[go: up one dir, main page]

JPS6311422B2 - - Google Patents

Info

Publication number
JPS6311422B2
JPS6311422B2 JP12031685A JP12031685A JPS6311422B2 JP S6311422 B2 JPS6311422 B2 JP S6311422B2 JP 12031685 A JP12031685 A JP 12031685A JP 12031685 A JP12031685 A JP 12031685A JP S6311422 B2 JPS6311422 B2 JP S6311422B2
Authority
JP
Japan
Prior art keywords
concrete
reinforcing bars
amount
steel
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12031685A
Other languages
Japanese (ja)
Other versions
JPS61279657A (en
Inventor
Haruo Shimada
Yoshiaki Sakakibara
Takashi Waseda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12031685A priority Critical patent/JPS61279657A/en
Priority to US06/803,284 priority patent/US4915901A/en
Priority to AU50703/85A priority patent/AU556118B2/en
Priority to CA000496811A priority patent/CA1273511A/en
Priority to GB8531039A priority patent/GB2168380B/en
Priority to AU61174/86A priority patent/AU605465B2/en
Publication of JPS61279657A publication Critical patent/JPS61279657A/en
Publication of JPS6311422B2 publication Critical patent/JPS6311422B2/ja
Priority to CA000615704A priority patent/CA1285402C/en
Granted legal-status Critical Current

Links

Landscapes

  • Reinforcement Elements For Buildings (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は海浜地帯に設置されるコンクリート建
造物,海洋に設置されるコンクリート構造物,
等,海塩粒子、海水の飛沫に曝らされる鉄筋コン
クリート構造物,コンクリート橋などの劣化防止
作用の著しくすぐれた耐塩鉄筋に関するものであ
る。 [従来の技術] 最近、海砂を使用した鉄筋コンクリート建築物
や、海浜地帯に設置されたコンクリート建造物,
コンクリート橋のヒビ割れ劣化が各方面で問題に
なつており、種々の防止法が提案されたり実施に
移されている。 このコンクリート劣化の最大の原因は海砂中に
含まれている塩分や海浜地帯でコンクリート壁を
浸透してくる海塩粒子の塩分によつてコンクリー
ト中に埋設された鉄筋が腐食し、その体積が鉄の
約2.2倍になるため、その膨脹力に耐え切れなく
なつて埋設鉄筋に沿つたコンクリートに亀裂が発
生する。その亀裂が0.2mm以上になると外部の腐
食因子たる酸素や塩分、空気中の炭酸ガスがこの
亀裂を通してより容易に内部の埋設鉄筋付近に浸
透し、さらに一層鉄筋の腐食を助長したり、コン
クリートの中性化を促進してコンクリートの劣化
を早めることになる。 本発明者らはこのようなコンクリートの劣化を
防止するために、鉄筋自体の化学組成を制御し、
微量の特殊な添加元素を添加することによつて鉄
筋自体の耐塩性を向上する研究を実施し、その成
果として先ずCuとWを同時添加した耐海水性に
すぐれたコンクリート用鉄筋(特公昭55―22546
号公報)、さらに耐塩性を著しく向上したコンク
リート用鉄筋(特開昭57―48054号公報,特開昭
59―44457号公報)を開発し、これらの内容はす
でに他の各方面でも公表されている
(“OFFSHORE GO¨TEBORG ’81”Paper No.
42Go¨teborg SWEDEN 1981年,“セメントコン
クリート”No.434(1983)P.23/31,“Corrosion of
Reinforcement in Concrete Construction”
P.419,1983年,“建築の技術施行”1985年No.2291
月号P.155/164,彰国社)。 又鉄筋自体の耐塩性向上に寄与する鉄筋の鋼成
分の耐塩機構についてもこれらの公表論文の中に
詳細に記されており、現在実用化が進んでいるも
のである。 [発明が解決しようとする問題点] 本発明は従来の本発明者等の開発を軸にして最
近、とくに問題となつてきたコンクリート壁を浸
透してくる海塩粒子や海水飛沫等のフリーなCl-
の状態で存在する塩分による鉄筋の腐食とそれに
伴なうコンクリートの亀裂発生を殆ど完全に停止
することにある。 現在各方面で問題となつている10年以上経過し
たコンクリート構造物中の埋設鉄筋近傍のフリー
塩分はNaCl換算で0.15〜0.25%に達して鉄筋の著
しい腐食とそれに伴なうコンクリートの亀裂発
生,成長をひき起こしている。したがつてフリー
塩分0.25%の状態でコンクリートの亀裂発生を殆
ど完全に停止できることが望ましい。 [問題点を解決するための手段] 本発明の前記の目的は、C;0.01〜1.0%,
Mn;0.05〜1.5%,Si;0.01%未満,P;0.015%
未満,S;0.005%未満,Cu;0.1〜0.5%,W;
0.05〜0.50%,Al;0.005〜0.07%を含有するも
の、更にこれら成分にNb,V,Tiの1種を0.01
〜0.2%含有し、残部鉄および不可避的不純物よ
りなることを特徴とするコンクリート用鉄筋によ
つて達成される。 本発明の最大の特徴は鋼中のSi,S量を極端に
下げ、かつCu,W添加により耐塩効果を向上さ
せ、コンクリートの劣化を防止するものである。 この原因としては、Si量を下げることによつて
錆の生成,成長を抑えると同時に鉄筋自体の錆化
に伴なつて生成する鉄の腐食抑制剤のWO4 --
ンヒビターの生成量を飛躍的に多くすることと、
S量の著しい低下に伴ない錆発生点となるMnS
量が著しく低下することにより耐食性が飛躍的に
向上するものであると推測される。 又、Si,Sの極端な低下はコンクリートのアル
カリ雰囲気中における埋設鉄筋表面の不働態被膜
が添加したCuによつて補強されるものと考えら
れる。以下に本発明で各成分を限定した理由を説
明する。 C量を0.01〜1.0%に限定した理由は、C量0.01
%未満では必要強度が得られず、C量1.0%超で
は脆化をひき起こすためである。 又、Mn量を0.05〜1.5%に限定した理由はMn
量0.05%未満では必要強度が得られず1.5%超で
は脆化をひき起こすためである。 Si量を0.01%未満とした理由は、Si量を下げれ
ば下げるほど錆生成量を飛躍的に低下させ
WO4 --イオンの有効量を飛躍的に増大させるた
めである。 Pを0.015%未満とした理由はPを0.015%以上
ではコンクリートのようなアルカリ性雰囲気で錆
成長を抑制する効果がなく、むしろ助長する傾向
があるためである。 Cuを0.1〜0.5%と限定した理由はCu0.1%未満
では鉄筋表面の不働態皮膜補強に効果がなく0.5
%超では鋼の脆化をひき起こすためである。 Wを0.1〜0.5%と限定した理由は0.1%未満では
WO4 --イオンの生成量が少なく耐食効果が認め
られず、0.5%超では経済性の点で高価になるか
らである。 Alを0.005〜0.07%と限定した理由はAl0.005%
未満では鋼中に存在する酸素を安定なAlの酸化
物として固定できずAl0.07%超では大型の介在物
が生成し鋼の脆化をひき起こすので脱酸効果に必
要な量と強度の点から上記成分範囲に限定した。 又S量を0.005%未満と限定した理由は錆の発
生起源であるMnS量を減らすことにありこのS
量低下のために脱硫剤として使用されるCa化合
物、希土類元素によりMnSが(Mn,Ca)S等に
変化することによる耐食性向上効果も期待でき
る。また鋼中のS量を低下するために上記のよう
な操業を行なうことは常識となつているので、若
干のCa,Ce等が混入してくることがあるが、こ
れらの元素は耐食性などに悪影響を及ぼすもので
はないのでCa,Ce量は規定しない。周知のよう
にC,Mn量を増すと機械的強度が向上するが、
C,Mn量の増加につれてC当量が増加して溶接
性向上の点では不利になる。この場合C,Mn量
を一定量以下に抑えて所定の機械的強度を確保す
る必要がある。この観点から鋼の強度、靭性に役
立つことが知られているNb,V,Tiを一種0.01
〜0.2%添加することにしたものである。 なおNb,V,Tiを別々に選んだ理由は以下の
通りである。これらの元素はいずれも鋼中のC,
Nと結合して炭化物,窒化物を形成して鋼の結晶
粒を細粒したり細かい析出物自体の効果で鋼の強
度、靭性を増加させることはよく知られている。
が、此の際鋼の中でのNbC,V4C3,TiC,
NbN,VN,TiNのγ域中の熱力学の溶解度積
のそれぞれの違いおよびα域中のそれぞれの析出
量の違い、更にこれらの各領域における析出速度
恒数の違いにより量的ならびに質的に最適の析出
温度範囲がそれぞれ異なつている。従つてこれら
の元素の中から適当なものを一種選ぶことにより
適宜の熱処理条件と適宜の機械的強度、靭性を得
ることができる。 添加量0.01%以上ではこの効果が認められず添
加量0.2%以上では巨大炭化物、窒化物を形成し
てこの効果の一層の向上が期待できない場合があ
る。したがつて上記の範囲に限定してある。 本発明に従い前記の化学成分で構成された鋼は
転炉,電気炉等で溶製され、ついで造塊,分塊の
工程を通るか、あるいは連続鋳造後、圧延された
後に必要に応じてパテンテイング等の熱処理が施
され、綿引きされて鉄筋として供される。又、必
要に応じて表面に亜鉛メツキ,有機被覆を施すこ
ともできる。 [実施例] 転炉で本発明の成分範囲の鋼を溶製し、造塊,
分塊後、綿引きした鉄筋と、比較鋼の鉄筋、従来
からの電炉鋼からなる鉄筋の成分、およびこれら
の鉄筋を埋設したコンクリートの劣化状況、埋設
鉄筋の腐食状況の経時変化を表に示した。
[Industrial Application Field] The present invention is applicable to concrete structures installed in seaside areas, concrete structures installed in the ocean,
The present invention relates to salt-resistant reinforcing bars that have excellent anti-deterioration properties for reinforced concrete structures, concrete bridges, etc. that are exposed to sea salt particles and seawater spray. [Prior art] Recently, reinforced concrete buildings using sea sand, concrete buildings installed in seaside areas,
Cracking and deterioration of concrete bridges has become a problem in various fields, and various prevention methods have been proposed and put into practice. The biggest cause of this concrete deterioration is that the reinforcing bars embedded in the concrete corrode due to the salt contained in sea sand and the salt from sea salt particles that permeate concrete walls in beach areas, causing the volume to decrease. Since it is approximately 2.2 times as large as steel, it cannot withstand the expansion force and cracks occur in the concrete along the buried reinforcing bars. If the crack is 0.2 mm or more, external corrosion factors such as oxygen, salt, and carbon dioxide in the air will more easily penetrate through the crack to the area around the buried reinforcing steel, further promoting the corrosion of the reinforcing steel and damaging the concrete. This will promote carbonation and accelerate the deterioration of concrete. In order to prevent such concrete deterioration, the present inventors controlled the chemical composition of the reinforcing bars themselves,
Research was conducted to improve the salt resistance of the reinforcing bars themselves by adding small amounts of special additive elements, and the first result was a reinforcing bar for concrete with excellent seawater resistance that added Cu and W at the same time. ―22546
(Japanese Patent Laid-Open Publication No. 1983-48054,
59-44457), and these contents have already been published in various other areas ("OFFSHORE GO¨TEBORG '81" Paper No.
42Go¨teborg SWEDEN 1981, “Cement Concrete” No.434 (1983) P.23/31, “Corrosion of
“Reinforcement in Concrete Construction”
P.419, 1983, “Architectural Technology Enforcement” 1985 No.2291
Monthly issue P.155/164, Shokokusha). The salt resistance mechanism of the steel components of reinforcing bars, which contributes to improving the salt resistance of the reinforcing bars themselves, is also described in detail in these published papers, and is currently being put into practical use. [Problems to be Solved by the Invention] The present invention is based on the conventional development by the present inventors, and solves the problem of sea salt particles and sea water splashes penetrating concrete walls, which has recently become a particular problem. Cl-
The objective is to almost completely stop the corrosion of reinforcing bars due to the salt present in these conditions and the accompanying cracking of concrete. Currently, free salt near buried reinforcing bars in concrete structures that have been in use for more than 10 years has become a problem in various fields, reaching 0.15 to 0.25% in terms of NaCl, leading to severe corrosion of reinforcing bars and resulting cracks in the concrete. is causing growth. Therefore, it is desirable to be able to almost completely stop the occurrence of cracks in concrete with a free salt content of 0.25%. [Means for solving the problems] The above-mentioned object of the present invention is to provide C; 0.01 to 1.0%;
Mn; 0.05-1.5%, Si; less than 0.01%, P; 0.015%
less than, S; less than 0.005%, Cu; 0.1 to 0.5%, W;
0.05 to 0.50%, Al; containing 0.005 to 0.07%, and 0.01% of one of Nb, V, and Ti added to these components.
This is achieved by a concrete reinforcing bar containing ~0.2%, with the remainder consisting of iron and unavoidable impurities. The most important feature of the present invention is that the amount of Si and S in the steel is extremely reduced, and the addition of Cu and W improves the salt resistance effect, thereby preventing concrete deterioration. The reason for this is that by lowering the amount of Si, the formation and growth of rust is suppressed, and at the same time, the amount of WO 4 --inhibitor , an iron corrosion inhibitor that is generated as the reinforcing steel itself rusts, is dramatically reduced. to do more and
MnS becomes a rusting point due to a significant decrease in S content.
It is presumed that corrosion resistance is dramatically improved by significantly reducing the amount. Furthermore, the extreme decrease in Si and S is thought to be due to the reinforcement of Cu added to the passive film on the surface of the buried reinforcing bars in the alkaline atmosphere of concrete. The reason why each component is limited in the present invention will be explained below. The reason for limiting the C amount to 0.01 to 1.0% is that the C amount is 0.01%.
If the C content is less than 1.0%, the required strength cannot be obtained, and if the C content exceeds 1.0%, embrittlement will occur. Also, the reason why the amount of Mn was limited to 0.05 to 1.5% is that Mn
This is because if the amount is less than 0.05%, the required strength cannot be obtained, and if it exceeds 1.5%, it will cause embrittlement. The reason why the amount of Si was set to less than 0.01% is that the lower the amount of Si, the more the amount of rust formed will be dramatically reduced.
This is to dramatically increase the effective amount of WO 4 --ions . The reason why the P content is set to be less than 0.015% is that if the P content is 0.015% or more, there is no effect of suppressing rust growth in an alkaline atmosphere such as concrete, and the rust growth tends to be promoted. The reason for limiting Cu to 0.1 to 0.5% is that less than 0.1% Cu is ineffective in reinforcing the passive film on the reinforcing bar surface.
This is because if it exceeds %, it will cause embrittlement of the steel. The reason for limiting W to 0.1-0.5% is that if it is less than 0.1%,
This is because the amount of WO 4 -- ion produced is small and no corrosion-resistant effect is observed, and if it exceeds 0.5%, it becomes expensive from an economic point of view. The reason for limiting Al to 0.005-0.07% is Al0.005%
If the Al content is less than 0.07%, the oxygen present in the steel cannot be fixed as a stable Al oxide, and if the Al content exceeds 0.07%, large inclusions will form and cause the steel to become brittle. Based on this point, the ingredients were limited to the above range. The reason for limiting the S content to less than 0.005% is to reduce the amount of MnS, which is the source of rust.
It is also expected that corrosion resistance will be improved by converting MnS into (Mn, Ca)S, etc. using Ca compounds and rare earth elements, which are used as desulfurization agents to reduce the amount of MnS. In addition, it is common knowledge to carry out the operations described above to reduce the amount of S in steel, so a small amount of Ca, Ce, etc. may be mixed in, but these elements have no effect on corrosion resistance. The amounts of Ca and Ce are not specified as they do not have any adverse effects. As is well known, increasing the amount of C and Mn improves mechanical strength, but
As the C and Mn contents increase, the C equivalent increases, which is disadvantageous in terms of improving weldability. In this case, it is necessary to suppress the amounts of C and Mn to below a certain amount to ensure a predetermined mechanical strength. From this point of view, Nb, V, and Ti, which are known to be useful for the strength and toughness of steel, are added at 0.01%.
It was decided to add ~0.2%. The reason why Nb, V, and Ti were selected separately is as follows. All of these elements are C in steel,
It is well known that N combines with N to form carbides and nitrides, making the crystal grains of steel finer, and that the fine precipitates themselves increase the strength and toughness of steel.
However, in this case, NbC, V 4 C 3 , TiC,
Due to the differences in the thermodynamic solubility products of NbN, VN, and TiN in the γ region and the differences in their precipitation amounts in the α region, as well as the differences in the precipitation rate constants in each of these regions, the The optimum precipitation temperature range is different for each. Therefore, by selecting an appropriate element from among these elements, appropriate heat treatment conditions and appropriate mechanical strength and toughness can be obtained. If the amount added is 0.01% or more, this effect is not observed, and if the amount added is 0.2% or more, giant carbides and nitrides are formed, and further improvement of this effect may not be expected. Therefore, it is limited to the above range. According to the present invention, the steel composed of the above chemical components is melted in a converter, electric furnace, etc., and then passes through the steps of ingot making and blooming, or after continuous casting and rolling, if necessary, it is patented. It is heat-treated, cotton-pulled, and used as reinforcing steel. Furthermore, the surface may be galvanized or coated with an organic coating, if necessary. [Example] Steel having the composition range of the present invention was melted in a converter, and ingots were formed.
After blooming, the table shows the composition of cotton-pulled reinforcing bars, comparative steel reinforcing bars, and conventional electric furnace steel reinforcing bars, as well as the deterioration status of the concrete in which these reinforcing bars are buried, and the changes over time in the corrosion status of the buried reinforcing bars. Ta.

【表】【table】

【表】 (表面から埋設鉄筋までの長さ)
表の各種鉄筋は9mmφの熱延鉄筋で表面を機械
研磨後、脱脂し、水・セメント比0.60、砂中の全
塩分量をNaCl換算で0.50%のコンクリートモル
タル中に埋設し第1図のようなコンクリート供試
体を作製し、28日間養生後、コンクリート供試体
を恒温恒湿槽に挿入し、湿潤48hr、乾燥24hr、湿
潤48hr、乾燥48hrで1週間(2サイクル)経過す
るサイクルで56,70,100,138日間曝露してコン
クリートの亀裂発生を観察した。第1図中1はコ
ンクリート供試体、2は埋設鉄筋9mmφ、3はモ
ルタル塗りの上エポキシシール、lはかぶり厚さ
を示す。 なお曝露条件を第2図のように設定したのは水
蒸気中に酸素が最大に固溶している80℃の高温で
乾湿くり返しを実施するというきわめて過酷な環
境条件で埋設鉄筋の腐食を促進するためである。
又、同時にこれらコンクリート供試体の空気中の
炭酸ガスによる中性化深さの経時変化、埋設鉄筋
の腐食量の経時変化をしらべた。コンクリート供
試体の亀裂はクラツクゲージでその巾の最大値を
測定した。 炭酸ガスによる中性化深さはフエノールフタレ
イン溶液をコンクリートに散布しコンクリート供
試体で赤色→無色に変化したコンクリート供試体
の表層からの深さを測定した。 埋設鉄筋の腐食量はコンクリートを破砕してと
り出した鉄筋の錆を化学的にとり除いた後重量を
測定し腐食前の重量から差し引いて鉄筋長さ28cm
当りの腐食減量として求めた。 参考までにこの表の鉄筋試料No.1,No.4,No.
5,をそれぞれ埋設したコンクリート供試体の劣
化状況を第3図にしめす。 又、この表の鉄筋試料No.1,No.2,No.3,No.
4,No.5をそれぞれ埋設したコンクリート供試体
を100日間前記の恒温恒湿槽中に曝露後、鉄筋近
傍の全塩分量と冷水で抽出されてくるフリー塩分
量を化学分析して砂中換算NaCl(%)として求め
たところ全塩分量はいずれも約0.50%、フリー塩
分量は約0.25%であつた。 したがつて本発明の鉄筋は鉄筋近傍のフリー塩
分が砂中換算で0.25%に達しても殆ど腐食が進行
せず、コンクリートの劣化を殆ど停止させる効果
のあることが判つた。 [発明の効果] 本発明は今後ますます問題になる塩害にさらさ
れるコンクリート構造物の耐久性を維持するのに
飛躍的に有効なコンクリート用鉄筋として役立つ
ものである。 本発明のコンクリート用鉄筋を使用することに
より、コンクリート構造物の長寿命化、安定性の
向上に資するもので、各種用途向に使用すること
ができる。
[Table] (Length from surface to buried reinforcing bars)
The various reinforcing bars shown in the table are hot-rolled reinforcing bars with a diameter of 9 mm, the surface of which is mechanically polished, degreased, and buried in concrete mortar with a water/cement ratio of 0.60 and a total salt content in the sand of 0.50% in terms of NaCl, as shown in Figure 1. After curing for 28 days, the concrete specimen was placed in a constant temperature and humidity chamber, and the temperature was 56,70 hrs. The occurrence of cracks in concrete was observed after exposure for 100 and 138 days. In Fig. 1, 1 is the concrete specimen, 2 is the buried reinforcing bar 9 mm in diameter, 3 is the mortar coating and epoxy seal, and l is the cover thickness. The exposure conditions were set as shown in Figure 2 to promote corrosion of the buried reinforcing bars under the extremely harsh environmental conditions of repeatedly drying and moistening at a high temperature of 80°C, where the maximum amount of oxygen is dissolved in water vapor. It's for a reason.
At the same time, we investigated the changes over time in the depth of carbonation of these concrete specimens due to carbon dioxide gas in the air, and the changes over time in the amount of corrosion of the buried reinforcing bars. The maximum width of cracks in concrete specimens was measured using a crack gauge. The depth of neutralization by carbon dioxide gas was determined by spraying a phenolphthalein solution on the concrete and measuring the depth from the surface of the concrete specimen where the color changed from red to colorless. The amount of corrosion of buried reinforcing bars can be determined by crushing the concrete, chemically removing the rust from the reinforcing bars, weighing them, and subtracting the weight from the weight before corrosion for a reinforcing bar length of 28 cm.
It was calculated as the corrosion weight loss per unit. For reference, reinforcing bar samples No. 1, No. 4, and No. in this table.
Figure 3 shows the state of deterioration of the concrete specimens in which 5 and 5 were buried. Also, reinforcing bar samples No. 1, No. 2, No. 3, and No. in this table.
After exposing the concrete specimens in which No. 4 and No. 5 were buried in the constant temperature and humidity chamber for 100 days, the total salt content near the reinforcing bars and the free salt content extracted with cold water were chemically analyzed and converted to sand content. When calculated as NaCl (%), the total salt content was approximately 0.50% and the free salt content was approximately 0.25%. Therefore, it has been found that the reinforcing bars of the present invention hardly undergo corrosion even if the free salt near the reinforcing bars reaches 0.25% in terms of sand, and is effective in almost stopping the deterioration of concrete. [Effects of the Invention] The present invention is useful as a concrete reinforcing bar that is extremely effective in maintaining the durability of concrete structures that are exposed to salt damage, which will become an increasingly problematic problem in the future. By using the reinforcing bars for concrete of the present invention, it contributes to extending the lifespan and improving the stability of concrete structures, and can be used for various purposes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは、鉄筋を埋設したコンクリート
供試体の形状・寸法と配筋状況を示す説明図、第
2図は、鉄筋を埋設したコンクリート供試体の発
錆促進試験における試験条件を示す図、第3図
は、コンクリート供試材の外観を示す図である。 1……コンクリート供試体、2……埋設鉄筋、
3……モルタル塗り上エポキシシール。
Figures 1a and b are explanatory diagrams showing the shape, dimensions, and reinforcement arrangement of a concrete specimen with embedded reinforcing bars, and Figure 2 shows the test conditions for a rust acceleration test on a concrete specimen with embedded reinforcing bars. 3 are diagrams showing the appearance of concrete test materials. 1... Concrete specimen, 2... Buried reinforcing bars,
3... Epoxy seal over mortar coating.

Claims (1)

【特許請求の範囲】 1 C;0.01〜1.0% Si;0.01%未満 Mn;0.05〜1.5% P;0.015%未満 S;0.005%未満 Cu;0.1〜0.5% W;0.05〜0.5% Al;0.005〜0.07% を含有し、残部鉄および不可避的不純物からな
るコンクリート劣化防止用耐塩鉄筋。 2 C;0.01〜1.0% Si;0.01%未満 Mn;0.05〜1.5% P;0.015%未満 S;0.005%未満 Cu;0.1〜0.5% W;0.05〜0.5% Al;0.005〜0.07% を含有し、さらにNb,V,Tiの1種を0.01〜
0.2%含有し、残部鉄および不可避的不純物から
なるコンクリート劣化防止用耐塩鉄筋。
[Claims] 1 C; 0.01 to 1.0% Si; Less than 0.01% Mn; 0.05 to 1.5% P; Less than 0.015% S; Less than 0.005% Cu; 0.1 to 0.5% W; 0.05 to 0.5% Al; 0.005 to Salt-resistant reinforcing bars for preventing concrete deterioration, containing 0.07% and the remainder consisting of iron and unavoidable impurities. 2 C; 0.01 to 1.0% Si; less than 0.01% Mn; 0.05 to 1.5% P; less than 0.015% S; less than 0.005% Cu; 0.1 to 0.5% W; 0.05 to 0.5% Al; 0.005 to 0.07%; Furthermore, one type of Nb, V, Ti is added from 0.01 to
Salt-resistant reinforcing bars for preventing concrete deterioration, containing 0.2%, with the remainder consisting of iron and unavoidable impurities.
JP12031685A 1984-12-18 1985-06-03 Salt resistant iron reinforcing rod for preventing deterioration of concrete Granted JPS61279657A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP12031685A JPS61279657A (en) 1985-06-03 1985-06-03 Salt resistant iron reinforcing rod for preventing deterioration of concrete
US06/803,284 US4915901A (en) 1984-12-18 1985-12-02 Reinforcing steel having resistance to salt and capable of preventing deterioration of concrete
AU50703/85A AU556118B2 (en) 1984-12-18 1985-12-03 Salt resistant reinforcing steel capable of preventing deterioration of concrete
CA000496811A CA1273511A (en) 1984-12-18 1985-12-04 Reinforcing steel having resistance to salt and capable of preventing deterioration of concrete
GB8531039A GB2168380B (en) 1984-12-18 1985-12-17 A reinforcing steel
AU61174/86A AU605465B2 (en) 1984-12-18 1986-08-14 Reinforcing steel having resistance to salt and capable of preventing deterioration of concrete
CA000615704A CA1285402C (en) 1984-12-18 1990-04-17 Reinforcing steel having resistance to salt and capable of preventing deterioration of concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12031685A JPS61279657A (en) 1985-06-03 1985-06-03 Salt resistant iron reinforcing rod for preventing deterioration of concrete

Publications (2)

Publication Number Publication Date
JPS61279657A JPS61279657A (en) 1986-12-10
JPS6311422B2 true JPS6311422B2 (en) 1988-03-14

Family

ID=14783224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12031685A Granted JPS61279657A (en) 1984-12-18 1985-06-03 Salt resistant iron reinforcing rod for preventing deterioration of concrete

Country Status (1)

Country Link
JP (1) JPS61279657A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03127628U (en) * 1990-04-05 1991-12-24

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197756A (en) * 1987-10-12 1989-04-17 Nippon Steel Corp Salt-resistant separator for concrete formwork fasteners
JP6924367B2 (en) * 2017-05-23 2021-08-25 東京電力ホールディングス株式会社 Evaluation test equipment and evaluation test method for reinforcing bar corrosion associated with cracks in concrete columns

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03127628U (en) * 1990-04-05 1991-12-24

Also Published As

Publication number Publication date
JPS61279657A (en) 1986-12-10

Similar Documents

Publication Publication Date Title
WO2009080714A1 (en) Corrosion resistant steel for marine applications
FI60242C (en) CONSTRUCTION CONTAINER STAOLMATERIAL OCH FOERFARANDE FOER DERAS FRAMSTAELLNING
US4836981A (en) Concrete reinforcing steel bar or wire
JPS6311422B2 (en)
US4844865A (en) Seawater-corrosion-resistant non-magnetic steel materials
US4861548A (en) Seawater-corrosion-resistant non-magnetic steel materials
US6810634B1 (en) Method of resisting corrosion in metal reinforcing elements contained in concrete and related compounds and structures
JP2745066B2 (en) Salt rebar for concrete deterioration prevention
JPH03183740A (en) Salt-resistant reinforcing bar for preventing deterioration of concrete
Wilmot Corrosion protection of reinforcement for concrete structures
JPH09263886A (en) Steel material for concrete rebar
Cady¹ —Corrosion of Reinforcing Steel
CA1285402C (en) Reinforcing steel having resistance to salt and capable of preventing deterioration of concrete
JPH0480112B2 (en)
KR20010022926A (en) Weathering steel
JPH02138441A (en) Seawater resistant steel with improved rust resistance
JPS62199748A (en) Seawater resistant reinforced steel bar
JPH02138440A (en) Seawater resistant steel with excellent rust resistance
JPS6310228B2 (en)
JPH0430464B2 (en)
JP7705047B2 (en) steel material
Oba et al. Chemical thermodynamics determination of corrosion threshold assessment of reinforced concrete structures
JPH02170945A (en) Salt-resistant reinforcing steel bars for preventing concrete deterioration
JPH03111540A (en) Salt resisting reinforcing bar for concrete for reducing deterioration in concrete
McDonald Corrosion Protection for Concrete Structures in Marine Environments