JPS6310778B2 - - Google Patents
Info
- Publication number
- JPS6310778B2 JPS6310778B2 JP55010683A JP1068380A JPS6310778B2 JP S6310778 B2 JPS6310778 B2 JP S6310778B2 JP 55010683 A JP55010683 A JP 55010683A JP 1068380 A JP1068380 A JP 1068380A JP S6310778 B2 JPS6310778 B2 JP S6310778B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- inspected
- scattered
- transmitted light
- laser beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/952—Inspecting the exterior surface of cylindrical bodies or wires
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Description
【発明の詳細な説明】
本発明は透光性の円筒体における傷あるいは異
物の混入などをレーザ光を利用して検出する欠陥
検出装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a defect detection device that uses laser light to detect flaws or foreign matter in a transparent cylindrical body.
透光性物質、例えばガラス管の製造においてガ
ラス管の長さ方向の線状に引き伸ばされた気泡が
混入して線状の欠陥となつたり、あるいは非融解
部がガラス内に生じて点状の欠陥となつたり、あ
るいは外力により表面に傷を生じたりすることが
多く、このためガラス管における欠陥の検出作業
を行なうことは品質管理上非常に重要なことであ
る。 In the manufacture of translucent materials, such as glass tubes, air bubbles drawn in a line in the length direction of the glass tube may be mixed in, resulting in linear defects, or unfused areas may occur within the glass, causing dots. This often results in defects or scratches on the surface due to external forces, so detecting defects in glass tubes is very important for quality control.
一般に物体に生じたこのような欠陥を検出する
ためにレーザ光を物体に照射して欠陥による散乱
光を検出して欠陥を検出する方法がある。このよ
うな欠陥検出方法として従来より種々の方法があ
るが、いずれも被検査体としては平板状のものが
想定されていて、この平板状の被検査体にレーザ
光を反射させて被検査体の表面における欠陥を検
出するように構成されている。しかるに上記のガ
ラス管の如く円筒状表面を有し且つ内部に欠陥を
持つことが多い被検査体に前記した従来の検出方
法を適用しようとしても反射光の方向が照射する
個所によつて著しく変化し、欠陥による散乱ある
いは回折した光の方向が平板に比し著しく不規則
且つ広範囲なため精度の良い検出は極めて困難で
あつた。このため上記のガラス管の如き被検査体
の場合は目視検査に頼つているのが実情であり極
めて非能率的であつた。 Generally, in order to detect such defects occurring in an object, there is a method of irradiating the object with laser light and detecting light scattered by the defect to detect the defect. There are various conventional methods for detecting such defects, but in all of them, a flat object is assumed as the object to be inspected, and a laser beam is reflected on this flat object to be inspected. is configured to detect defects on the surface of. However, even if we try to apply the conventional detection method described above to an object to be inspected that has a cylindrical surface and often has internal defects, such as the glass tube described above, the direction of the reflected light changes significantly depending on the location where it is irradiated. However, since the direction of light scattered or diffracted by defects is extremely irregular and wide-ranging compared to that of a flat plate, accurate detection has been extremely difficult. For this reason, in the case of objects to be inspected such as the above-mentioned glass tubes, visual inspection is actually relied upon, which is extremely inefficient.
本発明はこのような欠点を改め、ガラス管の如
き表面あるいは内部に欠陥を持つ円筒状の被検査
体をもレーザ光を用いて高感度に検出できるよう
にした欠陥検出装置を提供することを目的として
いる。 The present invention aims to correct such drawbacks and provide a defect detection device that can detect with high sensitivity even cylindrical inspected objects having defects on the surface or inside, such as glass tubes, using laser light. The purpose is
一般に上記の如き被検査体1にレーザ光を照射
した場合の表面における反射光の方向は欠陥がな
くても不規則であるが欠陥がない場合の透過光の
方向は第1図aに示すように円筒状の被検査体に
おいてもその両側部を除いてほぼ規則的である。
また上記の如き被検査体では欠陥Aによる散乱光
あるいは回折光の方向は、被検査体1が曲成して
いて内部反射などを多く生ずるため第1図bに示
すように複雑に分岐して不規則且つ広範囲にな
る。そしてレーザ光を照射する被検査体1に欠陥
のない場合の規則的な透過光を集光レンズで集光
して受光する受光量と、欠陥Aのある場合の散乱
あるいは回折光を集光レンズで集光して受光する
適宜の複数個所における受光量とを実験的に計測
すれば第2図の如くなる。即ち、第2図において
aは透過光の受光信号、b〜eは散乱回折光の受
光信号を表わし、横軸は照射レーザ光の位置、縦
軸は受光量を表わしている。信号aにおいてレー
ザ光の走査によつて左側の落ち込み部分ロはガラ
ス管(被検査体1)の左端部にレーザ光を照射し
た場合、均一な部分ニは両側部を除いたガラス管
に照射した場合、ホは右端部にレーザ光を照射し
た場合を表わし、ハはガラス管の欠陥にレーザ光
を照射した場合を表わし、イ及びヘはレーザ光が
ガラス管からはずれている場合を示している。
(第3図参照)第2図から明らかなようにレーザ
光を被検出体1の両側部に照射した場合は透過光
受光量は著しく低下し各位置における散乱回折光
受光量はそれぞれ不規則な波形となつて増大する
が、被検査体1の両側部以外の部分にレーザ光を
照射すると欠陥のある個所を除いて透過光受光量
は全域にわたつてほぼ均一であり、2個所以上の
位置において散乱回折光受光量が同期して増大す
ることはない。しかるに欠陥のある個所において
はb〜eに示す如く散乱回折光の受光位置におい
て受光量が同期して増大し且つaにおける透過光
受光量が低下している。従つてハに示す如き受光
状態を検知すれば欠陥を正確且つ確実に検出する
ことが可能である。 Generally, when a laser beam is irradiated onto the object to be inspected 1 as described above, the direction of the reflected light on the surface is irregular even if there is no defect, but the direction of the transmitted light when there is no defect is as shown in Figure 1a. Even in a cylindrical object to be inspected, the pattern is almost regular except for its both sides.
In addition, in the above-mentioned object to be inspected, the direction of the scattered light or diffracted light due to the defect A is complicatedly branched as shown in FIG. Irregular and widespread. Then, the regular transmitted light is collected by a condensing lens when the inspection object 1 to be irradiated with laser light has no defects, and the amount of received light is determined by the condensing lens. If the amount of light received at a plurality of appropriate points where the light is collected and received is experimentally measured, the result will be as shown in FIG. That is, in FIG. 2, a represents a received light signal of transmitted light, b to e represent received light signals of scattered and diffracted light, the horizontal axis represents the position of the irradiated laser beam, and the vertical axis represents the amount of received light. In signal a, the depressed part on the left side was irradiated with laser light on the left end of the glass tube (tested object 1) due to laser beam scanning, and the uniform part d was irradiated on the glass tube excluding both sides. In the case, E shows the case where the right end is irradiated with the laser beam, C shows the case where the laser beam is irradiated to a defect in the glass tube, and A and F show the case where the laser beam is deviated from the glass tube. .
(See Figure 3) As is clear from Figure 2, when the laser beam is irradiated on both sides of the object to be detected 1, the amount of transmitted light received decreases significantly, and the amount of scattered and diffracted light received at each position is irregular. The amount of transmitted light increases as a waveform, but when the laser beam is irradiated to parts other than both sides of the inspected object 1, the amount of transmitted light received is almost uniform over the entire area except for the defective part, and even at two or more positions. The amount of received scattered and diffracted light does not increase synchronously. However, at a defective location, as shown in b to e, the amount of light received increases synchronously at the light receiving position of the scattered and diffracted light, and the amount of transmitted light received at point a decreases. Therefore, defects can be detected accurately and reliably by detecting the light receiving state as shown in (c).
本発明はこのような点に着目してレーザ光を走
査しつつ被検査体に照射し、透過光受光部と、該
受光部と被検査体とを結ぶ線に対して互いに反対
側に少なくとも一対の散乱回折光受光部とを設け
て、すべての散乱回折光受光部の出力の増加と透
過光受光部の出力の低下とが同時的に発生したか
否かを検知することによつて被検査体の欠陥を検
出するようにしたことを特徴としている。 Focusing on such points, the present invention irradiates the object to be inspected while scanning the laser beam, and connects a transmitted light receiving section and at least one pair on opposite sides of the line connecting the light receiving section and the object to be inspected. scattered diffraction light receiving sections, and detecting whether an increase in the output of all the scattered diffraction light receiving sections and a decrease in the output of the transmitted light receiving section occur simultaneously. It is characterized by detecting body defects.
以下、図面を参照して本発明の実施例を説明す
る。 Embodiments of the present invention will be described below with reference to the drawings.
第4図は本発明の第1実施例を示している。 FIG. 4 shows a first embodiment of the invention.
第4図に示すように、レーザ光源2からのレー
ザ光は回転振動鏡3(以下単に振動鏡という)で
反射され、レンズ4によつてコリメートされて被
検査体1を走査し照射する。被検査体1は生産ラ
インで高速で走行し紙面に垂直な方向へ移動して
いるものとする。このレーザ光の走査を第5図に
示すように互いに垂直な二方向から同時に行えば
被検査体1の全面にわたつて検査されることにな
る。被検査体1に関してレンズ4と反対側に集光
レンズ5が設置され、この集光レンズ5の被検査
体1と反対側の焦点位置に透過光及び走査光(被
検出体1をはずれたレーザ光)を受光するための
透過光受光部6が設置されている。この焦光レン
ズ5を介して散乱回折光が受光されるように、一
対の散乱回折光受光部7,8が、被検査体1の中
央と透過光受光部6とを結ぶ線に関して対称な位
置に、設置されている。同様にそれぞれ集光レン
ズ9,10を介して散乱回折光を受光する一対の
散乱回折光受光部11,12が被検査体1と透過
光受光部6とを結ぶ線に関して対称な位置に設置
されている。各受光部6,7,8,11,12で
は受光量の変化を電圧の変化に変換した信号を第
6図に示すように検出回路13へ出力する。検出
回路13では各受光部6,7,8,11,12か
らの出力信号を受領して、散乱回折光受光部7,
8,11,12のうち少なくとも2個の出力が同
期して増大し且つ透過光受光部6の出力が低下し
た場合を検知して欠陥検出信号を表示部14に出
力し、表示部14でこれを表示する。 As shown in FIG. 4, a laser beam from a laser light source 2 is reflected by a rotating vibrating mirror 3 (hereinafter simply referred to as a vibrating mirror), collimated by a lens 4, and scans and irradiates the object 1 to be inspected. It is assumed that the object to be inspected 1 is running at high speed on a production line and is moving in a direction perpendicular to the plane of the paper. If this laser beam scanning is performed simultaneously from two mutually perpendicular directions as shown in FIG. 5, the entire surface of the object 1 to be inspected will be inspected. A condenser lens 5 is installed on the side opposite to the lens 4 with respect to the object 1 to be inspected, and transmitted light and scanning light (laser beams that have left the object 1 A transmitted light receiving section 6 for receiving light) is installed. The pair of scattered diffraction light receivers 7 and 8 are positioned symmetrically with respect to the line connecting the center of the object to be inspected 1 and the transmitted light receiver 6 so that the scattered diffraction light is received through the focusing lens 5. It is installed in . Similarly, a pair of scattered diffraction light receivers 11 and 12 that receive scattered diffraction light through condensing lenses 9 and 10, respectively, are installed at symmetrical positions with respect to a line connecting the object to be inspected 1 and the transmitted light receiver 6. ing. Each light receiving section 6, 7, 8, 11, 12 converts a change in the amount of light received into a voltage change and outputs a signal to the detection circuit 13 as shown in FIG. The detection circuit 13 receives the output signals from each of the light receiving sections 6, 7, 8, 11, and 12, and detects the scattered and diffracted light receiving sections 7, 8, 11, and 12.
When the outputs of at least two of 8, 11, and 12 increase synchronously and the output of the transmitted light receiving section 6 decreases, a defect detection signal is output to the display section 14, and the display section 14 detects this. Display.
このようにすることにより第2図のハに示す状
態を検知できるから被検査体1の欠陥を確実に検
出できる。なお、被検査体1に被検査体1の長さ
方向に線状の欠陥がある場合は欠陥の方向に対し
て垂直な平面内に散乱パターンあるいは回折パタ
ーンが生ずるからこの方向に沿つて前記散乱回折
光受光部7,8,11,12を設置する必要があ
る。従つて欠陥の種類によつて予測される散乱、
回折パターンに沿つた位置に複数の散乱回折受光
部を設置して検出回路13でこれらの出力信号を
比較することによつて欠陥の状態を検出すること
も可能である。 By doing this, the condition shown in FIG. 2C can be detected, so that defects in the object to be inspected 1 can be detected reliably. Note that if the inspected object 1 has a linear defect in the length direction of the inspected object 1, a scattering pattern or a diffraction pattern is generated in a plane perpendicular to the direction of the defect, so the scattering pattern is generated along this direction. It is necessary to install diffracted light receiving sections 7, 8, 11, and 12. Therefore, the scattering predicted by the type of defect,
It is also possible to detect the state of the defect by installing a plurality of scattered diffraction light receivers at positions along the diffraction pattern and comparing their output signals with the detection circuit 13.
散乱回折光受光部は第4図に示した例に限ら
ず、例えば第7〜10図にそれぞれ示す如く配置
することもできる。またこれらの実施例の如く走
査光は必ずしも平行でなくてもよく、また一対の
散乱回折光受光部を必ずしも対称な位置に配置し
なくてもよい。 The scattered diffraction light receiving section is not limited to the example shown in FIG. 4, but may be arranged as shown in FIGS. 7 to 10, respectively. Further, as in these embodiments, the scanning lights do not necessarily have to be parallel, and the pair of scattered diffraction light receiving sections do not necessarily have to be arranged at symmetrical positions.
レーザ光を走査する手段として回転振動鏡を例
にあげたが、これは音叉振動鏡あるいはガルバノ
ミラーなどのことを指すものであり、高速走査に
適している。またこれは他の手段たとえば回転ミ
ラーを使用することもでき、広い範囲の走査に適
するものである。 Although a rotating vibrating mirror has been cited as an example of a means for scanning laser light, this also refers to a tuning fork vibrating mirror or a galvano mirror, which is suitable for high-speed scanning. It is also possible to use other means, such as a rotating mirror, which is suitable for scanning large areas.
本発明は以上詳述したように透過光受光部とそ
の両側に少なくも一対の散乱回折光受光部とを設
け、欠陥が存在する場合に生ずるこれらの受光部
の各出力における特定の関係に着目し、検出回路
によつてすべての散乱回折光受光部の出力の増加
と透過光受光部の出力の低下とが同時発生したこ
とを検知して欠陥を検出するようにしたので、従
来は不可能であつたガラス管の如き円形、柱状で
内部に欠陥を持つことの多い被検査体におけるレ
ーザ光による欠陥を高感度に検出することができ
る。 As detailed above, the present invention includes a transmitted light receiving section and at least a pair of scattered diffraction light receiving sections on both sides thereof, and focuses on a specific relationship between the outputs of these light receiving sections that occurs when a defect exists. However, the detection circuit detects the simultaneous occurrence of an increase in the output of all scattered and diffracted light receivers and a decrease in the output of the transmitted light receiver, thereby detecting defects, which was previously impossible. It is possible to detect defects with laser light with high sensitivity in objects to be inspected that are circular or columnar and often have internal defects, such as glass tubes.
第1図a,bはガラス管におけるレーザ光の透
過などの状態を説明するための概念図、第2図は
ガラス管における照射されたレーザ光の走査によ
る各位置における透過光受光量、散乱回折光受光
量の変化を示す図、第3図は第2図のイ〜ヘの走
査位置を示す図、第4図は本発明の第1実施例の
概略図、第5図はレーザ光の照射方向を示す図、
第6図は検出回路を含んだ本発明の第1実施例の
信号処理を示すブロツク図、第7〜10図はそれ
ぞれ本発明の第2〜5実施例を示す概略図であ
る。
1……被検査体、2……レーザ光源、3……回
転振動鏡、4……レンズ、5……集光レンズ、6
……透過光受光部、7,8……散乱回折光受光
部、9,10……集光レンズ、11,12……散
乱回折光受光部、13,14……集光レンズ。
Figures 1a and b are conceptual diagrams for explaining the state of laser light transmission in the glass tube, and Figure 2 shows the amount of transmitted light received and scattered diffraction at each position due to scanning of the irradiated laser beam in the glass tube. A diagram showing changes in the amount of received light, FIG. 3 is a diagram showing scanning positions A to F in FIG. 2, FIG. 4 is a schematic diagram of the first embodiment of the present invention, and FIG. 5 is a diagram showing the irradiation of laser light. A diagram showing the direction,
FIG. 6 is a block diagram showing signal processing of the first embodiment of the invention including a detection circuit, and FIGS. 7 to 10 are schematic diagrams showing second to fifth embodiments of the invention, respectively. 1...Object to be inspected, 2...Laser light source, 3...Rotating vibrating mirror, 4...Lens, 5...Condensing lens, 6
... Transmitted light receiver, 7, 8... Scattered diffraction light receiver, 9, 10... Condenser lens, 11, 12... Scattered diffraction light receiver, 13, 14... Condenser lens.
Claims (1)
に照射するレーザ光照射手段と、 被検査体に対して前記レーザ光照射手段と反対
側に設置されて、被検査体を経た前記レーザ光に
よる透過光を集光レンズを介して受光する透過光
受光部と、 前記レーザ光の走査面を含む面内で、且つ被検
査体と前記透過光受光部とを結ぶ線に対して互い
に反対側に設置されて、被検査体を経た前記被検
査体中の欠陥による散乱光又は回折光を受光する
少なくとも一対の散乱回折光受光部と、 前記透過光受光部及び前記すべての散乱回折光
受光部の出力信号を受領し、前記透過光受光部の
出力の低下と前記すべての散乱回折光受光部の出
力の増加とが同時的に発生したことを検出すると
欠陥検出信号を出力する検出回路とを具備する欠
陥検出装置。[Scope of Claims] 1. Laser light irradiation means for scanning and irradiating a translucent cylindrical inspected object with a laser beam; a transmitted light receiving section that receives the transmitted light of the laser beam that has passed through the object to be inspected through a condensing lens; at least a pair of scattered and diffracted light receivers that are installed on opposite sides of the connecting line and receive scattered light or diffracted light due to defects in the inspected object that have passed through the inspected object; the transmitted light receiver; A defect is detected when the output signals of all the scattered diffraction light receivers are received and it is detected that a decrease in the output of the transmitted light receiver and an increase in the output of all the scattered diffraction light receivers occur simultaneously. A defect detection device comprising a detection circuit that outputs a signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1068380A JPS56107150A (en) | 1980-01-31 | 1980-01-31 | Defect detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1068380A JPS56107150A (en) | 1980-01-31 | 1980-01-31 | Defect detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56107150A JPS56107150A (en) | 1981-08-25 |
JPS6310778B2 true JPS6310778B2 (en) | 1988-03-09 |
Family
ID=11757053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1068380A Granted JPS56107150A (en) | 1980-01-31 | 1980-01-31 | Defect detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56107150A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009186281A (en) * | 2008-02-05 | 2009-08-20 | Nippon Electric Glass Co Ltd | Method and device for inspecting flaw of glass article |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3309629A1 (en) * | 1983-03-17 | 1984-09-20 | Siemens AG, 1000 Berlin und 8000 München | OPTICAL TEST DEVICE FOR TROUBLESHOOTING IN CABLE AND CABLE SURFACES |
KR20030046616A (en) * | 2001-12-06 | 2003-06-18 | 삼성전자주식회사 | Micro-bubble analyzing apparatus for high-purity glass tube using laser light scattering |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5149232A (en) * | 1974-07-27 | 1976-04-28 | Beecham Group Ltd |
-
1980
- 1980-01-31 JP JP1068380A patent/JPS56107150A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5149232A (en) * | 1974-07-27 | 1976-04-28 | Beecham Group Ltd |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009186281A (en) * | 2008-02-05 | 2009-08-20 | Nippon Electric Glass Co Ltd | Method and device for inspecting flaw of glass article |
Also Published As
Publication number | Publication date |
---|---|
JPS56107150A (en) | 1981-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5125741A (en) | Method and apparatus for inspecting surface conditions | |
JPH0143901B2 (en) | ||
KR100876257B1 (en) | Optical measuring method and device therefor | |
US3834822A (en) | Method and apparatus for surface defect detection using detection of non-symmetrical patterns of non-specularly reflected light | |
US3361025A (en) | Method and apparatus of detecting flaws in transparent bodies | |
JPS6310778B2 (en) | ||
JPS58204353A (en) | Method for detecting flaw on surface of metallic object | |
JPS6125042A (en) | Surface defect inspection equipment | |
JP2010025642A (en) | Streak surface inspection device | |
JP2001272355A (en) | Foreign matter inspecting apparatus | |
JPH0734365Y2 (en) | Foreign object detection and removal device | |
JPH10132523A (en) | Measuring device of object surface height | |
JPH0254494B2 (en) | ||
JP3336392B2 (en) | Foreign matter inspection apparatus and method | |
JP2603078B2 (en) | Defect inspection equipment | |
RU2088904C1 (en) | Method of optical tomography of transparent materials | |
JPH1164231A (en) | Method and apparatus for detecting bubble streak of glass tube | |
JPH0894540A (en) | Surface inspection device | |
JPH0127084Y2 (en) | ||
JPS6331048B2 (en) | ||
JPH0776751B2 (en) | Surface defect detection method for metallic products | |
JPS593245A (en) | Deficiency inspector | |
JP2913409B2 (en) | Detection sensitivity correction method for face plate defect detection device | |
JPS61204547A (en) | Defect detecting device | |
JPS61204548A (en) | Defect detector |