JPS6311424B2 - - Google Patents
Info
- Publication number
- JPS6311424B2 JPS6311424B2 JP15465682A JP15465682A JPS6311424B2 JP S6311424 B2 JPS6311424 B2 JP S6311424B2 JP 15465682 A JP15465682 A JP 15465682A JP 15465682 A JP15465682 A JP 15465682A JP S6311424 B2 JPS6311424 B2 JP S6311424B2
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- reinforcing bars
- salt
- steel
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Reinforcement Elements For Buildings (AREA)
Description
本発明はコンクリート用鉄筋の耐食性向上、特
に海洋環境から侵入する塩分や砂中の塩分による
鉄筋の局部腐食の軽減に関するもので、海浜地帯
の橋梁用コンクリート、砂漠地帯の建築用コンク
リート、海洋構造物向けコンクリート等に使用さ
れる鉄筋の開発を目的としたものである。
一般にコンクリートは打設時のPH値が約12.5で
大気に曝されている場合の建築用コンクリートで
使用基準に合格しているもののPH値は約12前後が
一般的である。このような高PH値では塩分が存在
しない場合にはコンクリート中の鉄筋表面は不働
態で濡われやすい。
しかし、このようにPH値が高くても鉄筋周辺の
コンクリート中に塩分が存在すると、塩分によつ
て不働態被膜の一部が破壊されその部分で鉄の腐
食が著しく進行し局部腐食を誘発する。したがつ
て従来腐食がほとんど問題とされていなかつたコ
ンクリート用鉄筋も砂漠地帯の砂や海砂のように
塩分を含む砂をコンクリート原料として使用する
につれて、最近急速に塩分によるコンクリート鉄
筋の局部腐食の問題がクローズアツプされてき
た。
本発明はこのような状況に応じてコンクリート
用鉄筋の耐塩性を著しく向上させることを目的と
したもので、その特徴は鉄筋自身に耐食性をもた
せ、とくに孔食、局部腐食を軽減させることによ
り上記の問題点を本質的に改善したものである。
本発明のコンクリート用鉄筋は、さらに必要に
応じて亜鉛メツキ被覆をして使用するもので、前
述したコンクリート中の高PH領域で塩分が存在す
る腐食環境中において優れた耐食性をもち、かつ
用途に応じて必要な機械的性質および経済性を有
する鉄筋でC:0.01〜1.0%、Si:0.005〜0.05%、
Mn:0.1〜2.0%、Cr:0.05〜0.4%、Cu:0.01〜
0.4%、P:0.005〜0.025%、S:0.003%以下、
Al:0.01〜0.1%、Caを0.0002〜0.005%未満含有
し、残部鉄および不可避的不純物からなるものを
第1発明とし、これにつづいて次に低温靭性を考
慮してNiを添加したものを第2発明としている。
さらに高張力と低温靭性を考慮してNb,V,
Ti,Mo,Wを添加したものを第3発明としてい
る。
従来、鋼中の添加元素によつてコンクリート中
鉄筋の耐塩性を向上させたものとしては特公昭55
〜22546号公報があるが、これはWを添加しコン
クリート中で生成するタングステン塩によつて孔
食の発生を防止するというのが主な思想である。
ついで本発明と同一の発明者等により現行の普
通鉄筋にCaやRemを単独ないし複合添加して鋼
中のSを著しく低下させると同時に、鋼中のSi量
を低下させた高純度鋼およびこの高純度鋼にCu
やNi等の元素を添加させたものの耐塩性が著し
く向上することが見出され特願昭55〜113047号
(特開昭57〜48054号公報)として出願した。
本発明は前記発明の技術思想をさらに展開発展
させたもので一層耐食性を向上させたものであ
る。すなわち耐候性元素のCuを添加し、さらに
耐海水性を有するCrを孔食発生を生じさせない
量に限定して添加して耐塩性を著しく向上させた
ものである。
以下にその詳細について述べると共に、前記の
ように本発明の鉄筋の成分範囲を定めた理由を説
明する。
Cは機械的強度の上昇に必須であるが1.0%超
では脆化するので上限を1.0%とした。又、下限
を0.05%としたのは鉄筋を結線する際の軟鋼線用
に軟かい細径の鋼線を必要とするためである。
Siはコンクリートに埋込まれた鉄筋表面の不働
態被膜を劣化させる傾向があるので可能な限り低
下させることが望ましいが、製鋼上混在は避けら
れず、且つ介在物制御等から極端に減らすことが
できない。したがつて下限を0.005%とし、上限
を0.05%とした。
Mnは一般に鋼の強度上昇に寄与することが知
られている。2.0%を超えて添加すると脆化を来
たし、0.1%未満では軟鋼線としての強度が保証
できない。したがつて、Mn量の下限を0.1%と
し、上限を2.0%とした。
Pは一般に耐海水性を向上する元素として知ら
れているが、Pの量を増すと溶接性を劣化させ
る。したがつて下限を0.005%とし上限を0.025%
とした。
Sは前記のようにコンクリート中の塩分による
不働態被膜の破壊を招くので可能な限り低下させ
ることが望ましい。0.003%を超えて含有される
と不働態被膜が破壊され錆発生に導くので0.003
%以下とした。最も好ましい範囲は0.0005〜
0.002%である。
Cuは耐候性を向上させる元素として知られて
いるが、とくに鉄筋をコンクリートに埋設するま
でに大気中に放置する際の耐食性向上に寄与す
る。0.01%未満では耐食効果が認められず、0.4
%超では鋼の脆化を導く。したがつて添加量の下
限を0.01%、上限を0.05%とした。
Cuはスクラツプを使用した際に不可避的に0.2
%前後混入してくるがこの場合にも有効性が認め
られる。
Crは耐海水性元素として知られているが0.5%
超添加すると塩分による孔食劣化が著しくなり
0.05%未満では効果が認められない。
したがつて添加量の上限を0.5%とし、下限を
0.05%とした。高純度鋼にCrを上記のように適当
量添加するとコンクリート中での不働態化被膜の
強化を促進し塩分による劣化が軽減する。
Crはスクラツプを使用した際不可避的に0.1%
前後混入してくる場合もあるがこの場合にも有効
性が認められる。
Alは耐食性とは本質的に関係がないが、鋳造
法の相違による脱酸力調整のため添加させたもの
で、下限は0.01%とし、上限は連鋳材等でAlを多
量に添加することを考慮して0.1%とした。
Ca最大の狙いは、鋼中の脱硫によりS量を著
しく低減させることにあるが、同時にMn量が高
い場合でも残存する硫化物が完全なαMnSになる
ことを避け、Caを含む硫化物に変化させてその
化学的性状を変化させ耐塩性が向上することも期
待して添加したものである。下限は必要最小限の
含有量であり、上限は硫化物の性状を著しく変化
させるために規定したもので0.0002〜0.005%未
満の範囲とした。
第2発明のNi添加は特に寒冷地のコンクリー
ト用鉄筋として使用した場合の低温靭性の向上を
狙つたもので0.05%未満ではその効果が認められ
ず、5.5%超では経済的に不利になるためにNi量
を限定した。
さらに第3発明のNb,V,Ti,Mo,Wの添
加は高張力と低温靭性の向上を狙つた耐塩鉄筋の
開発を目的としたものでNb,V,Ti,Mo,W
の添加はこれらの炭窒化物の析出硬化と細粒効果
を利用したあもので下限を0.01%としたのはこれ
以下ではその効果が認められないためであり、上
限を0.2%としたのはこれ以上では鋼の脆化をも
たらすためである。
本発明に従い前記の化学成分で構成された鋼は
転炉、電気炉、平炉等で溶製され、次いで造塊、
分塊の工程を通るかあるいは連続鋳造後、圧延さ
れた後に必要に応じてパテンテイング等の熱処理
が施され、線引きされて鉄筋として供される。
又、必要に応じて表面に亜鉛メツキ、有機被覆を
施すこともできる。
本発明の実施例 1
表に転炉で本発明の成分範囲の鋼を溶製し、造
塊、分塊後線引きした鉄筋と従来鋼からなる鉄筋
との成分および腐食試験結果を示した。
表に示した鉄筋の中央部より巾25mm×長さ60mm
×厚さ2mmの試片を採取し機械研削して表面を研
磨した。
他方コンクリートの主成分であるCaOを0.8%
NaCl水溶液中に溶解させてPH12のCa(OH)2+
NaCl水溶液を準備した。
しかる後、前記のように表面研削し側面と裏面
をシリコンレジンで被覆した試片を脱脂後、乾燥
し、直ちに上記のCa(OH)2+NaCl水溶液中に浸
漬した。なお、試験中は液の表面を流動パラフイ
ンでシールし、3日毎に液を置換して20日間連続
浸漬し錆の発生状況を観察した。
表中(A)は錆の発生の有無、表中(B)は局部腐食の
深さmmを示す。なお、参考までにこれら試片の若
干のものについて前述のPH12のCa(OH)2+NaCl
水溶液中で陽分極特性をしらべた。
その結果を図面に示す。
図面より表で錆発生の認められなかつたものは
錆発生の認められたものより電位が貴であること
がわかる。これはコンクリートのような高PH領域
の液中で生成する鉄筋の不働態被膜がNaClによ
つて破壊され難い現象を証明している。
本発明の実施例 2
砂中のNaCl(%)を0.2%、含んだ砂、ボルト
ランドセメント、水、砂利からなるコンクリート
モルタルに表の成分からなる熱延鉄筋(9mmφ)
をうめ込み28日間常温養生した後、海浜地帯に1
年間曝露した。
なおコンクリートの水セメント比は0.65、カブ
リ厚さは2cmとした。
1年間曝露後コンクリートを破砕して鉄筋の発
生状況をくらべた。
その結果を表(C)に示す。
The present invention relates to improving the corrosion resistance of reinforcing bars for concrete, and in particular to reducing local corrosion of reinforcing bars due to salt intruding from the marine environment and salt in sand, and is applicable to concrete for bridges in coastal areas, architectural concrete in desert areas, and marine structures. The aim is to develop reinforcing bars for use in concrete, etc. In general, concrete has a PH value of about 12.5 when poured, and although it passes the standards for use in architectural concrete when exposed to the atmosphere, the PH value is generally around 12. At such high PH values, in the absence of salt, the reinforcing steel surface in concrete is passive and easily wetted. However, even if the PH value is high, if salt is present in the concrete around the reinforcing bars, the salt will destroy a part of the passive film and corrosion of the steel will progress significantly in that area, inducing local corrosion. . Therefore, as salt-containing sand such as desert sand or sea sand is used as a raw material for concrete, corrosion of concrete reinforcing bars has rarely been considered a problem, but local corrosion of concrete reinforcing bars due to salt has recently become a problem. The problem has been brought into close focus. The purpose of the present invention is to significantly improve the salt resistance of concrete reinforcing bars in response to such circumstances.The feature is that the reinforcing bars themselves have corrosion resistance, and in particular, by reducing pitting corrosion and local corrosion, This essentially improves the problems of . The reinforcing bars for concrete of the present invention are used with a galvanized coating if necessary, and have excellent corrosion resistance in the above-mentioned corrosive environment where salt is present in the high PH range of concrete, and are suitable for use. C: 0.01 to 1.0%, Si: 0.005 to 0.05%, with reinforcing bars that have the necessary mechanical properties and economic efficiency.
Mn: 0.1~2.0%, Cr: 0.05~0.4%, Cu: 0.01~
0.4%, P: 0.005-0.025%, S: 0.003% or less,
The first invention is one containing Al: 0.01 to 0.1%, less than 0.0002 to 0.005% Ca, and the balance is iron and unavoidable impurities.Following this, the next invention is one to which Ni is added in consideration of low temperature toughness. This is considered as the second invention. Furthermore, considering high tensile strength and low temperature toughness, Nb, V,
The third invention is one to which Ti, Mo, and W are added. Conventionally, the salt resistance of concrete reinforcing bars was improved by adding elements to the steel, and the
-22546, the main idea of which is to prevent the occurrence of pitting corrosion by adding tungsten salt and forming tungsten salt in concrete. Next, the inventors, who are the same as those of the present invention, added Ca and Rem singly or in combination to current ordinary reinforcing bars to significantly lower the S content in the steel, and at the same time, developed a high-purity steel in which the amount of Si in the steel was reduced. Cu on high purity steel
It was found that salt resistance was significantly improved by adding elements such as Ni and Ni, and an application was filed as Japanese Patent Application No. 113047-1983 (Japanese Patent Application Laid-open No. 57-48054). The present invention is a further development of the technical idea of the above-mentioned invention, and further improves corrosion resistance. That is, by adding Cu, which is a weather-resistant element, and further adding Cr, which has seawater resistance, in an amount that does not cause pitting corrosion, the salt resistance is significantly improved. The details will be described below, and the reason why the component ranges of the reinforcing bars of the present invention were determined as described above will be explained. C is essential for increasing mechanical strength, but if it exceeds 1.0%, it becomes brittle, so the upper limit was set at 1.0%. Furthermore, the lower limit was set to 0.05% because a soft, small-diameter steel wire is required for connecting reinforcing bars. Si tends to deteriorate the passive film on the surface of reinforcing bars embedded in concrete, so it is desirable to reduce it as much as possible, but its presence in steelmaking is unavoidable, and it is difficult to reduce it to an extreme for inclusion control, etc. Can not. Therefore, the lower limit was set to 0.005% and the upper limit was set to 0.05%. Mn is generally known to contribute to increasing the strength of steel. Adding more than 2.0% causes embrittlement, and adding less than 0.1% does not guarantee the strength of a mild steel wire. Therefore, the lower limit of the Mn content was set to 0.1%, and the upper limit was set to 2.0%. P is generally known as an element that improves seawater resistance, but increasing the amount of P deteriorates weldability. Therefore, the lower limit is 0.005% and the upper limit is 0.025%.
And so. As mentioned above, S causes destruction of the passive film due to salt in concrete, so it is desirable to reduce it as much as possible. If the content exceeds 0.003%, the passive film will be destroyed and rust will occur.
% or less. The most preferred range is 0.0005~
It is 0.002%. Cu is known as an element that improves weather resistance, and it particularly contributes to improving corrosion resistance when reinforcing bars are left exposed to the atmosphere before being buried in concrete. If it is less than 0.01%, no corrosion resistance effect is observed;
If it exceeds %, it leads to embrittlement of the steel. Therefore, the lower limit of the amount added was set to 0.01% and the upper limit was set to 0.05%. Cu is unavoidably 0.2 when using scrap.
%, but its effectiveness is recognized in this case as well. Cr is known as a seawater resistant element, but 0.5%
If excessively added, pitting corrosion and deterioration due to salt will be significant.
No effect is observed at less than 0.05%. Therefore, the upper limit of the amount added is 0.5%, and the lower limit is 0.5%.
It was set as 0.05%. Adding an appropriate amount of Cr to high-purity steel as described above promotes the strengthening of the passivation film in concrete and reduces deterioration due to salt. Cr is unavoidably 0.1% when using scrap
Although there are cases where the front and back are mixed, effectiveness is recognized in this case as well. Al is essentially unrelated to corrosion resistance, but is added to adjust the deoxidizing power due to differences in casting methods.The lower limit is 0.01%, and the upper limit is the addition of a large amount of Al in continuous casting materials, etc. Considering this, it was set at 0.1%. The main aim of Ca is to significantly reduce the amount of S through desulfurization in steel, but at the same time, even when the amount of Mn is high, the remaining sulfide is prevented from becoming complete αMnS, and changes to sulfide containing Ca. It was added in the hope that it would change its chemical properties and improve its salt tolerance. The lower limit is the minimum necessary content, and the upper limit is defined to significantly change the properties of sulfide, and is in the range of 0.0002 to less than 0.005%. The addition of Ni in the second invention aims to improve the low-temperature toughness especially when used as reinforcing bars for concrete in cold regions, and if it is less than 0.05%, the effect will not be recognized, and if it exceeds 5.5%, it will be economically disadvantageous. The amount of Ni was limited to Furthermore, the addition of Nb, V, Ti, Mo, and W in the third invention was aimed at developing salt-resistant reinforcing bars with the aim of improving high tensile strength and low-temperature toughness.
The addition of carbonitrides takes advantage of the precipitation hardening and fine grain effect of these carbonitrides.The lower limit was set at 0.01% because the effect was not observed below this, and the upper limit was set at 0.2%. This is because if it exceeds this, the steel becomes brittle. According to the present invention, the steel composed of the above chemical components is melted in a converter, electric furnace, open hearth, etc., and then ingot-formed,
After passing through the blooming process or after continuous casting and rolling, the steel is subjected to heat treatment such as patenting as necessary, and drawn into wire to be used as reinforcing bars.
Further, the surface may be galvanized or coated with an organic coating, if necessary. Example 1 of the present invention The table shows the composition and corrosion test results of reinforcing bars made of steel having the composition range of the present invention in a converter, ingot-formed, bloomed, and drawn, and reinforcing bars made of conventional steel. Width 25mm x length 60mm from the center of the reinforcing bars shown in the table
× A specimen with a thickness of 2 mm was taken and mechanically ground to polish the surface. On the other hand, CaO, which is the main component of concrete, is 0.8%.
Ca(OH) 2 + at pH 12 dissolved in NaCl aqueous solution
A NaCl aqueous solution was prepared. Thereafter, the specimen whose surface was ground as described above and whose side and back surfaces were coated with silicone resin was degreased, dried, and immediately immersed in the Ca(OH) 2 +NaCl aqueous solution described above. During the test, the surface of the liquid was sealed with liquid paraffin, the liquid was replaced every 3 days, and the samples were immersed continuously for 20 days to observe the occurrence of rust. (A) in the table indicates the presence or absence of rust, and (B) in the table indicates the depth of local corrosion in mm. For reference, some of these specimens have the above-mentioned PH12 Ca(OH) 2 + NaCl
The anodic polarization characteristics were investigated in aqueous solution. The results are shown in the drawing. It can be seen from the drawings and the table that the potential of the specimens with no rust formation is higher than that of the specimens with rust formation. This proves that the passive coating of reinforcing bars, which is formed in liquids in the high pH range such as concrete, is difficult to be destroyed by NaCl. Example 2 of the present invention Hot-rolled reinforcing bars (9 mmφ) made of the ingredients shown in the table in a concrete mortar made of sand containing 0.2% NaCl (%), Boltland cement, water, and gravel
After filling and curing at room temperature for 28 days, it was placed in a seaside area.
Exposure for years. The water-cement ratio of the concrete was 0.65, and the fog thickness was 2 cm. After one year of exposure, the concrete was crushed and the occurrence of reinforcing bars was compared. The results are shown in Table (C).
【表】
図面はCa(OH)2+0.8%NaCl水溶液(PH12)中
で25℃において測定した供試鋼の陽分極特性を示
したものである。[Table] The drawing shows the anodic polarization characteristics of the test steel measured in Ca(OH) 2 + 0.8% NaCl aqueous solution (PH12) at 25°C.
図面はグラフ図である。 The drawings are graphical diagrams.
Claims (1)
0.1〜2.0%、Cr:0.05〜0.4%、Cu:0.01〜0.4%、
P:0.005〜0.025%、S:0.003%以下、Al:0.01
〜0.1%、Caを0.0002〜0.005%未満含有し、残部
鉄および不可避的不純物からなり、コンクリート
中に塩分が存在する場合の耐食性に優れたコンク
リート用鉄筋。 2 C:0.05〜1.0%、Si:0.005〜0.05%、Mn:
0.1〜2.0%、Cr:0.05〜0.4%、Cu:0.01〜0.4%、
P:0.005〜0.025%、S:0.003%以下、Al:0.01
〜0.1%、Caを0.0002〜0.005%未満含有し、さら
にNiを0.05〜5.5%含有し、残部鉄および不可避
的不純物からなり、コンクリート中に塩分が存在
する場合の耐食性に優れたコンクリート用鉄筋。 3 C:0.05〜1.0%、Si:0.005〜0.05%、Mn:
0.1〜2.0%、Cr:0.05〜0.4%、Cu:0.01〜0.4%、
P:0.005〜0.025%、S:0.003%以下、Al:0.01
〜0.1%、Caを0.0002〜0.005%未満含有し、さら
にNb、Ti、V、Mo、Wを単独で0.01〜0.2%含
有し、残部鉄および不可避的不純物からなり、コ
ンクリート中に塩分が存在する場合の耐食性に優
れたコンクリート用鉄筋。[Claims] 1 C: 0.05-1.0%, Si: 0.005-0.05%, Mn:
0.1~2.0%, Cr: 0.05~0.4%, Cu: 0.01~0.4%,
P: 0.005-0.025%, S: 0.003% or less, Al: 0.01
~0.1%, less than 0.0002 to 0.005% Ca, with the balance consisting of iron and unavoidable impurities, and has excellent corrosion resistance when salt is present in concrete. 2 C: 0.05-1.0%, Si: 0.005-0.05%, Mn:
0.1~2.0%, Cr: 0.05~0.4%, Cu: 0.01~0.4%,
P: 0.005-0.025%, S: 0.003% or less, Al: 0.01
~0.1%, less than 0.0002 to 0.005% Ca, and 0.05 to 5.5% Ni, with the remainder being iron and unavoidable impurities, and has excellent corrosion resistance when salt is present in concrete. 3 C: 0.05-1.0%, Si: 0.005-0.05%, Mn:
0.1~2.0%, Cr: 0.05~0.4%, Cu: 0.01~0.4%,
P: 0.005-0.025%, S: 0.003% or less, Al: 0.01
Contains ~0.1%, less than 0.0002~0.005% Ca, and 0.01~0.2% of Nb, Ti, V, Mo, and W alone, with the balance consisting of iron and unavoidable impurities, and salt is present in the concrete. Reinforcing bars for concrete with excellent corrosion resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15465682A JPS5944457A (en) | 1982-09-07 | 1982-09-07 | Reinforcing bars for concrete |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15465682A JPS5944457A (en) | 1982-09-07 | 1982-09-07 | Reinforcing bars for concrete |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5944457A JPS5944457A (en) | 1984-03-12 |
JPS6311424B2 true JPS6311424B2 (en) | 1988-03-14 |
Family
ID=15589003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15465682A Granted JPS5944457A (en) | 1982-09-07 | 1982-09-07 | Reinforcing bars for concrete |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5944457A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4915901A (en) * | 1984-12-18 | 1990-04-10 | Nippon Steel Corporation | Reinforcing steel having resistance to salt and capable of preventing deterioration of concrete |
US4844865A (en) * | 1986-12-02 | 1989-07-04 | Nippon Steel Corporation | Seawater-corrosion-resistant non-magnetic steel materials |
-
1982
- 1982-09-07 JP JP15465682A patent/JPS5944457A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5944457A (en) | 1984-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008150670A (en) | Weatherproof steel with enhanced rust stabilization ability and method for producing the same | |
JP4325421B2 (en) | Seawater resistant | |
JP5053213B2 (en) | High-strength steel with excellent corrosion resistance during painting in the coastal area and its manufacturing method | |
JPS6311424B2 (en) | ||
JPH09263886A (en) | Steel material for concrete rebar | |
JPS645099B2 (en) | ||
US4844865A (en) | Seawater-corrosion-resistant non-magnetic steel materials | |
US4861548A (en) | Seawater-corrosion-resistant non-magnetic steel materials | |
JPS5858251A (en) | Steel pipes for concrete coating, steel sheet piles | |
JPS623222B2 (en) | ||
JP7705047B2 (en) | steel material | |
JP4882259B2 (en) | Hydrated hardened body with rebar having excellent salt resistance | |
JPS6254857B2 (en) | ||
JPS5883752A (en) | Reinforcing iron wire for concrete excellent in salt resistance | |
JPH08134587A (en) | Welded structural steel with excellent weather resistance | |
JPS62199748A (en) | Seawater resistant reinforced steel bar | |
JPH0480112B2 (en) | ||
JPH0259456A (en) | Carbon fiber reinforced concrete structure | |
JPS6311422B2 (en) | ||
JP2006273692A (en) | Hydrated hardened body with rebar having excellent salt resistance | |
JPH02138440A (en) | Seawater resistant steel with excellent rust resistance | |
JPS5825458A (en) | Corrosion resistant low alloy steel | |
JPS6092448A (en) | Iron-reinforcing rod for concrete with superior corrosion resistance | |
JPH02138441A (en) | Seawater resistant steel with improved rust resistance | |
JPH03183740A (en) | Salt-resistant reinforcing bar for preventing deterioration of concrete |