CN107385291A - A kind of high-performance Al Zn Mg Cu Zr Ce Ti alloys and its preparation technology - Google Patents
A kind of high-performance Al Zn Mg Cu Zr Ce Ti alloys and its preparation technology Download PDFInfo
- Publication number
- CN107385291A CN107385291A CN201710480732.9A CN201710480732A CN107385291A CN 107385291 A CN107385291 A CN 107385291A CN 201710480732 A CN201710480732 A CN 201710480732A CN 107385291 A CN107385291 A CN 107385291A
- Authority
- CN
- China
- Prior art keywords
- alloy
- performance
- hours
- aluminum
- aluminium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 18
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 238000005516 engineering process Methods 0.000 title claims abstract 5
- 229910009369 Zn Mg Inorganic materials 0.000 title abstract 2
- 239000000956 alloy Substances 0.000 claims abstract description 61
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 56
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 22
- 239000011777 magnesium Substances 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 22
- 238000000265 homogenisation Methods 0.000 claims abstract description 14
- 238000000137 annealing Methods 0.000 claims abstract description 11
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 10
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 8
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 7
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 7
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000010949 copper Substances 0.000 claims abstract description 7
- 229910052802 copper Inorganic materials 0.000 claims abstract description 7
- 239000011701 zinc Substances 0.000 claims abstract description 7
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 7
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- 238000012545 processing Methods 0.000 claims abstract description 4
- 238000011282 treatment Methods 0.000 claims description 47
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 40
- 238000002844 melting Methods 0.000 claims description 21
- 230000008018 melting Effects 0.000 claims description 21
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 20
- 230000032683 aging Effects 0.000 claims description 20
- 229910052786 argon Inorganic materials 0.000 claims description 20
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 18
- 238000005266 casting Methods 0.000 claims description 17
- 238000005097 cold rolling Methods 0.000 claims description 15
- 238000005098 hot rolling Methods 0.000 claims description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 10
- 150000003839 salts Chemical class 0.000 claims description 10
- 239000011780 sodium chloride Substances 0.000 claims description 10
- 239000001103 potassium chloride Substances 0.000 claims description 9
- 235000011164 potassium chloride Nutrition 0.000 claims description 9
- 239000010936 titanium Substances 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910002804 graphite Inorganic materials 0.000 claims description 7
- 239000010439 graphite Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 238000010791 quenching Methods 0.000 claims description 6
- 230000000171 quenching effect Effects 0.000 claims description 6
- 238000003723 Smelting Methods 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 239000002994 raw material Substances 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 238000009413 insulation Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 2
- 239000011449 brick Substances 0.000 claims description 2
- 239000004927 clay Substances 0.000 claims description 2
- 239000000395 magnesium oxide Substances 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 239000003973 paint Substances 0.000 claims description 2
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims 4
- QGHDLJAZIIFENW-UHFFFAOYSA-N 4-[1,1,1,3,3,3-hexafluoro-2-(4-hydroxy-3-prop-2-enylphenyl)propan-2-yl]-2-prop-2-enylphenol Chemical group C1=C(CC=C)C(O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(O)C(CC=C)=C1 QGHDLJAZIIFENW-UHFFFAOYSA-N 0.000 claims 2
- 229910000906 Bronze Inorganic materials 0.000 claims 2
- WLLURKMCNUGIRG-UHFFFAOYSA-N alumane;cerium Chemical compound [AlH3].[Ce] WLLURKMCNUGIRG-UHFFFAOYSA-N 0.000 claims 2
- DNXNYEBMOSARMM-UHFFFAOYSA-N alumane;zirconium Chemical compound [AlH3].[Zr] DNXNYEBMOSARMM-UHFFFAOYSA-N 0.000 claims 2
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 claims 2
- 239000010974 bronze Substances 0.000 claims 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims 2
- 239000004848 polyfunctional curative Substances 0.000 claims 2
- 229910001388 sodium aluminate Inorganic materials 0.000 claims 2
- ZBZJXHCVGLJWFG-UHFFFAOYSA-N trichloromethyl(.) Chemical compound Cl[C](Cl)Cl ZBZJXHCVGLJWFG-UHFFFAOYSA-N 0.000 claims 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 claims 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims 1
- JRBRVDCKNXZZGH-UHFFFAOYSA-N alumane;copper Chemical compound [AlH3].[Cu] JRBRVDCKNXZZGH-UHFFFAOYSA-N 0.000 claims 1
- 239000000460 chlorine Substances 0.000 claims 1
- 229910052801 chlorine Inorganic materials 0.000 claims 1
- 230000005611 electricity Effects 0.000 claims 1
- 238000007499 fusion processing Methods 0.000 claims 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims 1
- 239000011591 potassium Substances 0.000 claims 1
- 229910052700 potassium Inorganic materials 0.000 claims 1
- 239000000243 solution Substances 0.000 description 9
- ZGUQGPFMMTZGBQ-UHFFFAOYSA-N [Al].[Al].[Zr] Chemical compound [Al].[Al].[Zr] ZGUQGPFMMTZGBQ-UHFFFAOYSA-N 0.000 description 8
- HIPVTVNIGFETDW-UHFFFAOYSA-N aluminum cerium Chemical compound [Al].[Ce] HIPVTVNIGFETDW-UHFFFAOYSA-N 0.000 description 8
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 229910001610 cryolite Inorganic materials 0.000 description 8
- IOXPXHVBWFDRGS-UHFFFAOYSA-N hept-6-enal Chemical compound C=CCCCCC=O IOXPXHVBWFDRGS-UHFFFAOYSA-N 0.000 description 8
- VHHHONWQHHHLTI-UHFFFAOYSA-N hexachloroethane Chemical compound ClC(Cl)(Cl)C(Cl)(Cl)Cl VHHHONWQHHHLTI-UHFFFAOYSA-N 0.000 description 8
- 238000010943 off-gassing Methods 0.000 description 7
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- KRLDNBXEMNGJGG-UHFFFAOYSA-N alumane;copper Chemical compound [AlH3].[AlH3].[Cu] KRLDNBXEMNGJGG-UHFFFAOYSA-N 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 238000010309 melting process Methods 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 238000004321 preservation Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910017985 Cu—Zr Inorganic materials 0.000 description 2
- 229910010039 TiAl3 Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910018569 Al—Zn—Mg—Cu Inorganic materials 0.000 description 1
- 229910019086 Mg-Cu Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/026—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/06—Making non-ferrous alloys with the use of special agents for refining or deoxidising
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/053—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
- Laminated Bodies (AREA)
- Conductive Materials (AREA)
- Metal Rolling (AREA)
Abstract
Description
技术领域technical field
本发明涉及合金生产制备方法,具体是一种高性能Al-Zn-Mg-Cu-Zr-Ce-Ti合金及其制备工艺。The invention relates to an alloy production and preparation method, in particular to a high-performance Al-Zn-Mg-Cu-Zr-Ce-Ti alloy and a preparation process thereof.
背景技术Background technique
7000系Al-Zn-Mg-Cu超硬系列铝合金是可热处理强化型合金,具有密度小、强度高、加工性能好等优点,广泛应用于航空航天民用工业,是航空 航天的主要结构材料之一,同时在交通运输和其他工业部也得到广泛应用。随着航空航天工业的发展人们逐渐认识到断裂韧性己成为限制高强铝合金得到进一步应用的瓶颈。随着线弹性和断裂韧性力学的发展以及破损安全设计原则在实际工作中的应用,人们对结构材料特别是高强铝合金断裂韧性的重要性的认识更加清楚,如何进一步提高7000系Al-Zn-Mg-Cu合金的断裂韧性成为铝合金研究工作者共同追求的目标。The 7000 series Al-Zn-Mg-Cu superhard series aluminum alloy is a heat-treatable and strengthened alloy, which has the advantages of low density, high strength, and good processing performance. It is widely used in the aerospace civil industry and is one of the main structural materials for aerospace. One, it is also widely used in transportation and other industries. With the development of the aerospace industry, people have gradually realized that fracture toughness has become a bottleneck that limits the further application of high-strength aluminum alloys. With the development of linear elasticity and fracture toughness mechanics and the application of damage safety design principles in practical work, people have a clearer understanding of the importance of the fracture toughness of structural materials, especially high-strength aluminum alloys. How to further improve the 7000 series Al-Zn- The fracture toughness of Mg-Cu alloys has become a common goal pursued by aluminum alloy researchers.
发明内容Contents of the invention
本专利发明是设计一种高性能Al-Zn-Mg-Cu-Zr-Ce-Ti合金及其制备工艺,在基础合金成分基础上添加微量Ce和Ti,且制备工艺结合双级均匀化退火及双级固溶处理等特征工艺,使发明合金比7000系Al-Zn-Mg-Cu-Zr基础合金的断裂韧性(K1C)显著提高,K1C值提高20%以上。发明的主要内容为:This patent invention is to design a high-performance Al-Zn-Mg-Cu-Zr-Ce-Ti alloy and its preparation process, adding trace amounts of Ce and Ti on the basis of the basic alloy components, and the preparation process combines double-stage homogenization annealing and Two-stage solid solution treatment and other characteristic processes have significantly improved the fracture toughness (K 1C ) of the invented alloy compared with the 7000 series Al-Zn-Mg-Cu-Zr base alloy, and the K 1C value has increased by more than 20%. The main contents of the invention are:
一种高性能Al-Zn-Mg-Cu-Zr-Ce-Ti合金,其特征在于,按重量百分比所述合金由以下组分组成:锌5.4-6.5%,镁1.7-2.7%,铜1.5-2.5%,锆0.07-0.15%,铈0.05-0.18%,钛0.08-0.16%,其它杂质总含量不超过0.1 %, 且单个杂质成分含量不超过0.05%,其余为Al。A high-performance Al-Zn-Mg-Cu-Zr-Ce-Ti alloy is characterized in that the alloy is composed of the following components by weight percentage: zinc 5.4-6.5%, magnesium 1.7-2.7%, copper 1.5- 2.5%, zirconium 0.07-0.15%, cerium 0.05-0.18%, titanium 0.08-0.16%, the total content of other impurities does not exceed 0.1%, and the content of individual impurity components does not exceed 0.05%, and the rest is Al.
进一步地,所述杂质为铁、硅、锰、镱中的一种或几种。Further, the impurity is one or more of iron, silicon, manganese, and ytterbium.
一种高性能Al-Zn-Mg-Cu-Zr-Ce-Ti合金制备工艺,其特征在于,合金制备工艺包括以下流程:配料、熔炼浇铸、均匀化处理、热轧、冷轧、双级固溶处理、淬火、时效处理,具体操作步骤如下:A high-performance Al-Zn-Mg-Cu-Zr-Ce-Ti alloy preparation process is characterized in that the alloy preparation process includes the following processes: batching, smelting and casting, homogenization treatment, hot rolling, cold rolling, two-stage solidification Melting treatment, quenching, aging treatment, the specific operation steps are as follows:
1)配料: 所用原材料为:高纯铝(99.95%),工业纯镁(99.99%),铝铜中间合金(铝—铜含量占比50%,杂质总含量低于0.12%),铝铈中间合金(铝—铈含量占比10%),铝锆中间合金(铝—锆含量占比3%);1) Ingredients: The raw materials used are: high-purity aluminum (99.95%), industrial pure magnesium (99.99%), aluminum-copper intermediate alloy (the content of aluminum-copper accounts for 50%, and the total content of impurities is less than 0.12%), aluminum-cerium intermediate Alloy (aluminum-cerium content accounts for 10%), aluminum-zirconium master alloy (aluminum-zirconium content accounts for 3%);
2)熔炼浇铸:以石墨坩埚或高纯氧化镁砖涂粘土石墨涂料做炉膛内衬材料熔炼合金,熔炼过程一直加覆盖剂,加料顺序为:工业高纯铝--铝铜中间合金--铝锆中间合金--铝铈中间合金,待完全熔化后进行浇铸,用六氯乙烷或氩气进行第一次出气后,再加入工业纯镁,完全熔化后用六氯乙烷或氩气进行第二次出气;2) Melting and casting: Use graphite crucible or high-purity magnesia bricks coated with clay graphite paint as the lining material of the furnace to melt the alloy. During the melting process, the covering agent is always added. The order of feeding is: industrial high-purity aluminum--aluminum-copper intermediate alloy--aluminum Zirconium master alloy--aluminum cerium master alloy, cast after being completely melted, use hexachloroethane or argon for the first outgassing, then add industrial pure magnesium, and use hexachloroethane or argon for complete melting second breath
3)均匀化处理:将步骤2生产的铸锭在盐浴炉或氩气保护炉中进行均匀化处理,具体工艺为:先将注定在420℃保温14-16小时,再将其加热至465℃保温15-16小时;3) Homogenization treatment: Homogenize the ingot produced in step 2 in a salt bath furnace or an argon protection furnace. Keep warm for 15-16 hours at ℃;
4)热轧预热、冷轧前退火:具体操作可在空气电阻炉中进行,其中,热轧预热温度为430℃ ~440℃保温3-4小时,冷轧前退火温度为420℃ ~430℃保温2-3小时;4) Preheating for hot rolling and annealing before cold rolling: the specific operation can be carried out in an air resistance furnace, wherein the preheating temperature for hot rolling is 430°C ~ 440°C for 3-4 hours, and the annealing temperature before cold rolling is 420°C ~ 430°C for 2-3 hours;
5)固溶处理:具体操作在盐浴炉或氩气保护炉中进行,双级固溶处理工艺为280℃/2h+475℃/1h,并在室温水中淬火;5) Solution treatment: the specific operation is carried out in a salt bath furnace or an argon protection furnace. The two-stage solution treatment process is 280°C/2h+475°C/1h, and quenched in water at room temperature;
6)时效处理:在两小时内将淬火后的合金材料进行时效处理,时效处理在一般恒温电阻炉中进行,工艺为:120℃ /20~26h。6) Aging treatment: The quenched alloy material is subjected to aging treatment within two hours. The aging treatment is carried out in a general constant temperature resistance furnace, and the process is: 120°C/20~26h.
进一步地,所述步骤2中的覆盖剂由氯化钠、氯化钾及六氟合铝酸钠构成,其按质量比为氯化钠:氯化钾:六氟合铝酸钠=4:4:2。Further, the covering agent in the step 2 is composed of sodium chloride, potassium chloride and sodium hexafluoroaluminate, and its mass ratio is sodium chloride: potassium chloride: sodium hexafluoroaluminate=4: 4:2.
进一步地,所述步骤1配料时,要补充镁的烧损量,烧损量为总质量的2.0-4.0%。Further, when batching in the step 1, the burning loss of magnesium should be supplemented, and the burning loss is 2.0-4.0% of the total mass.
进一步地,所述步骤2的熔炼温度约为760~780℃,浇铸温度约为690~720℃。Further, the melting temperature in the step 2 is about 760-780°C, and the casting temperature is about 690-720°C.
本发明的有益效果是:与已注册的各种7000系Al-Zn-Mg-Cu-Zr合金主成分范围不同,且含有微量稀土元素Ce和过渡族元素Ti。本发明合金铝、锌、镁、铜、锆、铈(AlZnMgCuZrCeTi)合金比基础合金(AlZnMgCuZr)的断裂韧性值提高20%以上。The beneficial effect of the invention is that it is different from various registered 7000 series Al-Zn-Mg-Cu-Zr alloys in the range of main components, and contains trace rare earth element Ce and transition group element Ti. Compared with the base alloy (AlZnMgCuZr), the fracture toughness value of the alloy aluminum, zinc, magnesium, copper, zirconium and cerium (AlZnMgCuZrCeTi) in the invention is increased by more than 20%.
具体实施方式detailed description
现在结合具体实施例对本发明作进一步详细的说明。The present invention will be further described in detail in conjunction with specific embodiments now.
实施例1Example 1
一种高性能Al-Zn-Mg-Cu-Zr-Ce-Ti合金,其特征在于,按重量百分比所述合金由以下组分组成:锌5.92%,镁2.35%,铜2.15%,锆0.13%,铈0.07%,钛0.11%,铁0.045%,硅0.042%,其余为Al。A high-performance Al-Zn-Mg-Cu-Zr-Ce-Ti alloy, characterized in that the alloy is composed of the following components by weight percentage: zinc 5.92%, magnesium 2.35%, copper 2.15%, zirconium 0.13% , 0.07% cerium, 0.11% titanium, 0.045% iron, 0.042% silicon, and the rest is Al.
一种高性能Al-Zn-Mg-Cu-Zr-Ce-Ti合金制备工艺,其特征在于,合金制备工艺包括以下流程:配料、熔炼浇铸、均匀化处理、热轧、冷轧、双级固溶处理、淬火、时效处理,具体操作步骤如下:A high-performance Al-Zn-Mg-Cu-Zr-Ce-Ti alloy preparation process is characterized in that the alloy preparation process includes the following processes: batching, smelting and casting, homogenization treatment, hot rolling, cold rolling, two-stage solidification Melting treatment, quenching, aging treatment, the specific operation steps are as follows:
1)配料: 所用原材料为:高纯铝(99.95%),工业纯镁(99.99%),铝铜中间合金(铝—铜含量占比50%,杂质总含量低于0.12%),铝铈中间合金(铝—铈含量占比10%),铝锆中间合金(铝—锆含量占比3%);1) Ingredients: The raw materials used are: high-purity aluminum (99.95%), industrial pure magnesium (99.99%), aluminum-copper intermediate alloy (the content of aluminum-copper accounts for 50%, and the total content of impurities is less than 0.12%), aluminum-cerium intermediate Alloy (aluminum-cerium content accounts for 10%), aluminum-zirconium master alloy (aluminum-zirconium content accounts for 3%);
2)熔炼浇铸:以石墨坩埚做炉膛内衬材料熔炼合金,熔炼过程一直加覆盖剂,加料顺序为:工业高纯铝--铝铜中间合金--铝锆中间合金--铝铈中间合金,待完全熔化后进行浇铸,用六氯乙烷或氩气进行第一次出气后,再加入工业纯镁,完全熔化后用六氯乙烷或氩气进行第二次出气;2) Melting and casting: graphite crucible is used as the furnace lining material to melt the alloy, and the covering agent is always added during the melting process. The order of feeding is: industrial high-purity aluminum--aluminum-copper master alloy--aluminum-zirconium master alloy--aluminum-cerium master alloy, Casting after complete melting, use hexachloroethane or argon for the first outgassing, then add industrial pure magnesium, and use hexachloroethane or argon for the second outgassing after complete melting;
3)均匀化处理:将步骤2生产的铸锭在盐浴炉或氩气保护炉中进行均匀化处理,具体工艺为:先将注定在420℃保温14小时,再将其加热至465℃保温15小时;双级均匀化处理的第一级在较低温度420℃保温14-16小时目的是有利于微合金组元Ce和Ti形成二次析出的弥散相(Al8Cu4Ce、TiAl3)粒子;第二级在较高温度465℃保温15-16小时是为了使合金成分充分均匀。3) Homogenization treatment: Homogenize the ingot produced in step 2 in a salt bath furnace or an argon protection furnace. The specific process is: first heat the ingot at 420°C for 14 hours, and then heat it to 465°C for heat preservation 15 hours; the first stage of the double-stage homogenization treatment is held at a lower temperature of 420°C for 14-16 hours to facilitate the formation of secondary precipitated dispersed phase (Al8Cu4Ce, TiAl3) particles of the microalloy components Ce and Ti; the second The grade is kept at a higher temperature of 465°C for 15-16 hours to make the alloy composition fully uniform.
4)热轧预热、冷轧前退火:具体操作可在空气电阻炉中进行,其中,热轧预热温度为430℃保温3小时,冷轧前退火温度为420℃保温2小时;4) Preheating for hot rolling and annealing before cold rolling: specific operations can be carried out in an air resistance furnace, wherein the preheating temperature for hot rolling is 430°C for 3 hours, and the annealing temperature before cold rolling is 420°C for 2 hours;
5)固溶处理:具体操作在盐浴炉或氩气保护炉中进行,双级固溶处理工艺为280℃/2h+475℃/1h,并在室温水中淬火;双级固溶第一级在较低温度280℃保温2小时是为了让冷变形合金发生回复释放变形储能,加上弥散相(Al8Cu4Ce、TiAl3)粒子阻碍再结晶的作用,将使合金在475℃较高温度固溶处理1小时合金基体尽可能不发生或少发生再结晶,而475℃高温固溶处理1小时的主要目的是为了使合金获得尽可能高的过饱和度。5) Solution treatment: The specific operation is carried out in a salt bath furnace or an argon protection furnace. The two-stage solution treatment process is 280°C/2h+475°C/1h, and quenched in water at room temperature; the first stage of two-stage solid solution Insulation at a lower temperature of 280°C for 2 hours is to allow the cold deformed alloy to recover and release the deformation storage energy, and the dispersed phase (Al8Cu4Ce, TiAl3) particles hinder recrystallization, so that the alloy will be solid solution treated at a higher temperature of 475°C The main purpose of the high-temperature solution treatment at 475°C for 1 hour is to obtain as high a degree of supersaturation as possible for the alloy matrix.
6)时效处理:在两小时内将淬火后的合金材料进行时效处理,时效处理在一般恒温电阻炉中进行,工艺为:120℃ /20h。6) Aging treatment: within two hours, the quenched alloy material is subjected to aging treatment. The aging treatment is carried out in a general constant temperature resistance furnace, and the process is: 120℃/20h.
优选的,步骤2中的覆盖剂由氯化钠、氯化钾及六氟合铝酸钠构成,其按质量比为氯化钠:氯化钾:六氟合铝酸钠=4:4:2。Preferably, the covering agent in step 2 is composed of sodium chloride, potassium chloride and sodium hexafluoroaluminate, and its mass ratio is sodium chloride: potassium chloride: sodium hexafluoroaluminate=4:4: 2.
优选的,步骤1配料时,要补充镁的烧损量,烧损量为总质量的2.0%。Preferably, when step 1 is batched, the burning loss of magnesium should be supplemented, and the burning loss is 2.0% of the total mass.
优选的,步骤2的熔炼温度约为760℃,浇铸温度约为690℃。Preferably, the melting temperature in step 2 is about 760°C, and the casting temperature is about 690°C.
实施例2Example 2
一种高性能Al-Zn-Mg-Cu-Zr-Ce-Ti合金,其特征在于,按重量百分比所述合金由以下组分组成:锌6.23%,镁1.95%,铜1.98%,锆0.09%,铈0.12%,钛0.12%,铁0.046%,硅0.041%,其余为Al。A high-performance Al-Zn-Mg-Cu-Zr-Ce-Ti alloy, characterized in that the alloy is composed of the following components by weight percentage: 6.23% zinc, 1.95% magnesium, 1.98% copper, and 0.09% zirconium , 0.12% cerium, 0.12% titanium, 0.046% iron, 0.041% silicon, and the rest is Al.
一种高性能Al-Zn-Mg-Cu-Zr-Ce-Ti合金制备工艺,其特征在于,合金制备工艺包括以下流程:配料、熔炼浇铸、均匀化处理、热轧、冷轧、双级固溶处理、淬火、时效处理,具体操作步骤如下:A high-performance Al-Zn-Mg-Cu-Zr-Ce-Ti alloy preparation process is characterized in that the alloy preparation process includes the following processes: batching, smelting and casting, homogenization treatment, hot rolling, cold rolling, two-stage solidification Melting treatment, quenching, aging treatment, the specific operation steps are as follows:
1)配料: 所用原材料为:高纯铝(99.95%),工业纯镁(99.99%),铝铜中间合金(铝—铜含量占比50%,杂质总含量低于0.12%),铝铈中间合金(铝—铈含量占比10%),铝锆中间合金(铝—锆含量占比3%);1) Ingredients: The raw materials used are: high-purity aluminum (99.95%), industrial pure magnesium (99.99%), aluminum-copper intermediate alloy (the content of aluminum-copper accounts for 50%, and the total content of impurities is less than 0.12%), aluminum-cerium intermediate Alloy (aluminum-cerium content accounts for 10%), aluminum-zirconium master alloy (aluminum-zirconium content accounts for 3%);
2)熔炼浇铸:以石墨坩埚做炉膛内衬材料熔炼合金,熔炼过程一直加覆盖剂,加料顺序为:工业高纯铝--铝铜中间合金--铝锆中间合金--铝铈中间合金,待完全熔化后进行浇铸,用六氯乙烷或氩气进行第一次出气后,再加入工业纯镁,完全熔化后用六氯乙烷或氩气进行第二次出气;2) Melting and casting: graphite crucible is used as the furnace lining material to melt the alloy, and the covering agent is always added during the melting process. The order of feeding is: industrial high-purity aluminum--aluminum-copper master alloy--aluminum-zirconium master alloy--aluminum-cerium master alloy, Casting after complete melting, use hexachloroethane or argon for the first outgassing, then add industrial pure magnesium, and use hexachloroethane or argon for the second outgassing after complete melting;
3)均匀化处理:将步骤2生产的铸锭在盐浴炉或氩气保护炉中进行均匀化处理,具体工艺为:先将注定在420℃保温15小时,再将其加热至465℃保温15小时;3) Homogenization treatment: Homogenize the ingot produced in step 2 in a salt bath furnace or an argon protection furnace. The specific process is: first heat the ingot at 420°C for 15 hours, and then heat it to 465°C for heat preservation 15 hours;
4)热轧预热、冷轧前退火:具体操作可在空气电阻炉中进行,其中,热轧预热温度为435℃保温3小时,冷轧前退火温度为425℃保温2小时;4) Preheating for hot rolling and annealing before cold rolling: specific operations can be carried out in an air resistance furnace, wherein the preheating temperature for hot rolling is 435°C for 3 hours, and the annealing temperature before cold rolling is 425°C for 2 hours;
5)固溶处理:具体操作在盐浴炉或氩气保护炉中进行,双级固溶处理工艺为280℃/2h+475℃/1h,并在室温水中淬火;5) Solution treatment: the specific operation is carried out in a salt bath furnace or an argon protection furnace. The two-stage solution treatment process is 280°C/2h+475°C/1h, and quenched in water at room temperature;
6)时效处理:在两小时内将淬火后的合金材料进行时效处理,时效处理在一般恒温电阻炉中进行,工艺为:120℃ /22h。6) Aging treatment: within two hours, the quenched alloy material is subjected to aging treatment. The aging treatment is carried out in a general constant temperature resistance furnace, and the process is: 120°C/22h.
优选的,步骤2中的覆盖剂由氯化钠、氯化钾及六氟合铝酸钠构成,其按质量比为氯化钠:氯化钾:六氟合铝酸钠=4:4:2。Preferably, the covering agent in step 2 is composed of sodium chloride, potassium chloride and sodium hexafluoroaluminate, and its mass ratio is sodium chloride: potassium chloride: sodium hexafluoroaluminate=4:4: 2.
优选的,步骤1配料时,要补充镁的烧损量,烧损量为总质量的3.0%。Preferably, when step 1 is batched, the burning loss of magnesium should be supplemented, and the burning loss is 3.0% of the total mass.
优选的,步骤2的熔炼温度约为770℃,浇铸温度约为700℃。Preferably, the melting temperature in step 2 is about 770°C, and the casting temperature is about 700°C.
实施例3Example 3
一种高性能Al-Zn-Mg-Cu-Zr-Ce-Ti合金,其特征在于,按重量百分比所述合金由以下组分组成:锌6.12%,镁2.23%,铜2.35%,锆0.11%,铈0.12%,钛0.11%,铁0.043%,硅0.049%,其余为Al。A high-performance Al-Zn-Mg-Cu-Zr-Ce-Ti alloy, characterized in that the alloy is composed of the following components by weight percentage: 6.12% zinc, 2.23% magnesium, 2.35% copper, 0.11% zirconium , 0.12% cerium, 0.11% titanium, 0.043% iron, 0.049% silicon, and the rest is Al.
一种高性能Al-Zn-Mg-Cu-Zr-Ce-Ti合金制备工艺,其特征在于,合金制备工艺包括以下流程:配料、熔炼浇铸、均匀化处理、热轧、冷轧、双级固溶处理、淬火、时效处理,具体操作步骤如下:A high-performance Al-Zn-Mg-Cu-Zr-Ce-Ti alloy preparation process is characterized in that the alloy preparation process includes the following processes: batching, smelting and casting, homogenization treatment, hot rolling, cold rolling, two-stage solidification Melting treatment, quenching, aging treatment, the specific operation steps are as follows:
1)配料: 所用原材料为:高纯铝(99.95%),工业纯镁(99.99%),铝铜中间合金(铝—铜含量占比50%,杂质总含量低于0.12%),铝铈中间合金(铝—铈含量占比10%),铝锆中间合金(铝—锆含量占比3%);1) Ingredients: The raw materials used are: high-purity aluminum (99.95%), industrial pure magnesium (99.99%), aluminum-copper intermediate alloy (the content of aluminum-copper accounts for 50%, and the total content of impurities is less than 0.12%), aluminum-cerium intermediate Alloy (aluminum-cerium content accounts for 10%), aluminum-zirconium master alloy (aluminum-zirconium content accounts for 3%);
2)熔炼浇铸:以石墨坩埚做炉膛内衬材料熔炼合金,熔炼过程一直加覆盖剂,加料顺序为:工业高纯铝--铝铜中间合金--铝锆中间合金--铝铈中间合金,待完全熔化后进行浇铸,用六氯乙烷或氩气进行第一次出气后,再加入工业纯镁,完全熔化后用六氯乙烷或氩气进行第二次出气;2) Melting and casting: graphite crucible is used as the furnace lining material to melt the alloy, and the covering agent is always added during the melting process. The order of feeding is: industrial high-purity aluminum--aluminum-copper master alloy--aluminum-zirconium master alloy--aluminum-cerium master alloy, Casting after complete melting, use hexachloroethane or argon for the first outgassing, then add industrial pure magnesium, and use hexachloroethane or argon for the second outgassing after complete melting;
3)均匀化处理:将步骤2生产的铸锭在盐浴炉或氩气保护炉中进行均匀化处理,具体工艺为:先将注定在420℃保温16小时,再将其加热至465℃保温16小时;3) Homogenization treatment: Homogenize the ingot produced in step 2 in a salt bath furnace or an argon protection furnace. The specific process is: first heat the ingot at 420°C for 16 hours, and then heat it to 465°C for heat preservation 16 hours;
4)热轧预热、冷轧前退火:具体操作可在空气电阻炉中进行,其中,热轧预热温度为440℃保温3小时,冷轧前退火温度为430℃保温2小时;4) Preheating for hot rolling and annealing before cold rolling: specific operations can be carried out in an air resistance furnace, wherein the preheating temperature for hot rolling is 440°C for 3 hours, and the annealing temperature before cold rolling is 430°C for 2 hours;
5)固溶处理:具体操作在盐浴炉或氩气保护炉中进行,双级固溶处理工艺为280℃/2h+475℃/1h,并在室温水中淬火;5) Solution treatment: the specific operation is carried out in a salt bath furnace or an argon protection furnace. The two-stage solution treatment process is 280°C/2h+475°C/1h, and quenched in water at room temperature;
6)时效处理:在两小时内将淬火后的合金材料进行时效处理,时效处理在一般恒温电阻炉中进行,工艺为:120℃ /26h。6) Aging treatment: within two hours, the quenched alloy material is subjected to aging treatment, and the aging treatment is carried out in a general constant temperature resistance furnace, and the process is: 120°C/26h.
进一步地,所述步骤2中的覆盖剂由氯化钠、氯化钾及六氟合铝酸钠构成,其按质量比为氯化钠:氯化钾:六氟合铝酸钠=4:4:2。Further, the covering agent in the step 2 is composed of sodium chloride, potassium chloride and sodium hexafluoroaluminate, and its mass ratio is sodium chloride: potassium chloride: sodium hexafluoroaluminate=4: 4:2.
进一步地,所述步骤1配料时,要补充镁的烧损量,烧损量为总质量的4.0%。Further, when batching in the step 1, the burning loss of magnesium should be supplemented, and the burning loss is 4.0% of the total mass.
进一步地,所述步骤2的熔炼温度约为780℃,浇铸温度约为720℃。Further, the melting temperature in the step 2 is about 780°C, and the casting temperature is about 720°C.
表1.各实施例中合金成分重量百分比(单位wt%):Table 1. Weight percentage of alloy components in each embodiment (unit wt%):
按国家标准 GB/ 6497—14规定,厚板取样是沿板材厚度方向从表面到中心间隔均匀取5个厚度为2.5mm 的板材,加工轧向(L-T)和长横向(T-L)的拉伸试样,再垂直板材厚度方向取2.5 mm厚的板材,加工短横向(S-L)的拉伸试样,在电子万能实验机上进行拉伸性能测试。According to the national standard GB/6497-14, thick plate sampling is to take 5 plates with a thickness of 2.5mm evenly from the surface to the center along the thickness direction of the plate, and process the tensile test in the rolling direction (L-T) and the long transverse direction (T-L). Then take a 2.5 mm thick plate perpendicular to the thickness direction of the plate, process a short transverse (S-L) tensile sample, and perform a tensile performance test on an electronic universal testing machine.
表2.实施例与基础合金断裂韧性(K1C)测试表:Table 2. Example and base alloy fracture toughness (K 1C ) test table:
由表2中可以看出实施例1、2、3中随着合金配料成分重量的不同,其表现出的断裂韧性有所差异,上述3实施例中的加工轧向(L-T)断裂韧性均大于等于42MPa·m1/2,长横向(T-L)的断裂韧性均大于等于35MPa·m1/2,短横向(S-L)的断裂韧性均大于27MPa·m1/2,各方面表现出的断裂韧性均优于基础合金断裂韧性值。As can be seen from Table 2, along with the difference of alloy batching composition weight in embodiment 1,2,3, the fracture toughness that it shows is different to some extent, and the processing rolling direction (LT) fracture toughness in above-mentioned 3 embodiments is all greater than equal to 42MPa·m 1/2 , the fracture toughness of the long transverse direction (TL) is greater than or equal to 35MPa·m 1/2 , and the fracture toughness of the short transverse direction (SL) is greater than 27MPa·m 1/2 , the fracture toughness exhibited in all aspects Both are better than the fracture toughness values of the base alloy.
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。Inspired by the above-mentioned ideal embodiment according to the present invention, through the above-mentioned description content, relevant workers can make various changes and modifications within the scope of not departing from the technical idea of the present invention. The technical scope of the present invention is not limited to the content in the specification, but must be determined according to the scope of the claims.
Claims (6)
- A kind of 1. high-performance Al-Zn-Mg-Cu-Zr-Ce-Ti alloys, it is characterised in that alloy described by weight percentage by with The following group packet into:Zinc 5.4-6.5%, magnesium 1.7-2.7%, copper 1.5-2.5%, zirconium 0.07-0.15%, cerium 0.05-0.18%, titanium 0.08- 0.16%, other content of impurities are no more than 0.1 %, and single impurity component content is no more than 0.05%, and remaining is Al.
- 2. a kind of high-performance Al-Zn-Mg-Cu-Zr-Ce-Ti alloys according to claim 1, it is characterised in that described miscellaneous Matter is the one or more in iron, silicon, manganese, ytterbium.
- 3. a kind of high-performance Al-Zn-Mg-Cu-Zr-Ce-Ti alloy preparation technologies, it is characterised in that alloy preparation technology includes Below scheme:Dispensing, melting casting, Homogenization Treatments, hot rolling, cold rolling, double_stage guide processing, quenching, Ageing Treatment, specific behaviour It is as follows to make step:1)Dispensing:Raw materials are:Rafifinal(99.95%), pure magnesium (99.99%), aluminum bronze intermediate alloy (aluminium-copper 0.12%) content accounting 50%, content of impurities are less than, aluminium cerium intermediate alloy(Aluminium-cerium content accounting 10%), aluminium zirconium hardener (Aluminium-zirconium content accounting 3%);2)Melting is cast:Clay graphite paint is applied with graphite crucible or high-purity magnesium oxide brick and does hearth inner lining material molten alloy, Fusion process adds coverture always, and charging sequence is:Industrial rafifinal -- aluminum bronze intermediate alloy -- aluminium zirconium hardener -- aluminium cerium Intermediate alloy, cast until completely melted, after carrying out first time outlet with carbon trichloride or argon gas, add technical pure Magnesium, second of outlet is carried out with carbon trichloride or argon gas after being completely melt;3)Homogenization Treatments:The ingot casting that step 2 produces is subjected to Homogenization Treatments, specific work in salt bath furnace or argon gas protection stove Skill is:It will first be doomed to be incubated 14-16 hours at 420 DEG C, then be heated to 465 DEG C of insulation 15-16 hours;4)Annealed before hot rolling preheating, cold rolling:Concrete operations can be carried out in air resistance furnace, wherein, hot rolling preheating temperature is 430 DEG C ~ 440 DEG C of insulation 3-4 hours, annealing temperature is 420 DEG C ~ 430 DEG C insulation 2-3 hours before cold rolling;5)Solution treatment:Concrete operations are carried out in salt bath furnace or argon gas protection stove, and double_stage guide handling process is 280 DEG C/2h+ 475 DEG C/1h, and in room temperature quenching-in water;6)Ageing Treatment:The alloy material after quenching is subjected to Ageing Treatment in two hours, Ageing Treatment is in general constant temperature electricity Carried out in resistance stove, technique is:120℃ /20~26h.
- 4. a kind of high-performance Al-Zn-Mg-Cu-Zr-Ce-Ti alloy manufacturing methods according to claim 3, its feature exist In the coverture in the step 2 closes sodium aluminate by sodium chloride, potassium chloride and hexafluoro and formed, and it is sodium chloride in mass ratio:Chlorine Change potassium:Hexafluoro closes sodium aluminate=4;4;2.
- 5. a kind of high-performance Al-Zn-Mg-Cu-Zr-Ce-Ti alloy manufacturing methods according to claim 3, its feature exist When, step 1 dispensing, the scaling loss amount of magnesium is supplemented, scaling loss amount is the 2.0-4.0% of gross mass.
- 6. a kind of high-performance Al-Zn-Mg-Cu-Zr-Ce-Ti alloy manufacturing methods according to claim 3, its feature exist In the smelting temperature of the step 2 is about 760 ~ 780 DEG C, and cast temperature is about 690 ~ 720 DEG C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710480732.9A CN107385291B (en) | 2017-06-22 | 2017-06-22 | A kind of high-performance Al-Zn-Mg-Cu-Zr-Ce-Ti alloy and its preparation process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710480732.9A CN107385291B (en) | 2017-06-22 | 2017-06-22 | A kind of high-performance Al-Zn-Mg-Cu-Zr-Ce-Ti alloy and its preparation process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107385291A true CN107385291A (en) | 2017-11-24 |
CN107385291B CN107385291B (en) | 2019-01-29 |
Family
ID=60332619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710480732.9A Expired - Fee Related CN107385291B (en) | 2017-06-22 | 2017-06-22 | A kind of high-performance Al-Zn-Mg-Cu-Zr-Ce-Ti alloy and its preparation process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107385291B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108048700A (en) * | 2017-12-29 | 2018-05-18 | 南昌大学 | A kind of preparation method of the anticorrosion aluminium material containing praseodymium and cerium |
CN108467979A (en) * | 2018-06-25 | 2018-08-31 | 上海交通大学 | A kind of metal mold gravity casting aluminum alloy materials and preparation method thereof |
CN108642336A (en) * | 2018-06-25 | 2018-10-12 | 上海交通大学 | A kind of extrusion casint aluminum alloy materials and preparation method thereof |
CN109457149A (en) * | 2018-12-05 | 2019-03-12 | 天津忠旺铝业有限公司 | A kind of processing method of 7 line aluminium alloy slab |
CN109957689A (en) * | 2019-03-29 | 2019-07-02 | 烟台南山学院 | A kind of Al-Zn-Mg-Cr-Mn-Zr-Er medium-strength and high-toughness aluminum alloy sheet and preparation method thereof |
CN112609096A (en) * | 2020-12-14 | 2021-04-06 | 烟台南山学院 | Preparation method of heat-resistant high-strength Al-Li-Cu-Ce alloy plate |
CN112695235A (en) * | 2020-11-30 | 2021-04-23 | 烟台南山学院 | Single-stage homogenization heat treatment method for high-alloying Al-Zn-Mg-Cu-Ce alloy |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63114949A (en) * | 1986-11-04 | 1988-05-19 | Nippon Light Metal Co Ltd | Manufacturing method of high-strength aluminum alloy material with excellent weldability |
SU1185878A1 (en) * | 1984-01-19 | 1990-11-30 | Предприятие П/Я Р-6209 | Aluminium-base alloy for making parts of intricate shape |
JP4247536B2 (en) * | 2003-11-20 | 2009-04-02 | 宇部興産機械株式会社 | Manufacturing method of high strength aluminum alloy products |
CN101509091A (en) * | 2009-03-27 | 2009-08-19 | 中南大学 | High-strength high-ductility Al-Zn-Mg-Cu-Sr alloy and production method |
US7883591B2 (en) * | 2004-10-05 | 2011-02-08 | Aleris Aluminum Koblenz Gmbh | High-strength, high toughness Al-Zn alloy product and method for producing such product |
KR20110113454A (en) * | 2010-04-09 | 2011-10-17 | 한국생산기술연구원 | High strength aluminum alloy for die casting with excellent castability |
CN102312142A (en) * | 2011-09-27 | 2012-01-11 | 西南铝业(集团)有限责任公司 | Method for producing high-grade aluminum alloy thin wall tubing |
CN102409206A (en) * | 2011-11-23 | 2012-04-11 | 华南理工大学 | A high strength and toughness squeeze casting Al-Zn alloy material |
JP5083816B2 (en) * | 2007-11-08 | 2012-11-28 | 住友軽金属工業株式会社 | Al-Zn-Mg-Cu alloy extruded material excellent in warm workability, production method thereof, and warm worked material using the extruded material |
KR20120135546A (en) * | 2011-06-07 | 2012-12-17 | 유민규 | Method for manufacturing scandium added aluminum alloys using solution treatment and natural aging method for the enhancement of strength and elongation of the same |
CN103667825A (en) * | 2013-12-30 | 2014-03-26 | 上海华峰新材料研发科技有限公司 | Ultra-strong strength, high-toughness and anticorrosive aluminum alloy and preparation method for same |
CN103757507A (en) * | 2014-02-25 | 2014-04-30 | 北京科技大学 | High baking varnish hardening aluminum alloy material for external car body plate and preparation method thereof |
CN104004945A (en) * | 2014-06-05 | 2014-08-27 | 天津大学 | High-strength scandium-containing Al-Zn-Mg-Zr alloy and a preparation method thereof |
CN104018040A (en) * | 2014-06-23 | 2014-09-03 | 北京科技大学 | Automotive high-formability aluminum alloy material and preparation method thereof |
CN104711465A (en) * | 2015-04-09 | 2015-06-17 | 东南大学 | Al-Zn-Mg-Cu high-strength aluminum alloy material and preparation method thereof |
CN106399781A (en) * | 2016-12-05 | 2017-02-15 | 合肥工业大学 | Novel high-strength corrosion-resistant rare earth aluminum alloy material and preparation method |
CN106834986A (en) * | 2017-03-07 | 2017-06-13 | 烟台南山学院 | A kind of aviation alloyed aluminium homogenizing heat treatment |
-
2017
- 2017-06-22 CN CN201710480732.9A patent/CN107385291B/en not_active Expired - Fee Related
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1185878A1 (en) * | 1984-01-19 | 1990-11-30 | Предприятие П/Я Р-6209 | Aluminium-base alloy for making parts of intricate shape |
JPS63114949A (en) * | 1986-11-04 | 1988-05-19 | Nippon Light Metal Co Ltd | Manufacturing method of high-strength aluminum alloy material with excellent weldability |
JP4247536B2 (en) * | 2003-11-20 | 2009-04-02 | 宇部興産機械株式会社 | Manufacturing method of high strength aluminum alloy products |
US7883591B2 (en) * | 2004-10-05 | 2011-02-08 | Aleris Aluminum Koblenz Gmbh | High-strength, high toughness Al-Zn alloy product and method for producing such product |
JP5083816B2 (en) * | 2007-11-08 | 2012-11-28 | 住友軽金属工業株式会社 | Al-Zn-Mg-Cu alloy extruded material excellent in warm workability, production method thereof, and warm worked material using the extruded material |
CN101509091A (en) * | 2009-03-27 | 2009-08-19 | 中南大学 | High-strength high-ductility Al-Zn-Mg-Cu-Sr alloy and production method |
KR20110113454A (en) * | 2010-04-09 | 2011-10-17 | 한국생산기술연구원 | High strength aluminum alloy for die casting with excellent castability |
KR20120135546A (en) * | 2011-06-07 | 2012-12-17 | 유민규 | Method for manufacturing scandium added aluminum alloys using solution treatment and natural aging method for the enhancement of strength and elongation of the same |
CN102312142A (en) * | 2011-09-27 | 2012-01-11 | 西南铝业(集团)有限责任公司 | Method for producing high-grade aluminum alloy thin wall tubing |
CN102409206A (en) * | 2011-11-23 | 2012-04-11 | 华南理工大学 | A high strength and toughness squeeze casting Al-Zn alloy material |
CN103667825A (en) * | 2013-12-30 | 2014-03-26 | 上海华峰新材料研发科技有限公司 | Ultra-strong strength, high-toughness and anticorrosive aluminum alloy and preparation method for same |
CN103757507A (en) * | 2014-02-25 | 2014-04-30 | 北京科技大学 | High baking varnish hardening aluminum alloy material for external car body plate and preparation method thereof |
CN104004945A (en) * | 2014-06-05 | 2014-08-27 | 天津大学 | High-strength scandium-containing Al-Zn-Mg-Zr alloy and a preparation method thereof |
CN104018040A (en) * | 2014-06-23 | 2014-09-03 | 北京科技大学 | Automotive high-formability aluminum alloy material and preparation method thereof |
CN104711465A (en) * | 2015-04-09 | 2015-06-17 | 东南大学 | Al-Zn-Mg-Cu high-strength aluminum alloy material and preparation method thereof |
CN106399781A (en) * | 2016-12-05 | 2017-02-15 | 合肥工业大学 | Novel high-strength corrosion-resistant rare earth aluminum alloy material and preparation method |
CN106834986A (en) * | 2017-03-07 | 2017-06-13 | 烟台南山学院 | A kind of aviation alloyed aluminium homogenizing heat treatment |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108048700A (en) * | 2017-12-29 | 2018-05-18 | 南昌大学 | A kind of preparation method of the anticorrosion aluminium material containing praseodymium and cerium |
CN108048700B (en) * | 2017-12-29 | 2020-03-27 | 南昌大学 | Preparation method of praseodymium and cerium-containing corrosion-resistant aluminum alloy material |
CN108467979A (en) * | 2018-06-25 | 2018-08-31 | 上海交通大学 | A kind of metal mold gravity casting aluminum alloy materials and preparation method thereof |
CN108642336A (en) * | 2018-06-25 | 2018-10-12 | 上海交通大学 | A kind of extrusion casint aluminum alloy materials and preparation method thereof |
CN108642336B (en) * | 2018-06-25 | 2020-10-16 | 上海交通大学 | Extrusion casting aluminum alloy material and preparation method thereof |
CN109457149A (en) * | 2018-12-05 | 2019-03-12 | 天津忠旺铝业有限公司 | A kind of processing method of 7 line aluminium alloy slab |
CN109957689A (en) * | 2019-03-29 | 2019-07-02 | 烟台南山学院 | A kind of Al-Zn-Mg-Cr-Mn-Zr-Er medium-strength and high-toughness aluminum alloy sheet and preparation method thereof |
CN112695235A (en) * | 2020-11-30 | 2021-04-23 | 烟台南山学院 | Single-stage homogenization heat treatment method for high-alloying Al-Zn-Mg-Cu-Ce alloy |
CN112609096A (en) * | 2020-12-14 | 2021-04-06 | 烟台南山学院 | Preparation method of heat-resistant high-strength Al-Li-Cu-Ce alloy plate |
CN112609096B (en) * | 2020-12-14 | 2021-08-13 | 烟台南山学院 | A kind of preparation method of heat-resistant high-strength Al-Li-Cu-Ce alloy sheet |
Also Published As
Publication number | Publication date |
---|---|
CN107385291B (en) | 2019-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107385291A (en) | A kind of high-performance Al Zn Mg Cu Zr Ce Ti alloys and its preparation technology | |
CN105463269B (en) | High-strength, highly corrosion resistant cast aluminium alloy gold and its compression casting preparation method | |
CN105441737A (en) | High-strength high-corrosion-resistance cast aluminum alloy and gravity casting manufacturing method thereof | |
CN103602865B (en) | Copper-containing heat-resistant magnesium-tin alloy and preparation method thereof | |
CN107406926B (en) | Magnesium-lithium alloy, rolled material made of magnesium-lithium alloy, and workpiece containing magnesium-lithium alloy as raw material | |
CN101440449B (en) | Multicomponent heat resisting magnesium alloy and preparation thereof | |
CN104630586B (en) | Flame-retardant and heat-resistant magnesium alloy and preparation method | |
CN107034372B (en) | A kind of preparation method of High Strength Cast Aluminum Alloy | |
CN103122431A (en) | Magnesium-lithium alloy with enhanced long-period structure phase and preparation method thereof | |
WO2016074423A1 (en) | Magnesium alloy and preparation method and use thereof | |
CN107858574A (en) | A kind of weak texture wrought magnesium alloy of multielement complex intensifying and preparation method thereof | |
CN109913716A (en) | A kind of preparation and rolling process method of aluminum-based light medium entropy alloy | |
CN107119215B (en) | A kind of superpower aluminium alloy and preparation method thereof | |
CN102011072B (en) | Aging treatment process for novel Al-Mg-Si-Er aluminum alloy plate material | |
CN104962789B (en) | Aluminium alloy material used for preparing high temperature resistant brazed aluminium/steel composite sheet material prepared from aluminium-silicon brazing filler metal, and preparation method thereof | |
CN102181763A (en) | Rare earth magnesium alloy with stable high-temperature strength | |
CN104294131B (en) | Mg-Zn-Cr-Bi-Zr alloy age-hardenable and preparation method thereof | |
CN104259433B (en) | A kind of casting method of improving titanium/aluminium solid-liquid compound interface plasticity and toughness | |
CN104762526A (en) | Low-cost and high-strength Ti-Zr-Al-F2 alloy | |
CN112226636A (en) | Preparation method of high-strength corrosion-resistant Al-Zn-Mg-Cu-Zr-Ce alloy plate | |
CN107447152A (en) | A kind of magnesium alloy plate of high-strength and high ductility and preparation method thereof | |
CN114717453B (en) | High-toughness cast aluminum-silicon alloy and preparation method thereof | |
CN101235453B (en) | A self-strengthening high-zinc heat-resistant magnesium alloy | |
CN107868896A (en) | A kind of Mg Li V alloys and its processing technology with anti-flammability | |
CN109811162B (en) | A kind of rare earth magnesium alloy containing antimony and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190129 Termination date: 20190622 |