JPS63114174A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS63114174A JPS63114174A JP25855886A JP25855886A JPS63114174A JP S63114174 A JPS63114174 A JP S63114174A JP 25855886 A JP25855886 A JP 25855886A JP 25855886 A JP25855886 A JP 25855886A JP S63114174 A JPS63114174 A JP S63114174A
- Authority
- JP
- Japan
- Prior art keywords
- gate electrode
- film
- mask
- resist
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は半導体装置の製造方法に関し、特に埋込r−
)型MO8(Metal 0xide Sem1con
ductor )FF:T (電界効果トランジスタ)
に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device.
) type MO8 (Metal Oxide Sem1con
) FF:T (field effect transistor)
It is related to.
(従来の技術)
MOSFETのチャネル長を短くしていくと、しきい値
電圧の低下や、リーク電流の発生(短チヤネル効果)と
いう問題が生じる。このため、チャネルの不純物濃度を
上げたシ、ソース・ドレイン領域のイオン注入層を浅く
形成し、横方向の空乏層の伸びを抑えなければならない
。(Prior Art) When the channel length of a MOSFET is shortened, problems arise such as a decrease in threshold voltage and generation of leakage current (short channel effect). For this reason, it is necessary to increase the impurity concentration in the channel, and to form shallow ion implantation layers in the source/drain regions to suppress the lateral extension of the depletion layer.
これを解決するためソース・ドレイン領域の接合をほぼ
ゼロにした埋込みゲート型MO3FETが文献、電子通
信学会技術研究報告Vo1.86、A139.P59〜
64に開示されている。この製造方法を第2図を用いて
説明する。まず第2図6)に示すように、シリコン基板
10ノを用いて通常の選択酸化法によって素子分離を行
った(図示せず)後、シリコン基板101の所定領域に
n型不純物のAsをイオン注入し、ソース・ドレイン領
域102を形成する。そして、第2図(b)に示すよう
にCVD (化学気相成長)法によってSiO□等の酸
化膜103を堆積した上へレジストパターン104を形
成する。次に、第2図(C)に示すようにレジス)/?
ターン104をマスクに酸化膜103をRIE (反応
性イオンエツチング)法によりエツチングし、レジスト
ノぐターン104を除去した後、酸化膜103をマスク
としてnW不純物層102をエツチングする。To solve this problem, a buried gate MO3FET with almost zero junction between the source and drain regions is proposed in the literature, Institute of Electronics and Communication Engineers Technical Research Report Vol. 1.86, A139. P59~
64. This manufacturing method will be explained using FIG. 2. First, as shown in FIG. 2 (6), after element isolation is performed using a silicon substrate 101 by the usual selective oxidation method (not shown), n-type impurity As is ionized into a predetermined region of the silicon substrate 101. The source/drain regions 102 are formed by implantation. Then, as shown in FIG. 2(b), a resist pattern 104 is formed on the oxide film 103, such as SiO□, deposited by CVD (chemical vapor deposition). Next, as shown in FIG. 2(C), Regis)/?
The oxide film 103 is etched by RIE (reactive ion etching) using the turn 104 as a mask, and after removing the resist turn 104, the nW impurity layer 102 is etched using the oxide film 103 as a mask.
次に第2図(d)に示すように、シリコン基板101の
表面に熱酸化法によってr−ト酸化膜105を形成した
後、第2図(、)に示すように、ポリシリコンのゲート
電極106を形成する。次に、中間絶縁膜107を形成
した後、必要な部分にコンタクトの穴明けを行い、最後
にAt電極10Bを形成すると第2図(f)に示すよう
になる。Next, as shown in FIG. 2(d), after forming an r-t oxide film 105 on the surface of the silicon substrate 101 by thermal oxidation, as shown in FIG. 106 is formed. Next, after forming an intermediate insulating film 107, holes for contacts are formed in necessary parts, and finally an At electrode 10B is formed as shown in FIG. 2(f).
以上説明したような製造方法によって、ゲート電極とソ
ース・ドレイン領域の深さがほぼ等しい、すなわち、見
かけ上極めて浅い接合を有する埋込みゲート型MO8F
ETができあがる。この埋込みケ9−ト型MOSFET
はソース・ドレイン領域の拡散を特別に浅くする必要が
なく、見かけの接合深さをほぼゼロにすることができる
。このため、ソース・ドレイン領域の空乏層がチャネル
側へ張シ出しにくくなっておシ、短チャネルのMOSF
ETを容易に実現できるという効果がある。By the manufacturing method described above, the depth of the gate electrode and the source/drain region are almost equal, that is, the buried gate type MO8F has an apparently extremely shallow junction.
ET is completed. This embedded cage MOSFET
In this case, there is no need to make the diffusion of the source/drain region particularly shallow, and the apparent junction depth can be reduced to almost zero. For this reason, the depletion layer in the source/drain region becomes difficult to extend toward the channel side, and short-channel MOSFETs
This has the effect that ET can be easily realized.
(発明が解決しようとする問題点)
しかしながら、このような埋込ゲート型MO8FETで
は、ゲート電極のパターンニングにおいて、精度のよい
マスク合せの工程が必要であシ、また埋込r−ト部の基
板のエツチング深さとソース・ドレイン領域の不純物注
入深さを等しくすることで見かけ上の接合深さをゼロと
する構成であるため両者の制御が非常に難しく、例えば
、エツチング深さが不純物注入深さより浅くなってしま
えば、ソース・ドレイン領域間は電気的にショートして
しまうという問題点があり、さらに、ケ9−ト電極が基
板の表面より上に露出するため、素子表面の平坦化が十
分でなく、多層配線が難しいという問題点かあった。(Problems to be Solved by the Invention) However, in such a buried gate MO8FET, a highly accurate mask alignment process is required in patterning the gate electrode, and the The structure is such that the apparent junction depth is zero by making the etching depth of the substrate equal to the impurity implantation depth of the source/drain regions, so it is extremely difficult to control both. If it becomes shallower than this, there will be a problem that an electrical short will occur between the source and drain regions, and furthermore, the gate electrode will be exposed above the surface of the substrate, making it difficult to planarize the device surface. There was a problem that it was not sufficient and multilayer wiring was difficult.
(問題点を解決するための手段)
本発明は前記問題点を解決するために、埋込ゲート型M
O8FETを製造するにあたり、半導体基板の所定領域
をエッチングすることにより溝を形成し、この溝の底面
及び側面を含む表面に絶縁膜を積層し、この絶縁膜上に
ゲート電極用の導電膜を積層し、この導電膜上に平坦に
レジストを塗布した後マスクを使わずエッチバックする
ことにより前記溝以外の前記絶縁膜及び前記導電膜を除
去し前記溝の中にのみゲート電極を形成し、全面に不純
物をイオン注入し、熱処理することによシソース及びド
レイン領域を形成すると共に前記ケ9−ト電極を低抵抗
化するものである。(Means for Solving the Problems) In order to solve the above problems, the present invention provides a buried gate type M
When manufacturing an O8FET, a groove is formed by etching a predetermined region of a semiconductor substrate, an insulating film is laminated on the surface including the bottom and side surfaces of this groove, and a conductive film for a gate electrode is laminated on this insulating film. After applying a resist flatly on this conductive film, etching back is performed without using a mask to remove the insulating film and the conductive film other than the groove, forming a gate electrode only in the groove, and etching the entire surface. By ion-implanting impurities into the structure and heat-treating it, source and drain regions are formed and the resistance of the gate electrode is reduced.
(作用)
本発明は埋込みケ9−ト型MO8FETの製造方法にお
いて、例えば溝を設けたシリコン基板にゲート電極用導
電膜としてのポリシリコン膜とレジストを全面塗布し、
両者のエツチング速度が等しい条件でエツチングを行な
うことで、溝の中にのみマスクを使わずゲート電極を形
成し、素子表面の平坦化を行なえる。また更に、ソース
・ドレイン領域の形成の際に、マスクを使わず全面にイ
オン注入を行うことで、ソース・ドレイン領域の形成と
、ポリシリコン等のゲート電極の低抵抗化を同時に行な
うことができる。(Function) The present invention is a method for manufacturing a buried cage MO8FET, in which, for example, a silicon substrate with a groove is coated with a polysilicon film as a conductive film for a gate electrode and a resist,
By performing etching under conditions where both etching rates are equal, a gate electrode can be formed only in the groove without using a mask, and the element surface can be planarized. Furthermore, when forming the source/drain regions, by performing ion implantation over the entire surface without using a mask, it is possible to form the source/drain regions and lower the resistance of the gate electrode, such as polysilicon, at the same time. .
(実施例)
第1図は本発明実施例の埋込y−ト型MOSF’ETの
製造方法を説明するだめの断面図であり、以下図面に沿
って説明する。(Embodiment) FIG. 1 is a cross-sectional view for explaining a method of manufacturing a buried Y-type MOSF'ET according to an embodiment of the present invention, and the explanation will be given below along with the drawings.
まず第1図(、)に示す様に、シリコン基板11上に、
第1の絶縁膜、例えば5i02等の酸化膜20を気相成
長法(CVD法)で全面に堆積した後、溝を作成する部
分を除去し、第1図(b)に示す様に酸化膜20をマス
クにシリコン基板11をエツチングして溝2ノを作成し
た後、酸化膜20を除去する。First, as shown in FIG. 1(,), on a silicon substrate 11,
After a first insulating film, for example, an oxide film 20 such as 5i02, is deposited on the entire surface by a vapor phase growth method (CVD method), the portion where the groove is to be formed is removed, and the oxide film 20 is formed as shown in FIG. 1(b). After etching the silicon substrate 11 using 20 as a mask to create a trench 2, the oxide film 20 is removed.
次に第1図(c)に示す様に熱酸化法によυゲート酸化
膜12を作成し、ゲート電極となるポリシリコン膜22
を全面に堆積した後、更にレジスト23を平坦に全面塗
布する。次にレジスト23とポリシリコン膜22が等し
いエツチング速度となる様な条件、例えば不活性Arガ
スを用いたスパッタエツチングやイオンエツチングで全
面を平坦にエツチング(エッチパック)してゆく。酸化
膜12が露出した時にエツチングを停止すると、溝中の
ポリシリコン膜22のみが第1図(d)に示す様に残シ
、ゲート電極13を形成することができる。更に熱酸化
法により全面にゲート保護膜14を作成した後、全面に
不純物のイオン注入を行ない、熱処理することで第1図
(、)に示す様なソース・ドレイン領域となる低抵抗層
15が形成される。この時、ゲート電極13のポリシリ
コンにもイオン注入されるため、低抵抗化される。最後
に、第1図(f)に示す様に、中間絶縁膜16を堆積し
、コンタクトの孔明けを行ない、オーミック接触をなす
金属電極17を形成し完成する。Next, as shown in FIG. 1(c), a υ gate oxide film 12 is formed by a thermal oxidation method, and a polysilicon film 22 that will become a gate electrode is formed.
After depositing the resist 23 on the entire surface, a resist 23 is further applied evenly over the entire surface. Next, the entire surface is etched flat (etch pack) under conditions such that the resist 23 and the polysilicon film 22 have the same etching rate, such as sputter etching or ion etching using inert Ar gas. If the etching is stopped when the oxide film 12 is exposed, only the polysilicon film 22 in the trench remains, as shown in FIG. 1(d), and the gate electrode 13 can be formed. Furthermore, after forming a gate protection film 14 on the entire surface by thermal oxidation, impurity ions are implanted on the entire surface and heat treatment is performed to form a low resistance layer 15 that will become the source/drain region as shown in FIG. It is formed. At this time, ions are also implanted into the polysilicon of the gate electrode 13, thereby reducing the resistance. Finally, as shown in FIG. 1(f), an intermediate insulating film 16 is deposited, contact holes are formed, and metal electrodes 17 making ohmic contact are formed to complete the process.
以上のように本発明の実施例によれば、r−ト電極13
の形成は、エッチパックによりセルファラインで行なう
ため、マスク合わせ工程が不要となシ、しかもマスク合
わせのための余Fiとる必要がなく、微細化を促進する
ことができる。また、ソース・ドレイン領域となる低抵
抗層15を形成するだめのイオン注入が全面に行なえる
ため、セルファラインとなり、ケ9−ト電極13同様マ
スク合わせ余裕並びにマスク合わせの工程が不要となり
、微細化の促進につながる。また同時にゲート電極13
のポリシリコンにも不純物が注入されるためゲート電極
13の低抵抗化がはかれる。さらに、ゲート電極13が
シリコン基板11より上に露出しないため、素子表面が
平らであり絶縁膜表面の平坦化が促進される。そのため
、図示しないアルミ等の配線形成が容易となり、多層配
線も可能となる。As described above, according to the embodiment of the present invention, the r-t electrode 13
Since the formation is performed in a self-lined manner using an etch pack, there is no need for a mask alignment process, and there is no need to reserve excess Fi for mask alignment, thereby promoting miniaturization. In addition, since the ion implantation for forming the low resistance layer 15 that will become the source/drain region can be performed on the entire surface, it becomes a self-line, and like the gate electrode 13, the mask alignment margin and mask alignment process are unnecessary, and the fine This will lead to the promotion of At the same time, the gate electrode 13
Since impurities are also implanted into the polysilicon, the resistance of the gate electrode 13 can be reduced. Furthermore, since the gate electrode 13 is not exposed above the silicon substrate 11, the element surface is flat and flattening of the insulating film surface is promoted. Therefore, it becomes easy to form wiring made of aluminum or the like (not shown), and multilayer wiring becomes possible.
(発明の効果)
以上詳細に説明したように、本発明によれば、セルファ
ラインでケ9−ト電極及びソース・ドレイン領域を形成
できるのでチャネル長の短い良好な埋込ゲート型MO8
FETを容易に製作することができ、大規模集積回路装
置に適用可能である。(Effects of the Invention) As described in detail above, according to the present invention, the gate electrode and the source/drain regions can be formed using the self-alignment line, making it possible to form a good buried gate type MO8 with a short channel length.
FETs can be easily manufactured and can be applied to large-scale integrated circuit devices.
第1図(、)〜(f)は本発明の詳細な説明するための
埋込ゲート型MO8FETの断面図であり、第2図(、
)〜(f)は従来の埋込ゲート型MO8FETの断面図
である。
11.101・・・シリコン基板、12・・・r−ト絶
縁膜、13.106・・・ゲート電極、14・・・r−
ト保護膜、15・・・低抵抗層、16.107・・・中
間絶縁膜、17・・・金属電極、20・・・酸化膜、2
1・・・溝、22・・・ポリシリコン膜、23・・・レ
ジスト。
特許 出願人 沖電気工業株式会社
A
、4\、発明め大方七イ月5!言兇■ルすうrくめ4第
1
乃j!込プート型、MO5FETの断面HA図FIGS. 1(a) to (f) are cross-sectional views of a buried gate MO8FET for explaining the present invention in detail, and FIGS.
) to (f) are cross-sectional views of a conventional buried gate type MO8FET. 11.101...Silicon substrate, 12...r-to insulating film, 13.106...gate electrode, 14...r-
15... Low resistance layer, 16.107... Intermediate insulating film, 17... Metal electrode, 20... Oxide film, 2
1... Groove, 22... Polysilicon film, 23... Resist. Patent Applicant: Oki Electric Industry Co., Ltd. A, 4\, Invention: July 5th!兇■Rusu rukume 4 1st noj! Cross-sectional HA diagram of MO5FET
Claims (1)
形成する工程と、 該溝の底面及び側面を含む表面に絶縁膜を積層する工程
と、 該絶縁膜上にゲート電極用導電膜を積層する工程と、 該ゲート電極用導電膜上に平坦にレジストを塗布する工
程と、 マスクを使わずエッチバックすることにより前記溝以外
の前記絶縁膜及び前記ゲート電極用導電膜を除去し前記
溝の中にのみゲート電極を形成する工程と、 全面に不純物をイオン注入し熱処理することによりソー
ス及びドレイン領域を形成する工程とを備えてなること
を特徴とする半導体装置の製造方法。[Claims] A step of forming a groove by etching a predetermined region of a semiconductor substrate; a step of laminating an insulating film on the surface including the bottom and side surfaces of the groove; and a step of laminating a conductive film for a gate electrode on the insulating film. a step of stacking films; a step of flatly applying a resist on the conductive film for the gate electrode; and a step of etching back without using a mask to remove the insulating film and the conductive film for the gate electrode other than the groove. A method for manufacturing a semiconductor device, comprising: forming a gate electrode only in the groove; and forming source and drain regions by ion-implanting impurities over the entire surface and heat-treating the entire surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25855886A JPS63114174A (en) | 1986-10-31 | 1986-10-31 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25855886A JPS63114174A (en) | 1986-10-31 | 1986-10-31 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63114174A true JPS63114174A (en) | 1988-05-19 |
Family
ID=17321894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25855886A Pending JPS63114174A (en) | 1986-10-31 | 1986-10-31 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63114174A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6153908A (en) * | 1998-05-08 | 2000-11-28 | Nec Corporation | Buried-gate semiconductor device with improved level of integration |
US11798983B2 (en) | 2021-07-19 | 2023-10-24 | United Semiconductor Japan Co., Ltd. | Semiconductor device with deeply depleted channel and manufacturing method thereof |
-
1986
- 1986-10-31 JP JP25855886A patent/JPS63114174A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6153908A (en) * | 1998-05-08 | 2000-11-28 | Nec Corporation | Buried-gate semiconductor device with improved level of integration |
US11798983B2 (en) | 2021-07-19 | 2023-10-24 | United Semiconductor Japan Co., Ltd. | Semiconductor device with deeply depleted channel and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6188104B1 (en) | Trench DMOS device having an amorphous silicon and polysilicon gate | |
KR100249505B1 (en) | Fabrication method of laterally double diffused mosfets | |
US4978629A (en) | Method of making a metal-oxide-semiconductor device having shallow source and drain diffused regions | |
EP1085577A2 (en) | Power field-effect transistor having a trench gate electrode and method of making the same | |
JP3915180B2 (en) | Trench type MOS semiconductor device and manufacturing method thereof | |
CN100416855C (en) | Semiconductor trench device and method of manufacturing same | |
JP2002299620A (en) | Method for manufacturing silicon carbide semiconductor device | |
JPH09186339A (en) | Thin film transistor and method of manufacturing the same | |
CA1197926A (en) | Zero drain overlap and self-aligned contacts and contact methods for mod devices | |
JPS63114174A (en) | Manufacture of semiconductor device | |
JPH01194362A (en) | Buried gate type mosfet and manufacture of the same | |
JPH10335660A (en) | Semiconductor device and manufacture thereof | |
US4653173A (en) | Method of manufacturing an insulated gate field effect device | |
JPS63271971A (en) | Mos type semiconductor device and manufacture thereof | |
JPS6225457A (en) | Manufacturing method of vertical semiconductor device | |
JPS6246570A (en) | Vertical type semiconductor device and manufacture thereof | |
JPH06196689A (en) | Insulated gate field-effect semiconductor device and manufacture thereof | |
JPH036863A (en) | semiconductor equipment | |
JPH0571191B2 (en) | ||
KR19980058438A (en) | Silicide Formation Method of Semiconductor Device | |
JPH03163832A (en) | semiconductor equipment | |
JPS6154661A (en) | Manufacture of semiconductor device | |
JPS6229165A (en) | Manufacture of vertical semiconductor device | |
JPS61187273A (en) | semiconductor equipment | |
JPS6163057A (en) | MISFET and its manufacturing method |