[go: up one dir, main page]

JPS6282331A - Photodetector for measuring luminescence patterns - Google Patents

Photodetector for measuring luminescence patterns

Info

Publication number
JPS6282331A
JPS6282331A JP22401085A JP22401085A JPS6282331A JP S6282331 A JPS6282331 A JP S6282331A JP 22401085 A JP22401085 A JP 22401085A JP 22401085 A JP22401085 A JP 22401085A JP S6282331 A JPS6282331 A JP S6282331A
Authority
JP
Japan
Prior art keywords
light
substrate
photodetector
receiving element
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22401085A
Other languages
Japanese (ja)
Inventor
Tsugunori Takahashi
鷹箸 継典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22401085A priority Critical patent/JPS6282331A/en
Publication of JPS6282331A publication Critical patent/JPS6282331A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔概要〕 発光物質よりの発光を効率よく受光する方法として受光
素子の中央に貫通孔を設け、この貫通孔を通じて励起ビ
ームを基板に投則し、受光する構造。
[Detailed Description of the Invention] [Summary] As a method of efficiently receiving light emitted from a light-emitting substance, a through hole is provided in the center of a light receiving element, and an excitation beam is projected onto a substrate through this through hole and the light is received.

〔産業上の利用分野〕[Industrial application field]

本発明は回収効率を向上した発光パターン測定用光検知
器の構造に関する。
The present invention relates to a structure of a photodetector for measuring light emission patterns with improved collection efficiency.

ガリウム砒素(GaAs) +インジウム燐(InP)
 、水銀カドミウム・テルル(IIgCdTe)のよう
な直接遷移形のバンド構造を持つ半導体材料にエネルギ
ーギャップよりエネルギーの高い放射線を投射すると、
電子は伝導帯に励起され、この励起されて伝導帯に上が
った電子と価電子帯に生じた正孔とが直接に再結合する
ことによって発光が生ずる。
Gallium arsenide (GaAs) + indium phosphide (InP)
When radiation with energy higher than the energy gap is projected onto a semiconductor material with a direct transition type band structure, such as mercury cadmium tellurium (IIgCdTe),
Electrons are excited to the conduction band, and the excited electrons and holes generated in the valence band directly recombine, resulting in light emission.

またこれらの半導体結晶中には空格子点や格子間原子、
転位などの結晶欠陥、不純物原子などを含んでおり、こ
れによる局在準位が発光中心となって、ホノンのエネル
ギーよりも充分に大きな遷移エネルギーを放出する場合
にも発光が起こる。
In addition, these semiconductor crystals contain vacancies, interstitial atoms,
It contains crystal defects such as dislocations, impurity atoms, etc., and light emission also occurs when localized levels caused by these become emission centers and emit transition energy that is sufficiently larger than the energy of phonons.

但し、局在準位が低くて遷移エネルギーがホノンのエネ
ルギーに近いとき、或いは電子と格子間る相互作用が大
きい場合には発光しない。
However, when the localized level is low and the transition energy is close to the phonon energy, or when the interaction between the electron and the lattice is large, no light is emitted.

このような現象を利用し、受光素子を用いて半導体基板
からの発光パターンの分布を測定し、不鈍物や転移など
の情報を調査することが行われている。
Taking advantage of this phenomenon, the distribution of light emission patterns from a semiconductor substrate is measured using a light-receiving element, and information on dull objects, transitions, etc. is investigated.

本発明はかかる光検知器の構造に関するものである。The present invention relates to the structure of such a photodetector.

〔従来の技術〕[Conventional technology]

第2図(A)は従来の光検知器の構造を示す断面図、ま
た同図(B)はこれに使用している受光素子の斜視図で
ある。
FIG. 2(A) is a cross-sectional view showing the structure of a conventional photodetector, and FIG. 2(B) is a perspective view of a light receiving element used therein.

すなわち)IgCdTe、 GaAsのような発光−質
からなる基板1にレーザ光や電子線のような励起ビーム
2を投射して走査すると基板1から発光した光3は一面
に放射されるが、従来の光検知器は図に示すように受光
素子4を基板1に対し傾けた位置に配置して発光した光
3の一部を受光すると共に受光素子4に対向した位置に
反射tIL5を設置し、これからの反射光6が受光素子
4に入射するように構成されている。
In other words, when an excitation beam 2 such as a laser beam or an electron beam is projected onto a substrate 1 made of a luminescent material such as IgCdTe or GaAs and scanned, the light 3 emitted from the substrate 1 is emitted all over the surface. As shown in the figure, the photodetector has a light-receiving element 4 placed at an inclined position with respect to the substrate 1 to receive a part of the emitted light 3, and a reflection tIL5 is installed at a position opposite to the light-receiving element 4. The reflected light 6 is configured to be incident on the light receiving element 4.

然し、かかる従来の構造では励起ビーム2の基板への投
射により発光した光3の一部分のみしか受光素子4に入
射しないと云う問題があり、また反射V15の調整が煩
雑であった。
However, in this conventional structure, there is a problem in that only a portion of the light 3 emitted by the projection of the excitation beam 2 onto the substrate enters the light receiving element 4, and adjustment of the reflection V15 is complicated.

なお、受光素子4は同図(B)にも示すように石英或い
はサファイアからなる透過窓7の中にpn接合からなる
受光材8が配置されており、取り出し電極を通じてリー
ド線9が設けられた構造をしている。
As shown in FIG. 4B, the light-receiving element 4 has a light-receiving material 8 made of a p-n junction arranged in a transmission window 7 made of quartz or sapphire, and a lead wire 9 is provided through an extraction electrode. It has a structure.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上記したように従来の光検知器は集光効率が劣ると共
に反射鏡の調整が面倒で、またかなりのスペースを必要
とすることが問題である。
As described above, conventional photodetectors have problems in that they have poor light collection efficiency, are troublesome to adjust the reflecting mirror, and require a considerable amount of space.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題は発光物質よりなる基板に励起ビームを走査
し、該基板の発光分布を受光素子を用いて測定する光検
知器が該受光素子の中央に貫通孔が設けられてあり、該
貫通孔を通じて励起ビームを被処理基板に投射し、該基
板よりの発光を素子の全域で受光する構造をとる発光パ
ターン測定用光検知器により解決することができる。
The above problem is solved by using a photodetector that scans an excitation beam across a substrate made of a luminescent material and measures the luminescence distribution of the substrate using a light receiving element, which is provided with a through hole in the center of the light receiving element. This problem can be solved by using a photodetector for measuring a light emission pattern, which has a structure in which an excitation beam is projected onto a substrate to be processed through the substrate, and the light emitted from the substrate is received over the entire area of the device.

〔作用〕[Effect]

本発明は集光効率を向上する方法として受光素子の中央
に貫通孔を設け、この貫通孔を通じて励起ビームで基板
の走査を行い得るようにしたものである。
In the present invention, as a method of improving light collection efficiency, a through hole is provided in the center of the light receiving element, and the substrate can be scanned with an excitation beam through the through hole.

かかる構造をとると受光素子を従来に較べて基板に近づ
けることが可能で、そのため発光した光の殆どを受光す
ることができ、また反射鏡が不要となる。
With such a structure, it is possible to bring the light receiving element closer to the substrate than in the past, so that most of the emitted light can be received, and a reflecting mirror is not required.

〔実施例〕〔Example〕

第1図(A)は本発明に係る光検知器の断面図でまた同
図(B)は斜視図であり、受光素子は同時に光検知器で
ある。
FIG. 1(A) is a sectional view of a photodetector according to the present invention, and FIG. 1(B) is a perspective view, and the light receiving element is also a photodetector.

すなわち本発明に係る光検知器10は従来の受光素子を
構成している透過窓7.受光材8およびこれらを収納し
ているケース1)の中央に貫通孔12を設け、この貫通
孔12を通して基板1の走査を行うものである。
That is, the photodetector 10 according to the present invention has a transmission window 7. which constitutes a conventional light receiving element. A through hole 12 is provided in the center of the light receiving material 8 and the case 1) housing them, and the substrate 1 is scanned through this through hole 12.

このような構成をとると光検知器10は基板1に接近さ
せることが可能であり、従って微弱な発光の検出が可能
となる。
With such a configuration, the photodetector 10 can be brought close to the substrate 1, and therefore weak light emission can be detected.

実施例1: 受光材8としてシリコン(Si)製の面積が5×5龍の
pn接合素子を用い、これに直径が1龍の貫通孔を設け
て励起用の電子ビームが通るようにした。
Example 1: A pn junction element made of silicon (Si) with an area of 5×5 was used as the light-receiving material 8, and a through hole with a diameter of 1 was provided in it so that an excitation electron beam could pass therethrough.

一方、基板として気相エピタキシャル成長法で形成した
InP基板を用い、カソードルミネッセンス(略称CL
)のパターン測定を行った。
On the other hand, using an InP substrate formed by vapor phase epitaxial growth as a substrate, cathodoluminescence (abbreviated as CL) was used.
) pattern measurements were performed.

ここで電子線の加速電圧は20〜30KVとした。Here, the acceleration voltage of the electron beam was set to 20 to 30 KV.

その結果、気相エピタキシャル成長の際に生じた多数の
スポット状の非発光部を検出することができた。
As a result, we were able to detect a large number of spot-like non-light-emitting areas that were generated during vapor phase epitaxial growth.

実施例2: 実施例1の光検知器を用い、同様な測定条件で液相エピ
タキシャル成長法で得たGaAs基板についてCLパタ
ーンの測定を行った。
Example 2: Using the photodetector of Example 1, a CL pattern was measured on a GaAs substrate obtained by liquid phase epitaxial growth under similar measurement conditions.

その結果、LEC(Liquid  Encapsul
ated  Czochralski)法で作った基板
について、転位に関する発光パターンのセル構造を明ら
かにすることができた。
As a result, LEC (Liquid Encapsul
We were able to clarify the cell structure of the light-emitting pattern related to dislocations on a substrate fabricated using the Czochralski method.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば集光効率が向上するために
微弱な発光が検出できるだけでなく、反射鏡が不要なた
め、簡単に発光パターンを測定することができる。
As described above, according to the present invention, not only weak light emission can be detected due to improved light collection efficiency, but also a light emission pattern can be easily measured because a reflecting mirror is not required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る光検知器の断面図(A)と斜視図
(B)、 第2図は従来の光検知器の断面図(A)とこれに使用し
ている受光素子の斜視図(B)、である。 図において、 1は基板、      2は励起ビーム、3は発光した
光、   4は受光素子、5は反射鏡、      6
は反射光、7は透過窓、     8は受光材、 lOは光検知器、    12は貫通孔、である。
Fig. 1 is a cross-sectional view (A) and a perspective view (B) of a photodetector according to the present invention, and Fig. 2 is a cross-sectional view (A) of a conventional photodetector and a perspective view of a light-receiving element used therein. Figure (B). In the figure, 1 is a substrate, 2 is an excitation beam, 3 is emitted light, 4 is a light receiving element, 5 is a reflecting mirror, 6
is reflected light, 7 is a transmission window, 8 is a light receiving material, IO is a photodetector, and 12 is a through hole.

Claims (1)

【特許請求の範囲】 発光物質よりなる基板(1)に励起ビーム(2)を走査
し、該基板(1)の発光分布を受光素子(4)を用いて
測定する光検知器において、 該光検知器が該受光素子(4)の中央に貫通孔(12)
が設けられてあり、該貫通孔(12)を通じて励起ビー
ム(2)を基板(1)に投射し、該基板(1)より発光
した光(3)を素子で受光する構造をとることを特徴と
する発光パターン測定用光検知器。
[Claims] A photodetector that scans a substrate (1) made of a luminescent substance with an excitation beam (2) and measures the luminescence distribution of the substrate (1) using a light receiving element (4), comprising: The detector has a through hole (12) in the center of the light receiving element (4).
is provided, the excitation beam (2) is projected onto the substrate (1) through the through hole (12), and the element receives the light (3) emitted from the substrate (1). A photodetector for measuring luminescence patterns.
JP22401085A 1985-10-08 1985-10-08 Photodetector for measuring luminescence patterns Pending JPS6282331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22401085A JPS6282331A (en) 1985-10-08 1985-10-08 Photodetector for measuring luminescence patterns

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22401085A JPS6282331A (en) 1985-10-08 1985-10-08 Photodetector for measuring luminescence patterns

Publications (1)

Publication Number Publication Date
JPS6282331A true JPS6282331A (en) 1987-04-15

Family

ID=16807171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22401085A Pending JPS6282331A (en) 1985-10-08 1985-10-08 Photodetector for measuring luminescence patterns

Country Status (1)

Country Link
JP (1) JPS6282331A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212284A (en) * 2008-03-04 2009-09-17 Hitachi Cable Ltd Gallium nitride substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212284A (en) * 2008-03-04 2009-09-17 Hitachi Cable Ltd Gallium nitride substrate

Similar Documents

Publication Publication Date Title
US4081764A (en) Zinc oxide light emitting diode
Ettenberg et al. Minority carrier diffusion length and recombination lifetime in GaAs: Ge prepared by liquid‐phase epitaxy
US6449296B1 (en) Semiconductor laser device
KR900005632A (en) Single-conducting semiconductor light emitting device with broadband gap
US5542018A (en) Semiconductor laser device making use of photodiode chip
US20250142912A1 (en) Semiconductor device
US6798001B2 (en) Semiconductor device having photo diode with sensitivity to light of different wavelengths
JPS6282331A (en) Photodetector for measuring luminescence patterns
RU2570603C2 (en) Medium-wave infrared semiconductor diode
US3790868A (en) Efficient red emitting electroluminescent semiconductor
EP0308335B1 (en) Ingaas/inp type pin photodiodes
RU2154324C1 (en) Semiconductor infrared radiation source (design versions)
US4238686A (en) Method of analyzing localized nonuniformities in luminescing materials
US4217597A (en) Diode which transmits and receives light-rays of the same predetermined wavelength and optical telecommunications device using such a diode
Pietzsch Measurement of minority carrier lifetime in GaAs and GaAs1− xPx with an intensity-modulated electron beam
NL8802936A (en) LOW CAPACITY ELECTROLUMINESCENT DIODE.
Metz Deep center luminescence (1.02 eV) in GaAs/(GaAl) As epitaxial layers and double-heterostructure lasers
KR100991742B1 (en) Optical element with photo detector
JPH0719917B2 (en) Light emitting / light receiving integrated device
KR950013436B1 (en) Semiconductor device and the manufacturing method
JPS5846875B2 (en) optical semiconductor device
Gupta et al. Optoelectronic Devices
Hillman et al. The high-brightness LED
Minden PN junction electroluminescence and diode lasers
JP4092408B2 (en) Semiconductor optical storage device