion cracking is likely to occur, and the susceptibility of the base material to micro-cracks will also increase, so this range is set.

Cu:Q、5〜1.8% Cuは前記のように5.0%以上のZnおよびMg:1
.0%以上と相俟って合金材に既述した7NOI  C
AII  Zn  Mg系)合金より高い強度を得しめ
るために枢要であって、又耐応力腐食割れ性を付与する
。その含有量が0.5%以下ではそれらの効果を充分に
得ることができず、又それが上限値を超えると溶接割れ
感受性およびミクロ割れ発生に対する感受性が増加する
ことはZnおよびMgの場合と同様であり、1.8%を
上限とすることが必要である。
Cu: Q, 5-1.8% Cu is 5.0% or more of Zn and Mg: 1 as mentioned above
.. In combination with 0% or more, the 7NOI C mentioned above for alloy materials
It is important for achieving higher strength than AII Zn Mg-based alloys, and also provides stress corrosion cracking resistance. If the content is less than 0.5%, these effects cannot be sufficiently obtained, and if the content exceeds the upper limit, the susceptibility to weld cracking and microcracking increases, as is the case with Zn and Mg. Similarly, it is necessary to set the upper limit to 1.8%.

本発明においては上記のようなZn 、MgおよびCu
を共に含有せしめてAI!−Zn  Mg−Cu系高力
アルミニウム合金とするだけではなしに、溶融池を充分
に形成した溶接法で溶接した場合においても溶着金属部
に発生する割れを的確に防止するために、更にZr  
: 0.05〜0.20%、V : 0.03〜0.2
0%、Ti  : 0,02〜0.15%と、Z r 
、V % T rを共存させる。即ちそれによって、溶
着金属部の結晶粒を微細化し、溶接割れを防止し、また
ZrおよびVは耐応力腐食割れ性を向上し、Ti は鋳
塊結晶粒を微細化し鋳造時の凝固割れを防止する。Zr
、■、Tiの何れもが下限値以上に含有されることによ
り、それらの効果が適切にバランスして共に達成され、
しかもその何れか1種が上限値以上となると金属間化合
物の粗大化粒子が発生し易くなって靭性および疲労強度
が低下する。
In the present invention, the above Zn, Mg and Cu
AI! -Zn In addition to making the Mg-Cu based high-strength aluminum alloy, we also added Zr to accurately prevent cracks that occur in the deposited metal even when welding is performed using a welding method that sufficiently forms a molten pool.
: 0.05~0.20%, V: 0.03~0.2
0%, Ti: 0.02~0.15%, Zr
, V%Tr coexist. That is, it makes the crystal grains of the weld metal part finer and prevents weld cracking, Zr and V improve stress corrosion cracking resistance, and Ti makes the ingot crystal grains finer and prevents solidification cracking during casting. do. Zr
, ■, and Ti are both contained in amounts above the lower limit, so that their effects are appropriately balanced and achieved together.
Moreover, if any one of them exceeds the upper limit, coarse particles of the intermetallic compound are likely to be generated, resulting in a decrease in toughness and fatigue strength.

更にZr、V、Tiの合計量が0.10%以下では上述
した共存効果の何れかが不充分とならざるを得ないこと
は計数的に明らかで、しかもそれが0.40%以上とな
るとそれぞれが前記したような上限値を超えていないと
しても、やはり金属間化合物の粗大粒子が発生し易くな
る傾向が認められ、靭性および疲労強度を低下させるこ
ととなる。
Furthermore, it is numerically clear that if the total amount of Zr, V, and Ti is less than 0.10%, any of the above-mentioned coexistence effects will be insufficient, and moreover, if it is more than 0.40%, Even if each does not exceed the above-mentioned upper limit, there is still a tendency for coarse particles of the intermetallic compound to occur easily, resulting in a decrease in toughness and fatigue strength.

なお本発明によるものは、上記したような各元素の外に
、必要に応じて、 B:0.01%以下、 Mn:0.40%以下、Cr:
0.25%以下、 Mo:0.15%以下、Fe:0.
3%以下、  Si:0.25%以下の何れか1種また
は2種以上を含有せしめても本発明によるものの作用効
果を妨げるものではないことが確認されており、従って
このような元素を適宜に含有させることができる。それ
らの上限を超えた添加は、上記したような強度、靭性お
よび溶融池を充分に形成した溶接法においての劃れ発生
を的確に防止するという、夫々の特性を有効に求め得な
くなる嫌いが認められうる。
In addition to the above-mentioned elements, the present invention also contains, if necessary, B: 0.01% or less, Mn: 0.40% or less, Cr:
0.25% or less, Mo: 0.15% or less, Fe: 0.
It has been confirmed that the effects of the present invention are not hindered even if one or more of Si: 0.25% or less is contained. It can be contained in It is recognized that if they are added in excess of the upper limit, it will not be possible to effectively obtain the respective properties such as strength, toughness, and prevention of cracking in a welding method that sufficiently forms a molten pool. It can be done.

本発明によるものは成分組成的に前記したような、Zn
 、、Mg 、Cuと共にZ r % V % T i
の夫々に関する適正な範囲内を選ぶことが必要であるだ
けでなしに、特定の第1、第2段階から成る均質化処理
を必要とするものであって、これらの関係は以下の如く
である。即ち先ず上述したような組成の鋳塊を400〜
460℃の温度で8〜24時間保持して第1段階の均質
化処理を施こす。この処理は鋳塊を鋳造する際に生じた
A4−Cu−Mg系等の低融点化合物を再固溶させると
共にZr、Vを微細均一に析出させて、溶接時の溶接割
れ及びミクロ割れを防止するためのもので、400℃以
下、8時間以下ではその効果が十分でなく、また460
℃以上となると上述の低融点化合物の局部溶融が生じ、
後工程の展伸加工性を劣化させたり、靭性や疲労強度を
低下させる。然して24時間以上保持してもその効果が
飽和してエネルギー損失となる。更に400〜460℃
の温度に加熱昇温する速度は100℃/時間以下とする
ことにより、Zr、■などの添加元素を均一微細に析出
させることができる。この場合昇温カーブは段階状に行
ってもよい。
The product according to the present invention has Zn as described above in terms of composition.
, , Mg , Z r % V % T i together with Cu
It is not only necessary to select an appropriate range for each of the above, but also a homogenization process consisting of a specific first and second stage is required, and the relationship between them is as follows. . That is, first, an ingot having the composition as described above is heated to 400~
The first stage homogenization treatment is carried out by holding at a temperature of 460° C. for 8 to 24 hours. This treatment re-dissolves low melting point compounds such as A4-Cu-Mg system produced when casting the ingot, and also precipitates Zr and V finely and uniformly to prevent weld cracks and micro-cracks during welding. The effect is not sufficient at temperatures below 400°C for 8 hours, and
When the temperature exceeds ℃, local melting of the above-mentioned low melting point compound occurs,
It deteriorates the elongation workability in the post-process, and reduces the toughness and fatigue strength. However, even if it is held for more than 24 hours, the effect will be saturated and energy will be lost. Further 400-460℃
By setting the heating rate to a temperature of 100° C./hour or less, it is possible to uniformly and finely precipitate additional elements such as Zr and (2). In this case, the temperature increase curve may be performed stepwise.

上述したような第1段階の均質化処理を施こした鋳塊に
480〜520℃の温度で8〜24時間の第2段階の均
質化処理を施こす。この処理はAβ−Cu−Fe系等の
高融点化合物および鋳造時に偏析したZn−、Mg S
Cuを再固溶させて、後工程の展伸加工を容易にするた
めのもので、480℃以下、8時間以下ではその効果が
十分でなく、また520℃以上となると部分溶融および
Zr % V等の析出物が粗大となって展伸加工性を劣
化させたり、靭性や疲労強度を低下させる。然して24
時間以上保持してもその効果が飽和し単にエネルギー的
損失となる。
The ingot subjected to the first-stage homogenization treatment as described above is subjected to a second-stage homogenization treatment at a temperature of 480 to 520° C. for 8 to 24 hours. This treatment uses high melting point compounds such as Aβ-Cu-Fe and Zn-, MgS, which segregated during casting.
This is to re-dissolve Cu into a solid solution to facilitate the subsequent stretching process, and the effect is not sufficient if the temperature is below 480°C for 8 hours, and if it is above 520°C, partial melting and Zr % V will occur. These precipitates become coarse and deteriorate drawing workability, toughness and fatigue strength. But 24
Even if it is held for more than a certain period of time, the effect will be saturated and it will simply be an energy loss.

なお上記したような第1.2段階の均質化処理は連続し
て実施し、あるいは非連続で実施することができる。即
ち第1段の均質化熱処理の温度条件および時間が満足さ
れた後に第1段均質化処理温度にそのまま昇温しで連続
して実施しても第1段均質化処理によって既に再固溶さ
れている低融点化合物に局部溶融を生ずることがな(、
そのまま第2段均質化処理に移行して高融点化合物など
の再固溶が行われる。勿論第1段均質化処理してから常
温程度その他の適当な温度に冷却してから再加熱して第
2段の均質化処理を実施してもその作用効果において殆
んど差がなく、再加熱のための若干の熱エネルギーロス
が認められるだけである。
Note that the homogenization treatment in the first and second stages as described above can be carried out continuously or discontinuously. That is, even if the temperature is raised to the temperature of the first homogenization treatment after the temperature conditions and time of the first homogenization heat treatment are satisfied and the process is continued, the solid solution has already been redissolved by the first homogenization treatment. It does not cause local melting of low melting point compounds (,
The process directly proceeds to the second stage homogenization treatment, where high melting point compounds and the like are solid-dissolved again. Of course, even if the first stage homogenization treatment is performed, the second stage homogenization treatment is performed by cooling to room temperature or other suitable temperature and then reheating, there is almost no difference in the operation and effect. Only some thermal energy loss due to heating is observed.

上記したようにして第1段および第2段の均質化処理を
行った鋳塊は、その後熱間または冷間における押出、圧
延、鍛造等の展伸加工を施し、所要の形状とされる。こ
の場合の熱間加工は380〜480℃の温度範囲で実施
することが好ましい。
The ingot that has been subjected to the first and second homogenization treatments as described above is then subjected to a drawing process such as hot or cold extrusion, rolling, forging, etc., to form a desired shape. The hot working in this case is preferably carried out at a temperature range of 380 to 480°C.

即ち380℃以下では折角の加熱であっても加工が困難
であることから必然的に加工回数を多くすることが必要
であって生産性を低下し、或いは設備的に不利で、また
480℃以上となると熱間割れが生じ易くなるからであ
る。更に熱間加工率を50%以上とすると熱間加工組織
が十分に発達し、溶接時のミクロ割れ防止に効果がある
。熱間加工を施した後に、必要に応じて冷間加工を施こ
す。
In other words, at temperatures below 380°C, processing is difficult even with careful heating, so it is necessary to increase the number of processing cycles, which reduces productivity or is disadvantageous in terms of equipment, and above 480°C This is because hot cracking is likely to occur. Further, when the hot working ratio is set to 50% or more, the hot working structure is sufficiently developed, which is effective in preventing microcracks during welding. After hot working, cold working is performed as necessary.

爾後常法によって溶体化処理、時効処理を施こす。Thereafter, solution treatment and aging treatment are performed using conventional methods.

次に本発明によるものの具体的な製造例について説明す
ると以下の如くである。
Next, a specific manufacturing example of the product according to the present invention will be described as follows.

製造例1 第1表に示す組成を有する70nX200+nの断面形
状の鋳塊を半連続鋳造法により鋳塊した。
Production Example 1 An ingot having a cross-sectional shape of 70n×200+n having the composition shown in Table 1 was cast by a semi-continuous casting method.

即ち合金1〜8のものは何れも本発明によるもので、1
〜5はZn SMg−、Cuが一定で、Zr5V ST
 i量を変化させたものであり、6〜8はZr、V、T
iが一定で、Zn−、Mg % Cuを変化させたもの
である。このような本発明のものに対して比較材では合
金AはZrが本発明範囲に達せず、合金BはZrが本発
明範囲以上であり、又合金CはZr 、、V% Tiの
夫々は本発明範囲内であるがそれらの合計量が0.4%
以上で本発明範囲を超えている。更に合金りはv1合合
金はTiが本発明範囲に達せず、合金Eは■、合金Gは
Tiが本発明の上限を超えている。然して合金HはZn
、合金JはMg、合金りはCuが本発明範囲に達しない
のに対し、合金■はZns合金にはMg 、合金MはC
uが夫々本発明の範囲を超えたものであって、その他の
成分は何れも本発明の条件を満足している。
That is, alloys 1 to 8 are all according to the present invention, and 1
~5 is Zn SMg-, Cu is constant, Zr5V ST
6 to 8 are Zr, V, T
i is constant and Zn-, Mg%Cu is varied. Compared to the comparative materials of the present invention, Alloy A has Zr below the present invention range, Alloy B has Zr above the present invention range, and Alloy C has Zr, V% Ti, and V% Ti. Within the scope of the present invention, but their total amount is 0.4%
The above is beyond the scope of the present invention. Further, the Ti of the v1 alloy does not reach the range of the present invention, the Ti of the alloy E exceeds the upper limit of the present invention, and the Ti of the alloy G exceeds the upper limit of the present invention. However, alloy H is Zn
, alloy J has Mg and alloy alloy Cu does not reach the range of the present invention, while alloy ■ has Mg in Zns alloy and alloy M has C.
Each of u is beyond the scope of the present invention, and all other components satisfy the conditions of the present invention.

第1表 上記のようにして得られた各鋳塊を80℃/HrO昇温
速度で加熱し、440℃の温度で12時間保持して第1
段階の均質化処理を施こし、更にこの鋳塊を480℃の
温度で12時間保持して第2段階の均質化処理を施こし
た。次にこの鋳塊を440℃の温度として12n+厚さ
まで熱間圧延し、次いで470℃の温度で30分間保持
して溶体化処理をし、水焼入後120℃の温度で24時
間保持して人工時効(T6処理)を施こし供試材とした
Table 1 Each ingot obtained as described above was heated at a heating rate of 80°C/HrO and held at a temperature of 440°C for 12 hours.
A step homogenization treatment was performed, and the ingot was further held at a temperature of 480° C. for 12 hours to perform a second step homogenization treatment. Next, this ingot was hot rolled to a thickness of 12n+ at a temperature of 440°C, then solution treated by holding at a temperature of 470°C for 30 minutes, and after water quenching, it was held at a temperature of 120°C for 24 hours. A test material was subjected to artificial aging (T6 treatment).

このような供試材を次の第2表に示す溶接条件で溶接し
た。
These test materials were welded under the welding conditions shown in Table 2 below.

第2表  MIC溶接条件 溶加材;A5183WY−1,6龍径 (/j!−0.8%Mn−4.8%Mg−0,15%C
r)第3表にT6状態の供試材の機械的性質、応力腐食
割れ寿命、粗大粒子の有無および溶接性の評価の結果を
示す。尚、評価は以下のような評価基準に基づいて行っ
た。
Table 2 MIC welding conditions filler metal; A5183WY-1,6 dragon diameter (/j!-0.8%Mn-4.8%Mg-0,15%C
r) Table 3 shows the results of evaluation of mechanical properties, stress corrosion cracking life, presence or absence of coarse particles, and weldability of the test materials in the T6 state. Note that the evaluation was performed based on the following evaluation criteria.

評価基準 (1)T6状態の引っ張り強度が50kg/w”以上で
あることを高力合金の要件とした。
Evaluation Criteria (1) A high-strength alloy was required to have a tensile strength in the T6 state of 50 kg/w'' or more.

(2176状態の応力腐食割れ寿命は、圧延方向に直角
方向に0.2%耐力の75%の曲げ応力を負荷し、CH
3CO0Hでpl’14に調整した3%NaC1−0,
5%KzCrzCh水溶液に浸漬し、割れの発生するま
での日数とした。
(The stress corrosion cracking life in the 2176 state is calculated by applying a bending stress of 75% of the 0.2% proof stress in the direction perpendicular to the rolling direction, and CH
3% NaCl-0 adjusted to pl'14 with 3COOH,
The sample was immersed in a 5% KzCrzCh aqueous solution, and the number of days until cracking occurred was determined.

(3)金属間化合物の粒子は、20μm以上のものを粗
大粒子とし、粗大粒子存在の有無を光学顕微鏡により観
察し判定した。
(3) Particles of intermetallic compounds having a diameter of 20 μm or more were considered coarse particles, and the presence or absence of coarse particles was determined by observing with an optical microscope.

(4)溶接性の評価は、溶融池凝固部に発生する割れの
有無を目視により、また溶接熱影響部に発生するミクロ
割れの有無を光学顕微鏡により観察し判定した。
(4) Weldability was evaluated by visually observing the presence or absence of cracks occurring in the solidified portion of the molten pool, and by observing with an optical microscope the presence or absence of microcracks occurring in the weld heat affected zone.

第3表の結果より、本発明例によるものはいずれも必要
条件を満足しているのに対して、本発明の組成範囲を外
れる比較例によるものはいずれかの評価基準を満足せず
、溶接用高力構造部材としては好ましくないことが判る
From the results in Table 3, it can be seen that all of the examples according to the present invention satisfy the necessary conditions, whereas those according to the comparative examples outside the composition range of the present invention do not satisfy any of the evaluation criteria, and the welding It can be seen that this is not preferable as a high-strength structural member.

製造例2 前記した製造例1における第1表に示した合金番号lお
よび6の組成を有する鋳塊を製造例1と同様に鋳造し、
該鋳塊を80℃/時間の昇温速度で加熱し、次の第4表
に示す条件で均質化処理を施こした。
Production Example 2 Ingots having the compositions of alloy numbers 1 and 6 shown in Table 1 in Production Example 1 described above were cast in the same manner as Production Example 1,
The ingot was heated at a temperature increase rate of 80° C./hour and subjected to homogenization treatment under the conditions shown in Table 4 below.

第4表 即ち第4表において、e、「は第2段階の均質化処理を
行わず、特にfは第1段均質化の温度が高い場合であり
、又gは第1段均質化の温度が低く、hは第2段均質化
の時間が不充分で、iは第2段均質化の温度が高い場合
である。
In Table 4, e and `` are cases where the second stage homogenization treatment is not performed, particularly f is the case where the temperature of the first stage homogenization is high, and g is the temperature of the first stage homogenization. is low, h is the case where the time for the second stage homogenization is insufficient, and i is the case where the temperature of the second stage homogenization is high.

上記した第4表のように均質化処理されたものは引続き
それらの鋳塊を420℃の温度として121重厚さまで
熱間圧延し、その後に470℃の温度で40分間保持し
て溶体化処理をし、水焼入れ後120℃の温度で24時
間保持して人工時効(T6処理)を施こし供試材とした
For the homogenized ingots as shown in Table 4 above, the ingots were subsequently hot rolled to a thickness of 121 at a temperature of 420°C, and then solution treated by holding at a temperature of 470°C for 40 minutes. After water quenching, the material was maintained at a temperature of 120° C. for 24 hours to undergo artificial aging (T6 treatment) to obtain a test material.

このような供試材を前記した第2表に示したところと同
じ条件で溶接した。
These test materials were welded under the same conditions as shown in Table 2 above.

次の第5表にT6状態の供試材の機械的性質、応力腐食
割れ寿命、溶接性および溶接部の応力腐食割れ寿命の評
価結果を示す。応力腐食割れ寿命および溶接性の評価基
準は製造例1の場合と同様である。また、溶接部の応力
腐食割れ寿命の評価は、溶融池凝固部に直角の方向を採
って該凝固部耐力の75%に相当した曲げ応力を負荷し
、製造例1と同様の水溶液に浸漬して割れの発生するま
での日数を求めた。
Table 5 below shows the evaluation results of the mechanical properties, stress corrosion cracking life, weldability, and stress corrosion cracking life of the welded part of the test materials in the T6 state. The evaluation criteria for stress corrosion cracking life and weldability were the same as in Production Example 1. In addition, the stress corrosion cracking life of the welded part was evaluated by applying a bending stress equivalent to 75% of the proof stress of the solidified part in a direction perpendicular to the solidified part of the molten pool, and immersed it in the same aqueous solution as in Production Example 1. The number of days until cracking occurred was determined.

第5表の結果より、本発明例によるものはいずれも機械
的性質に優れていながら、溶接および溶接熱影響部での
割れがなく、父母材および溶接部の耐応力腐食割れ性に
も優れている。これに対し第4表のように均質化処理条
件の外れた比較例のものは何れかの評価基準において相
当に劣っている。
From the results in Table 5, it can be seen that all the examples according to the present invention have excellent mechanical properties, but there is no cracking in the weld or the weld heat affected zone, and they also have excellent stress corrosion cracking resistance of the parent metal and weld zone. There is. On the other hand, as shown in Table 4, the comparative examples in which the homogenization treatment conditions were not met were considerably inferior in any of the evaluation criteria.

「発明の効果」 以上説明したような本発明によるときは、良好な応力腐
食割れ寿命を得、しかも溶接割れおよびミクロ割れ発生
のない信頼性の高い溶接部を得しめるものであって、従
来リベント接合のみで使用されていたA I −Zn 
−Mg  Cu系合金材を溶融池を充分に形成させて溶
接するMIG、TIG。
"Effects of the Invention" According to the present invention as explained above, it is possible to obtain a good stress corrosion cracking life and to obtain a highly reliable welded joint free of weld cracking and micro-cracking, which is different from conventional re-venting. AI-Zn used only for bonding
- MIG and TIG for welding Mg Cu alloy materials by forming a sufficient molten pool.

スポット抵抗溶接法等に適用せしめて工業的有利に構造
物を形成し得るなどの効果を有しており、工業的にその
効果の大きい発明と言うべきである。
This invention has the advantage of being able to form industrially advantageous structures by applying it to spot resistance welding methods, etc., and can be said to be an invention with great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的関係を示すものであって、溶接部
における割れの発生状況を示した断面約説明図である。
The drawing shows the technical relationship of the present invention, and is a cross-sectional explanatory diagram showing the occurrence of cracks in a welded part.

Claims (1)

【特許請求の範囲】[Claims] Zn:5.0〜7.0wt%、Mg:1.0〜3.0w
t%、Cu:0.5〜1.8wt%、Zr:0.05〜
0.20wt%、V:0.03〜0.20wt%、Ti
:0.02〜0.15wt%を含有し、しかもZr、V
およびTiの合計含有量を0.10〜0.40wt%の
範囲となし、残部がAlと不純物とよりなる鋳塊を、4
00〜460℃の温度で8〜24時間保持して第1段階
の均質化処理を施こし、次いで480〜520℃の温度
で8〜24時間保持して第2段階の均質化処理を行い、
爾後常法による展伸加工処理を施こすことを特徴とする
溶接性に優れた高力アルミニウム合金材の製造法。
Zn: 5.0-7.0wt%, Mg: 1.0-3.0w
t%, Cu: 0.5~1.8wt%, Zr: 0.05~
0.20wt%, V: 0.03-0.20wt%, Ti
: Contains 0.02 to 0.15 wt%, and also contains Zr, V
and Ti in the range of 0.10 to 0.40 wt%, and the balance is Al and impurities.
Hold at a temperature of 00 to 460°C for 8 to 24 hours to perform a first stage homogenization treatment, then hold at a temperature of 480 to 520°C for 8 to 24 hours to perform a second stage homogenization treatment,
A method for producing a high-strength aluminum alloy material with excellent weldability, which is characterized in that it is then subjected to a drawing process using a conventional method.
JP26057686A 1986-11-04 1986-11-04 Manufacturing method of high-strength aluminum alloy material with excellent weldability Pending JPS63114949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26057686A JPS63114949A (en) 1986-11-04 1986-11-04 Manufacturing method of high-strength aluminum alloy material with excellent weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26057686A JPS63114949A (en) 1986-11-04 1986-11-04 Manufacturing method of high-strength aluminum alloy material with excellent weldability

Publications (1)

Publication Number Publication Date
JPS63114949A true JPS63114949A (en) 1988-05-19

Family

ID=17349868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26057686A Pending JPS63114949A (en) 1986-11-04 1986-11-04 Manufacturing method of high-strength aluminum alloy material with excellent weldability

Country Status (1)

Country Link
JP (1) JPS63114949A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0758686A1 (en) * 1995-08-11 1997-02-19 Toyota Jidosha Kabushiki Kaisha High-strength aluminium alloy having good porthole extrudability
CN107385291A (en) * 2017-06-22 2017-11-24 烟台南山学院 A kind of high-performance Al Zn Mg Cu Zr Ce Ti alloys and its preparation technology

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221966A (en) * 1975-08-11 1977-02-18 Janome Sewing Machine Co Ltd Pattern can selector for sewing machine
JPS58213850A (en) * 1982-06-08 1983-12-12 Kobe Steel Ltd Manufacture of al-zn-mg-cu alloy material of superior formability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221966A (en) * 1975-08-11 1977-02-18 Janome Sewing Machine Co Ltd Pattern can selector for sewing machine
JPS58213850A (en) * 1982-06-08 1983-12-12 Kobe Steel Ltd Manufacture of al-zn-mg-cu alloy material of superior formability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0758686A1 (en) * 1995-08-11 1997-02-19 Toyota Jidosha Kabushiki Kaisha High-strength aluminium alloy having good porthole extrudability
CN107385291A (en) * 2017-06-22 2017-11-24 烟台南山学院 A kind of high-performance Al Zn Mg Cu Zr Ce Ti alloys and its preparation technology

Similar Documents

Publication Publication Date Title
US6939416B2 (en) Weldable high strenght Al-Mg-Si alloy
EP1407057B1 (en) Weldable high strength al-mg-si alloy
EP0786535B1 (en) Method of manufacturing aluminum alloy plate for forming
US4909861A (en) Aluminum alloy sheet having good weldability, filiform corrosion resistance, formability, and bake-hardenability, and a method for manufacturing the same
JP2004534152A5 (en)
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
US4569703A (en) Aircraft stringer material
US5135713A (en) Aluminum-lithium alloys having high zinc
US3994695A (en) Composite aluminum brazing sheet
JP3681822B2 (en) Al-Zn-Mg alloy extruded material and method for producing the same
JPH1161311A (en) Aluminum alloy plate for automobile body panel and method of manufacturing the same
US4410370A (en) Aircraft stringer material and method for producing the same
US3966506A (en) Aluminum alloy sheet and process therefor
JPS63114949A (en) Manufacturing method of high-strength aluminum alloy material with excellent weldability
JPH04247842A (en) Aluminum alloy sheet for automobile wheel and its manufacture
JPS63270446A (en) Production of al-mg base alloy thick plate for welded structure
CN112813310A (en) High-strength Al-Fe-Sc alloy capable of being used for laser additive manufacturing
JPS5831054A (en) Aluminum alloy having superior strength and corrosion resistance and its manufacture
JPS62214163A (en) Manufacture of stress corrosion-resisting aluminum-magnesium alloy soft material
JP2698888B2 (en) Manufacturing method of aluminum alloy sheet with excellent stress corrosion cracking resistance
JPH07173585A (en) Production of aluminum alloy sheet for forming excellent in surface treating property
JPH0633179A (en) Aluminum alloy sheet for press forming excellent in hardenability by high-temperature short-time baking and its production
JPS6136064B2 (en)
JPS5842749A (en) Medium strength al alloy for extrusion having favorable surface property after forming