JPS6278116A - Purification of arsine - Google Patents
Purification of arsineInfo
- Publication number
- JPS6278116A JPS6278116A JP21560185A JP21560185A JPS6278116A JP S6278116 A JPS6278116 A JP S6278116A JP 21560185 A JP21560185 A JP 21560185A JP 21560185 A JP21560185 A JP 21560185A JP S6278116 A JPS6278116 A JP S6278116A
- Authority
- JP
- Japan
- Prior art keywords
- arsine
- crude
- adsorbent
- adsorption
- substance capable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 title claims abstract description 31
- 238000000746 purification Methods 0.000 title description 2
- 239000000126 substance Substances 0.000 claims abstract description 14
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000001301 oxygen Substances 0.000 claims abstract description 7
- 238000001179 sorption measurement Methods 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 24
- 239000002994 raw material Substances 0.000 abstract description 17
- 239000002808 molecular sieve Substances 0.000 abstract description 13
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 abstract description 12
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 abstract description 11
- 239000004065 semiconductor Substances 0.000 abstract description 11
- 229910052799 carbon Inorganic materials 0.000 abstract description 10
- 229910021536 Zeolite Inorganic materials 0.000 abstract description 8
- 239000010457 zeolite Substances 0.000 abstract description 8
- 229910000070 arsenic hydride Inorganic materials 0.000 abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract description 3
- OEYOHULQRFXULB-UHFFFAOYSA-N arsenic trichloride Chemical compound Cl[As](Cl)Cl OEYOHULQRFXULB-UHFFFAOYSA-N 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 229910017009 AsCl3 Inorganic materials 0.000 abstract 1
- 229910010084 LiAlH4 Inorganic materials 0.000 abstract 1
- 239000012280 lithium aluminium hydride Substances 0.000 abstract 1
- 239000003463 adsorbent Substances 0.000 description 23
- 239000007789 gas Substances 0.000 description 22
- 238000006243 chemical reaction Methods 0.000 description 13
- 229910052734 helium Inorganic materials 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- 239000002956 ash Substances 0.000 description 6
- 239000001307 helium Substances 0.000 description 6
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000741 silica gel Substances 0.000 description 4
- 229910002027 silica gel Inorganic materials 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 239000012024 dehydrating agents Substances 0.000 description 3
- 238000007865 diluting Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 102220615043 Double-stranded RNA-specific editase B2_M84A_mutation Human genes 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- 235000002918 Fraxinus excelsior Nutrition 0.000 description 1
- 101000956317 Homo sapiens Membrane-spanning 4-domains subfamily A member 4A Proteins 0.000 description 1
- 101000956307 Homo sapiens Membrane-spanning 4-domains subfamily A member 8 Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 102100038556 Membrane-spanning 4-domains subfamily A member 4A Human genes 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- -1 Zn (MS4A4 Chemical class 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000006392 deoxygenation reaction Methods 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- JBJWASZNUJCEKT-UHFFFAOYSA-M sodium;hydroxide;hydrate Chemical compound O.[OH-].[Na+] JBJWASZNUJCEKT-UHFFFAOYSA-M 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【発明の詳細な説明】
〔、産業上の利用分野〕
本発明は、不純物を含有するアルシンを半導体の製造等
に用いられる高NUのアルシンに精製す〔従来の技術〕
アルシン(水素化ひ素、A s Hs )は半導体工業
におけるI−V濃化合物半導体のエピタキシャル成膜時
のV族用原料、またはシリコン半導体製造時のドーピン
グ材としてその需要が急速にのびている。[Detailed Description of the Invention] [Industrial Application Field] The present invention purifies arsine containing impurities into high NU arsine used in semiconductor manufacturing etc. [Prior art] Arsine (arsenic hydride, Demand for A s Hs ) is rapidly increasing in the semiconductor industry as a group V raw material during epitaxial film formation of IV concentrated compound semiconductors or as a doping material during silicon semiconductor manufacturing.
上記半導体製造時に用いられるA * Hsは半導体の
運気的性能および生産性を向上させるため、AsH3中
の酸素1に1vol ppm (以下ppmという)以
下。The amount of A*Hs used during the semiconductor manufacturing process is 1 vol ppm (hereinafter referred to as ppm) or less per 1 vol of oxygen in AsH3 in order to improve the mechanical performance and productivity of the semiconductor.
H,01ppm (露点ニー76℃)以下にする必要が
ある。H,01ppm (dew point knee 76°C) or less.
A s )l sの製造方法としては梧々あるが1代表
例を示せば、
(1)金属ひ化物を希塩酸で分解する方法常温
Zn1Ast+6HCJ −+ 2AsHs+3Zn
Cj!*(2)三塩化ひ素をLIAJ)(、で還元する
方法−90℃
4 A s Cl s + 3L I Al!H4→4
Al)(S+ 3L IAJc74等である。There are many methods for producing A s)l s, but one representative example is: (1) Method of decomposing metal arsenide with dilute hydrochloric acid Room temperature Zn1Ast + 6HCJ - + 2AsHs + 3Zn
Cj! *(2) Method of reducing arsenic trichloride with LIAJ) (, -90℃ 4 A s Cl s + 3L I Al!H4→4
Al) (S+ 3L IAJc74, etc.).
これらの方法によって合成されたAlH34こ、ピロガ
ロール等による脱酸素、 NaOH水fI液による脱c
ot、 p、o、等による脱水1等の処理を施して。AlH34 synthesized by these methods, deoxygenation with pyrogallol, etc., deoxidation with NaOH water fI solution.
After dehydration with ot, p, o, etc.
不純物の少ない人SH1が得られる。しかし、このA
@Hs中には原料から導入されるZn$の若干の金属と
、0.≦20ppm%当≦tooppm、co、≦10
ppm、CO≦sppm、CH,≦5ppm、kltO
≦aoppm等が含まれている。この程度の不純物を含
有している人IH3(以下粗A s Hsという)では
。Human SH1 with less impurities is obtained. However, this A
@Hs contains some metal of Zn$ introduced from the raw material and 0. ≦20ppm% ≦tooppm, co, ≦10
ppm, CO≦sppm, CH,≦5ppm, kltO
≦aoppm, etc. are included. Human IH3 (hereinafter referred to as crude A s Hs) contains this level of impurities.
半導体工業の原料としては不適当で、特にI(,0と0
、は、上記したように、それぞれtppm以下に除去し
なければならない。この際、H,0は、合成ゼオライト
、例えばユニオン昭和株式会社のM84A、MS5A等
により吸着、除去して容易にi ppm以下とすること
が出来るが、0.をlppm以下とする方法は末だ発表
されていない。It is unsuitable as a raw material for the semiconductor industry, especially I(,0 and 0
, must be removed to below tppm, respectively, as described above. At this time, H,0 can be easily reduced to i ppm or less by adsorption and removal with synthetic zeolite such as M84A and MS5A manufactured by Union Showa Co., Ltd.; No method has been announced to reduce the amount of energy to lppm or less.
本発明者等は上記の事情に鑑み、組人sH3中の0、を
除去すべく鋭意研究した結果、粗A a Hs t?A
s Hsに対して吸着能を有する物質に接触させると
、含有しているO2の濃度が格段に減少することを知見
した。In view of the above circumstances, the present inventors conducted intensive research to remove 0 in Kumite sH3, and as a result, the rough A a Hs t? A
It has been found that when brought into contact with a substance that has adsorption capacity for s Hs, the concentration of O2 contained therein is significantly reduced.
本発明は上記の知見に基づいて、開発されたもので、粗
A s Hs中のOtd度t1ppm以下多こまで減少
させることが出来、かつH,0を合せて除去出来るA
s Hsの精製方法を提供することを目的とする。The present invention was developed based on the above knowledge, and it is possible to reduce the Otd degree in crude A s Hs to 1 ppm or less, and to remove H and 0 together.
An object of the present invention is to provide a method for purifying s Hs.
本発明は、上記の目的を達成するためになされたもので
、その要旨は、粗アルシンを、A @H3に対して吸着
能を有する物質と接触させて、0!を除去するA s
Haの!R製方法、および粧アルシンを、A s Ha
に対して吸21F能を有する物質と接触させた後、水分
除去能力のある物質と接触させて、酸素と水分を除去す
るアルシンの精製方法にある。The present invention has been made to achieve the above object, and its gist is that crude arsine is brought into contact with a substance that has adsorption ability for A@H3. A s to remove
Ha! R manufacturing method and cosmetic arsine, A s Ha
A method for purifying arsine includes contacting the arsine with a substance having an ability to absorb 21F, and then contacting the substance with a substance capable of removing water to remove oxygen and water.
本発明に使用する、A m Hsに対して吸fdを有す
る物質(以下A=Hs吸着剤という)としては、(イ)
活性炭1例えば石炭系活性炭、石油系活性炭、分子篩カ
ーボン(M2O)等、
(切 合成ゼオライト、例えばユニオン昭和株式会社製
モレキラシーブス(M813X%MS10X%M85A
等)
O9イオン交換合成ゼオライト、例えばZnで(を侯し
たMS4A4、
に)活性アルミナ
等があげられる。The substances used in the present invention that have adsorption fd for A m Hs (hereinafter referred to as A=Hs adsorbent) include (a)
Activated carbon 1 For example, coal-based activated carbon, petroleum-based activated carbon, molecular sieve carbon (M2O), etc. (cut) Synthetic zeolite, such as Molekira Sieves manufactured by Union Showa Co., Ltd. (M813X%MS10X%M85A)
etc.) O9 ion exchange synthetic zeolites, such as Zn (MS4A4, etc.) activated alumina, etc.
粗A s HsをA a H,吸着剤と接触させること
により、0!が除去される機構は定かでないが、AsH
s吸着剤である分子篩カーボン3A層にHeでうすめた
O3を通した場合、125分で破過したのに対し、AS
H,をHeでうすめた後、O!を重力aし、上記0.と
同じ濃度として、同じ速度で、上記A s Hs吸着剤
層を通した場合、19時間以上にわたって0雪の破過が
なかったことより、0雪の除去は単なる物理吸着でなく
、A a Hs吸漕剤の触媒作用により1人$H1と0
.が反応していることが推定される。By contacting crude A s Hs with A a H, an adsorbent, 0! The mechanism by which AsH is removed is unclear, but AsH
When O3 diluted with He was passed through the molecular sieve carbon 3A layer, which is an adsorbent, breakthrough occurred in 125 minutes, whereas AS
After diluting H with He, O! The gravity is a, and the above 0. When passed through the A s Hs adsorbent layer at the same concentration and at the same speed, there was no breakthrough of 0 snow for more than 19 hours, so the removal of 0 snow was not just physical adsorption, but the A a Hs 1 person $H1 and 0 due to the catalytic action of the adsorbent
.. It is presumed that this is a reaction.
上記反応は。The above reaction is.
4AsH3+ 3ot→4 A s + 6 Hz O
或いは、2AsHs + 30t A@t Os
+ 3Ht Oで、A a Hs吸着剤表面に親和力の
強いA s Haが吸着し、これがO2と反応してAs
又はA s t OsおよびHloを生成し、0.が消
失するものと思料する。4AsH3+ 3ot→4 A s + 6 Hz O
Or 2AsHs + 30tA@tOs
+ 3Ht O, A s Ha with strong affinity is adsorbed on the surface of the A a Hs adsorbent, and this reacts with O2 to form As.
or generate A s t Os and Hlo and 0. I think that will disappear.
その場合、As、A m @ 03の沸点は、As:6
15℃A110! : 415℃で、一方A s Hs
は−54,8℃であるので、蒸気圧の差が極めて大きく
、A m Hs吸着剤を通過したA s Ha中にはA
s、A I * Osは含まれない。また、HIOは室
温で15〜30關Hgの蒸気BEを持つため、反応によ
って生成したH2Oは、粗A s Ha中のH,0と共
に流出するが、これは周知の脱水剤によって除去するζ
さが出来る。In that case, the boiling point of As, A m @ 03 is As:6
15℃A110! : At 415℃, while A s Hs
Since the temperature is -54.8℃, the difference in vapor pressure is extremely large, and the A s Ha that has passed through the A m Hs adsorbent contains A
s, A I *Os are not included. In addition, since HIO has a steam BE of about 15 to 30 Hg at room temperature, H2O produced by the reaction flows out together with H,0 in the crude A s Ha, but this is removed by a well-known dehydrating agent.
You can search.
上記、0.の除去反応の条件は厳密でなく、精製A s
Ha中の0.濃度をlppm以下とすることは、比較
的容易であるが、効率よ<Osを除去するには1次の条
件下でAsHs吸着剤と粗A s Haを接触させるこ
とが望ましい。すなわち、(1) 反応温度ニー30
℃以上。Above, 0. The conditions for the removal reaction are not strict, and the purification A s
0.0 in Ha. Although it is relatively easy to reduce the concentration to 1 ppm or less, in order to efficiently remove Os, it is desirable to bring the AsHs adsorbent into contact with the crude As Ha under primary conditions. That is, (1) reaction temperature knee 30
℃ or more.
反応温度は、圧力を勘案してA s Hsが液化しない
温度を容易に設定することが出来1通常−30℃〜室温
の範囲が好ましい。しかし反応温度は高い程、 AsH
3とOlとの反応速度定数が大きくなるためか、0.の
除去率が高くなり、Svを大きく取ることが可能となる
。The reaction temperature can be easily set at a temperature at which As Hs does not liquefy, taking into consideration the pressure, and is usually preferably in the range of -30°C to room temperature. However, the higher the reaction temperature, the more AsH
Perhaps because the reaction rate constant between 3 and Ol becomes larger, 0. The removal rate becomes high, and it becomes possible to take a large Sv.
(11)反応圧カニ大気圧以上。(11) Reaction pressure crab atmospheric pressure or higher.
反応圧力が大気圧より低いと反応系内に空気が浸入して
、系内汚染の原因となる。そのため系内を大気圧以上と
するのが好ましい。しかし、圧力を高くする程、A a
Hsの分圧が高くなり、A a Hsの吸着量が増加
し、0.との反応速度が早くなるためか、0.は除去さ
れ易くなる。If the reaction pressure is lower than atmospheric pressure, air will enter the reaction system, causing contamination within the system. Therefore, it is preferable to keep the pressure inside the system at or above atmospheric pressure. However, the higher the pressure, the more A a
The partial pressure of Hs increases, the adsorption amount of A a Hs increases, and 0. Perhaps because the reaction rate with 0. becomes easier to remove.
OjD A s Hs吸着剤へのA s Hsの吸着
量は、−30℃% 1.5 kg/crtl Gにおい
て。The adsorption amount of A s Hs to the OjD A s Hs adsorbent is -30°C% 1.5 kg/crtl G.
1 =9 kmHs / 10011 AsHs吸漕剤
以上テアルコとが好ましい。A s Hs吸着剤へのA
s Hs吸yIItが少ないと、粗A a He中の
O2を十分に除去出来ない。例えば、−30℃で0!を
lppm以下まで除くには、−30℃においてA畠H8
のA a H>吸着剤に対する吸着量は、少なくとも1
、!9 A a Hs /1009 A 愈Hs吸着
剤であることが好ましい。1 = 9 kmHs / 10011 AsHs absorption agent or more Tealco is preferable. A to A s Hs adsorbent
If sHs absorption yIIIt is small, O2 in the crude A a He cannot be removed sufficiently. For example, 0 at -30℃! In order to remove the
A a H>The amount of adsorption on the adsorbent is at least 1
,! 9 A a Hs /1009 A Hs adsorbent is preferred.
但し、上記条件は絶対的なものでなく、粗A m H3
の送給速度などによっても調整され、0!濃度をlr)
I)m 以下とすることは可能である。However, the above conditions are not absolute, and the crude A m H3
It is also adjusted by the feeding speed of 0! concentration lr)
I) It is possible to make it less than or equal to m.
上記、Olの除去は、粗A s Hs 1tA s H
3吸吸着剤に通した場合、当初A s Hsは吸着され
て流出しないが、飽和吸着された後、0.を除去された
A s Hsが流出して来る。The above removal of Ol is performed using crude A s Hs 1tA s H
When passed through a 3-absorbent adsorbent, A s Hs is initially adsorbed and does not flow out, but after being saturated and adsorbed, 0. A s Hs from which has been removed flows out.
0□が除去された後、A s Hsは、通常の脱水剤に
よってH,0が除去され、0!、H2Cが共にlppm
以下のA a Hsが得られる。After 0□ is removed, H,0 is removed by a common dehydrating agent, and A s Hs becomes 0! , H2C are both lppm
The following A a Hs is obtained.
脱水剤としては、AsHs中のHtO’e 11)pm
以下に除去するものであれば、いずれも使用出来る。As a dehydrating agent, HtO'e in AsHs 11) pm
Any of the following can be used as long as it is removed.
例えば、物理吸着醗こよる脱水剤としては1合成ゼオラ
イト(M813X1MSIOX、M85A、MB2人、
MS3A等)、天然ゼオライト(モルデナイト系、フオ
ジャサイト系)、シリカゲル、活性アルミナ、活性白土
、酸性白土等1通常のものがいずれも使用出来る。For example, 1 synthetic zeolite (M813X1MSIOX, M85A, MB2,
MS3A, etc.), natural zeolite (mordenite type, phaujasite type), silica gel, activated alumina, activated clay, acid clay, etc. 1. Any of the usual ones can be used.
上記物理吸着による脱水剤には、A s Hsに対する
吸着能を有するものもある。このような吸着剤を用いた
場合には、0.が除去されると共にH,0も吸着除去さ
れ、一種類の吸着剤層によって0!、H,0が共に除去
されたA s Hsが得られる。Some of the above-mentioned physical adsorption dehydrating agents have an ability to adsorb A s Hs. When such an adsorbent is used, 0. is removed, H,0 is also adsorbed and removed, and 0! is removed by one type of adsorbent layer. , H, and 0 are removed, A s Hs is obtained.
次に実施例、比較例を示して本発明を説明する。 Next, the present invention will be explained by showing examples and comparative examples.
実施例、比較例においては、一部において粗A * H
3を用いたが、AsH3が極めて毒性が高く。In Examples and Comparative Examples, some of the crude A*H
3 was used, but AsH3 is extremely toxic.
その取扱を容易とするため、大部分のテストは、Heに
よりA s Hsを2〜5vo1%(以下単にチと記す
)にうすめ、これ(こ、粗A s Hsの含有濃度にほ
ぼ同じ濃度となるように、Ot J(t O等を添加し
たモデルガスをつくってテストの原料ガスとした。In order to facilitate its handling, most of the tests were carried out by diluting As Hs to 2 to 5 vol% (hereinafter simply referred to as Chi) with He, and diluting As Hs to a concentration that is approximately the same as that of crude As Hs. A model gas to which Ot J (t O, etc.) was added was prepared and used as the raw material gas for the test.
その理由は、粗A s HsはA s Hs d度が高
く、モデルガスに比してASH,吸着剤に対するA 璽
Hsの吸S*が多い。そのため、0.とA・Hlの反応
が促進され、0.の除去効率はモデルガスに比してよく
なる。したがって、モデルガスによってOlが除去出来
る場合、これを徂A s Hsに対して適用するさ、0
.がざらに効率よく除去されるものと推定されることl
こよる。The reason is that crude A s Hs has a high A s Hs d degree, and A s Hs absorbs more S* to ASH and adsorbent than the model gas. Therefore, 0. The reaction between A and Hl is promoted, and 0. The removal efficiency is better than that of the model gas. Therefore, if Ol can be removed by the model gas, applying this to A s Hs, 0
.. It is assumed that the particles are removed efficiently.
Koyoru.
な3.用いた分析は、A a Hz : J I SK
O102(ジエチルジチオカルバミン&8法)、02.
Nl:ヘリウムイオン化検出器法のがスクロマトクラフ
ィ(以下HI D −G C(!: イう〕、H,U:
g点ノ測定(静電容量式露点計使用)、にょって行なっ
た。3. The analysis used was A a Hz: J I SK
O102 (diethyldithiocarbamine & 8 method), 02.
Nl: Helium ionization detector method is chromatography (hereinafter referred to as HI D-G C (!: Iu), H, U:
Measurement at point g (using a capacitive dew point meter) was carried out.
〔実施例1〕
分子篩カーボン3A(武田薬品株式会社製1モルシーボ
ンHGS−062)の8〜24メッシニ破砕品ニア0.
8.9をA a Hs吸着剤として、内径:31繻、長
さ:20cIrLの吸着管に充填し、ヘリウム気流中で
270〜290℃、4時間加熱賦活後、吸着管内2 k
fi/crtt Gに加圧後、両端を封じて室温まで冷
却した。[Example 1] An 8 to 24 Messinian crushed product of molecular sieve carbon 3A (1molsibon HGS-062, manufactured by Takeda Pharmaceutical Co., Ltd.) near 0.
8.9 as an A a Hs adsorbent was filled into an adsorption tube with an inner diameter of 31 mm and a length of 20 cIrL, and after heating and activation in a helium stream at 270 to 290 °C for 4 hours, the adsorption tube was heated to 2 kL.
After pressurizing the fi/crtt G, both ends were sealed and cooled to room temperature.
この分子篩カーボン3Aが充填された吸着管にOl ’
29 pPrn−N2 : 107pprn、 As
Hs : 2.65%Ha : 97.34%からなる
原料ガスを21℃、0.3に9/altG、ガス流速:
0.4Nl/mで送入し、管ffl 11 側より流
出させた。送入開始40分後にA s Hsが破過した
。その後19時間原料送入を続けたが、流出ガス中の0
.濃度は、lppm以下であった。Ol' into the adsorption tube filled with this molecular sieve carbon 3A
29pPrn-N2: 107pprn, As
A raw material gas consisting of Hs: 2.65% Ha: 97.34% was heated at 21°C, 9/altG to 0.3, and gas flow rate:
It was introduced at a rate of 0.4 Nl/m and flowed out from the tube ffl 11 side. A s Hs broke through 40 minutes after the start of feeding. After that, raw materials were continued to be fed for 19 hours, but zero
.. The concentration was less than lppm.
この場合1分子篩カーボン3人に吸着されたA sHs
の量は、3.59人sHs/100Ji’分子篩カーボ
ンであった。In this case, A sHs adsorbed on three single-molecular sieve carbon
The amount of was 3.59 people sHs/100 Ji' molecular sieve carbon.
〔比較例1〕
原料カストして、A s Hsを含まないOt:29p
pmNt ’ 1107pp%He:99.99%のも
のを用いた外は、実施例1と同じ条件、操作によってテ
ストを行なった。その結果、原料ガス送入開始後、Nt
は4分、O3は125分後に破過した。[Comparative Example 1] Ot: 29p containing no A s Hs by casting the raw material
The test was conducted under the same conditions and operations as in Example 1, except that pmNt' 1107pp%He:99.99% was used. As a result, after starting feed gas supply, Nt
The breakthrough occurred after 4 minutes and O3 after 125 minutes.
実施例1、比較例1の結果より、0.の除去が単なる物
理吸着でないことがわかる。From the results of Example 1 and Comparative Example 1, 0. It can be seen that the removal of is not simply physical adsorption.
〔実施例2〕
活性炭(呉羽化学株式会社製、ピース炭MP)の20〜
60メツシユ球状品:’i、7sgをA * Hs吸着
剤として、内径74.4mm、長さC60(1111の
吸着管に充填し、ヘリウム気流中で220〜240℃、
4時間加熱賦活後、吸着管内’に2に9/・cdGに加
圧後両端を封じ室温まで冷却した。この吸着管に、Ol
: 47 ppm%N、: 206 ppm、AmHl
:1.76チ、He : 98.21%からなる原料ガ
スを% 23℃、0、3 kg /cdL G、ガス流
速=0.12Nl/sIl で送入し、吸着管出口側よ
り流出させた。送入開始後。[Example 2] Activated carbon (manufactured by Kureha Chemical Co., Ltd., Peace Charcoal MP) 20~
60 mesh spherical product: Fill an adsorption tube with an inner diameter of 74.4 mm and a length of C60 (1111) with 7sg of 'i, 7sg as an A*Hs adsorbent, and heat at 220-240℃ in a helium stream.
After heating and activation for 4 hours, the inside of the adsorption tube was pressurized to 2 to 9/·cdG, and both ends were sealed and cooled to room temperature. In this adsorption tube, Ol
: 47 ppm%N, : 206 ppm, AmHl
A raw material gas consisting of: 1.76%, He: 98.21% was fed at 23°C, 0.3 kg/cdL G, gas flow rate = 0.12 Nl/sIl, and was discharged from the adsorption tube outlet side. . After the start of sending.
64分でA a Haが破過した。その後5時間送入を
続けたが、流出ガス中の0!濃度は11)pm以下であ
った。この場合活性炭に吸着されたAsHsの量は、9
.31 AsH3/ 100 &・活性炭であった。AaHa broke through in 64 minutes. After that, the supply continued for 5 hours, but 0! The concentration was 11) pm or less. In this case, the amount of AsHs adsorbed on activated carbon is 9
.. 31 AsH3/100 & activated carbon.
〔実施例3〕
合成ゼオライトSA(ユニオン昭和株式会社裂、モレキ
ュラシーブス5人)の1/16インチペレットを破砕し
た16〜24メツシユの破砕品=5.69をA * H
s吸着剤として、内径:4.4關、長さ二601の吸着
管に充填し、ヘリウム気流中で320〜330℃、4時
間加熱賦活し、吸着管内2#/cdGに加圧後、両端を
封じ室温まで冷却した。[Example 3] 16 to 24 mesh pieces obtained by crushing 1/16 inch pellets of synthetic zeolite SA (Union Showa Co., Ltd., 5 members of Molecular Sieves) = 5.69 A * H
As an adsorbent, it was filled into an adsorption tube with an inner diameter of 4.4 mm and a length of 2601 mm, heated and activated in a helium stream at 320 to 330°C for 4 hours, and after pressurizing the inside of the adsorption tube to 2#/cdG, both ends were It was sealed and cooled to room temperature.
この合成ゼオライ)5Aが充填されている吸着管に、O
@ ’ 21 ppm−Nt ’ 98 ppm%H@
0 : 391点−60℃を含有する粗ksHs f
、23”0.0.3に9/a/l G、ガス流速:0.
12Nl/−で送入し、吸着管出口より流出させた。粗
Asf(sの送入開始後。Into the adsorption tube filled with this synthetic zeolite) 5A, O
@'21 ppm-Nt'98 ppm%H@
0: Crude ksHs f containing 391 points -60℃
, 23"0.0.3 to 9/a/l G, gas flow rate: 0.
It was fed at a rate of 12 Nl/- and flowed out from the outlet of the adsorption tube. After starting to feed crude Asf(s).
5分で人aLが破過した。その後、9時間送入を続けた
が、流出するA m Ha中の01濃度はt ppm以
下、露点は一79℃であった。この場合、合成ゼオライ
ト5人に吸着された人aH1の量は、229−AsH3
/ 100 & 合成ゼオライトであった。Human aL was broken in 5 minutes. Thereafter, the supply was continued for 9 hours, but the 01 concentration in the outflowing A m Ha was less than t ppm, and the dew point was -79°C. In this case, the amount of human aH1 adsorbed on five synthetic zeolites is 229-AsH3
/ 100 & was a synthetic zeolite.
〔実施例4〕
分子篩カーボン5A(武田薬品株式会社製、モルシーボ
ンHGY−318)の16〜24メツシュ破砕品4.2
4.9をAshs吸着剤とした外は、実施例2と同じ条
件、操作によりテストを行なった。[Example 4] 16-24 mesh crushed product of molecular sieve carbon 5A (Molecibon HGY-318, manufactured by Takeda Pharmaceutical Co., Ltd.) 4.2
The test was conducted under the same conditions and operations as in Example 2, except that Ashs 4.9 was used as the Ashs adsorbent.
原料ガス送入開始後、71分でAaH,が破過した。AaH broke through 71 minutes after starting feed of the raw material gas.
その後3時間送入を続けたが、その間、流出ガス中のO
t濃度は、I J)j)m以下であった。この場合、分
子篩カーボン5人に吸着されたAaHsの量は、11.
51 ’ AsHs / 100 g分子篩カーボンで
あった。After that, the supply continued for 3 hours, during which time the O in the outflow gas
The t concentration was below IJ)j)m. In this case, the amount of AaHs adsorbed on the molecular sieve carbon 5 is 11.
51' AsHs/100 g molecular sieve carbon.
〔比較例2〕
シリカゲル(水沢化学株式会社製、ネオビードN・)ビ
ーズを破砕した破砕品5.4511kAaHs吸着剤と
した外は、実施例2と同し条件、操作によってテストを
行なった。原料ガス送入開始1分後にAshsが破過し
た。その後、ただちに流出ガスをHID−GCでガス分
析したところ、0.:32ppm、 N@ : 201
TH)m ’に示した。その後、60分原料ガスの送
入を続け、その間適時ガス分析を行なったが、0. :
32〜341)9ff1. N、 : 201〜20
6pPmで変らなかった。この場合、シリカゲルに吸着
されたAsHsの量は、063g・人sHs /10ト
シリカゲル以下であった。[Comparative Example 2] A test was conducted under the same conditions and operations as in Example 2, except that a crushed 5.4511 kAaHs adsorbent obtained by crushing silica gel (manufactured by Mizusawa Chemical Co., Ltd., Neobead N.) beads was used. Ashes broke through 1 minute after starting feed of the raw material gas. After that, the outflow gas was immediately analyzed by HID-GC, and it was found that 0. : 32ppm, N@ : 201
TH)m'. After that, feed of raw material gas was continued for 60 minutes, during which gas analysis was conducted at appropriate times, but 0. :
32-341) 9ff1. N: 201-20
There was no change at 6pPm. In this case, the amount of AsHs adsorbed on the silica gel was less than 063 g/10 silica gel.
〔実施例5〕
Zn交換率10.7%のモレキュラシーブス4A(Zn
交換M84A )ヨ’)ナル16〜24メツシュ破砕
品19 Jii’ f AiHs吸着剤として、内径=
8關、長さ53cmの吸着管に充填し、ヘリウム気流中
で320〜330″0%4時間加熱賦活した後、吸着管
内2 kl/cdt Gに加圧後1両端を封じ室温まで
冷却し、さらにCaC1,: 30wt@ の水mKで
一30°Cまで、上紀吸潰管を冷去した。この吸着官に
、0! ’ 35ppm%Nt : 129pI)In
、 AsH3:3.2俤、He:96.78%からなる
原料ガスを1.51c9/C11t G、ガス流速:0
.05Nll−で送入し、吸着管の出口側より流出せし
めた。送入開始80分後にλs HBは破過した。その
後2時間送入したが、流出ガス中のO1#度はxppm
以下であった。この場合、Zn交換MS4Aに吸着され
たA s Hsの盆は、2.09 ・ksHs/ 10
0 F 、”交換MS4Aであった。[Example 5] Molecular sieves 4A (Zn
Replacement M84A) Yo') Null 16-24 mesh crushed product 19 Jii' f As AiHs adsorbent, inner diameter =
After filling an adsorption tube with a length of 8 cm and a length of 53 cm, and heating and activating it in a helium air stream at 320 to 330 mm at 0% for 4 hours, the adsorption tube was pressurized to 2 kl/cdt G, then both ends were sealed and cooled to room temperature. Furthermore, the upper age sucking tube was cooled down to -30°C with water mK of CaC1,: 30wt@.
, AsH3: 3.2 yen, He: 96.78% raw material gas 1.51c9/C11tG, gas flow rate: 0
.. 0.05 Nll- was introduced and allowed to flow out from the outlet side of the adsorption tube. λs HB broke through 80 minutes after the start of feeding. After that, it was injected for 2 hours, but the O1 degree in the outflow gas was xppm.
It was below. In this case, the basin of A s Hs adsorbed on Zn-exchanged MS4A is 2.09 ksHs/10
0 F,” was the exchange MS4A.
〔比較例3〕
Zn交換率4.5%のモレキュラシーブス(Zn交換M
S4A)よりなる16〜24メツシュ破砕品:19.8
gをA @ Hs吸着剤として使用した外は、実施例5
七同じ条件、操作によってテストした。[Comparative Example 3] Molecular sieves with a Zn exchange rate of 4.5% (Zn exchange M
S4A) 16-24 mesh crushed product: 19.8
Example 5 except that g was used as the A@Hs adsorbent.
Seven were tested under the same conditions and operations.
送入開始41分後にA s Hsは破過した。その後原
料ガスの送入を続け、50分後、90分後、110分後
における流出ガス中の0.濃度を測定した。A s Hs broke through 41 minutes after the start of feeding. After that, feed of the raw material gas was continued, and 0.0% in the outflow gas after 50 minutes, 90 minutes, and 110 minutes. The concentration was measured.
0、濃度は、それぞれ、6 pI)m、 15 ppm
、19ppm、であった。この場合Zn交換MS4Aに
吸着されたA s Hsの量は、 111 ・AsH
s/ 100 Ji、 Zn交換MS4Aであった。0, the concentrations are 6 pI)m and 15 ppm, respectively.
, 19 ppm. In this case, the amount of A s Hs adsorbed on Zn-exchanged MS4A is 111 ・AsH
s/100 Ji, Zn exchanged MS4A.
〔実施例6〕
内径:4.4i+m、長さ=60口の吸着管2本人%B
を準備し、吸着管Aに活性炭(呉羽化学株式会社製ピー
ス炭MP)の20〜60メツシュ球状品:4.8.9’
ii充填し、また吸着管Bに合成ゼオライト4人(ユニ
オン昭和gM S 4 A ) ’/16 インfヘレ
ッl’f:16〜24メツシユに破砕した破砕品=5.
65.9 を充填し、吸着管A% B?:直列に配管し
。[Example 6] Inner diameter: 4.4i+m, length = 60 ports, 2 adsorption tubes %B
Prepare a 20-60 mesh spherical product of activated carbon (Peace Charcoal MP manufactured by Kureha Chemical Co., Ltd.) in adsorption tube A: 4.8.9'
ii filled and adsorption tube B was filled with 4 synthetic zeolites (Union Showa gM S 4 A) '/16 Inf Here l'f: Crushed product crushed into 16-24 mesh = 5.
65.9 Fill the adsorption tube A% B? : Piped in series.
ヘリウム気流中で、吸!fAは220〜250℃、Bは
320〜330℃で4時間加熱賦活後、吸7fI管内2
に9/crltGに加圧後、両端を封じ室温まで冷却し
た。Inhale in a helium airflow! After heat activation for 4 hours at 220-250℃ for fA and 320-330℃ for B,
After pressurizing to 9/crltG, both ends were sealed and cooled to room temperature.
上記吸着管AからBの順に、O,: 19ppm。In the order of the adsorption tubes A to B, O: 19 ppm.
N、: 1105pp、HlO:8点−60℃の粗As
Hsを24℃、 0.45/cg/c!/lG、ガス
流速: 0.12Nll/mで送入した。吸着VBの流
出口で、送入開始6分にA @ Hsか破過した。その
後、6時間送入を続けたが流出するA a Hs中のO
1濃度はII)I)m以下、露点は、−82℃であった
。N: 1105pp, HlO: 8 points -60°C crude As
Hs at 24℃, 0.45/cg/c! /lG, gas flow rate: 0.12Nll/m. At the outlet of the adsorption VB, A@Hs broke through 6 minutes after the start of feeding. After that, the supply continued for 6 hours, but the O in the A a Hs that flowed out
1 concentration was below II)I)m, and the dew point was -82°C.
以上述べたように、本発明に係るA s Hsのn裏方
法は、半導体原料用としては11)I)m以下としなけ
ればならないにもかかわらず、除去が困難であった0!
を、粗A s Hsから、容易かつ効率よく除去するこ
とが出来、ざらに、0!と同様半導体原料として除去し
なければならないHlOも合わせて除去出来るので、半
導体原料用として好適なA s Hsが容易に得られる
険れた方法である。As described above, the A s Hs n-back method according to the present invention is difficult to remove even though it must be less than 11)I)m for semiconductor raw materials.
can be easily and efficiently removed from crude A s Hs, with a roughness of 0! Since HlO, which must be removed as a semiconductor raw material, can also be removed at the same time, it is a sophisticated method that can easily obtain A s Hs suitable for semiconductor raw materials.
Claims (3)
物質と接触させて、酸素を除去することを特徴とするア
ルシンの精製方法。(1) A method for purifying arsine, which comprises bringing crude arsine into contact with a substance that has adsorption ability for arsine to remove oxygen.
物質と接触させた後、水分除去能力のある物質と接触さ
せて、酸素と水分を除去することを特徴とするアルシン
の精製方法。(2) A method for purifying arsine, which comprises contacting crude arsine with a substance capable of adsorbing arsine and then contacting it with a substance capable of removing moisture to remove oxygen and moisture.
対しても吸着、除去能力を有する物質である特許請求の
範囲第2項記載のアルシンの精製方法。(3) The method for purifying arsine according to claim 2, wherein the substance that has the ability to adsorb arsine is a substance that also has the ability to adsorb and remove moisture.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21560185A JPS6278116A (en) | 1985-09-28 | 1985-09-28 | Purification of arsine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21560185A JPS6278116A (en) | 1985-09-28 | 1985-09-28 | Purification of arsine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6278116A true JPS6278116A (en) | 1987-04-10 |
Family
ID=16675129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21560185A Pending JPS6278116A (en) | 1985-09-28 | 1985-09-28 | Purification of arsine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6278116A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02504384A (en) * | 1987-05-12 | 1990-12-13 | イーグル ‐ ピツチヤー インダストリーズ インコーポレーテツド | Method for producing epitaxial film by purifying and depositing Group 3a and Group 5a compounds |
JPH0340902A (en) * | 1989-07-10 | 1991-02-21 | Japan Pionics Co Ltd | Method for refining gaseous hydride |
JPH0549920A (en) * | 1991-01-03 | 1993-03-02 | Air Prod And Chem Inc | Method for improving carbon molecular sieve |
CN102863023A (en) * | 2012-10-18 | 2013-01-09 | 上海正帆科技有限公司 | Synthesis and purification method of electronic grade arsines |
-
1985
- 1985-09-28 JP JP21560185A patent/JPS6278116A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02504384A (en) * | 1987-05-12 | 1990-12-13 | イーグル ‐ ピツチヤー インダストリーズ インコーポレーテツド | Method for producing epitaxial film by purifying and depositing Group 3a and Group 5a compounds |
JPH0340902A (en) * | 1989-07-10 | 1991-02-21 | Japan Pionics Co Ltd | Method for refining gaseous hydride |
JPH0549920A (en) * | 1991-01-03 | 1993-03-02 | Air Prod And Chem Inc | Method for improving carbon molecular sieve |
CN102863023A (en) * | 2012-10-18 | 2013-01-09 | 上海正帆科技有限公司 | Synthesis and purification method of electronic grade arsines |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5051117A (en) | Process for removing gaseous contaminating compounds from carrier gases containing halosilane compounds | |
US4748013A (en) | Adsorbent for recovery of bromine and bromine-recovering process using same | |
JP2008537720A (en) | Purification of nitrogen trifluoride | |
US4273751A (en) | Removal of acidica contaminants from gas streams by caustic impregnated activated carbon | |
CN107530627B (en) | The manufacture method of deuterium-depleted water and deuterium-concentrated water, and the separation method of heavy water and light water | |
JP4504184B2 (en) | Moisture-reduced composition comprising acid gas and matrix gas, product comprising the composition and method for producing the same | |
JPS6278116A (en) | Purification of arsine | |
JPH035307A (en) | Method for refining sulfuryl fluoride by selective adsorption | |
CS227317B2 (en) | Method of preparing hydrogen cyanide | |
JPH0379288B2 (en) | ||
JP3516716B2 (en) | Purification method of trifluoromethane | |
JPS61197415A (en) | Purification of dichlorosilane | |
CA2268489C (en) | Adsorbent for separating halogenated aromatic compounds and separation method using it | |
JPS63151608A (en) | Purification of nitrogen trifluoride gas | |
EP0714849B1 (en) | Production process for refined hydrogen iodide | |
Nishihama et al. | Separation and recovery of tetramethyl ammonium hydroxide with zeolitic adsorbents | |
JPH0340902A (en) | Method for refining gaseous hydride | |
JPH01132535A (en) | Concentration of acetylene gas | |
JPS5930711A (en) | Method for purifying monosilane | |
JP2013194004A (en) | Method for purifying dissolved acetylene | |
JPH07330316A (en) | Purification of nitrogen trifluoride gas | |
JP3701708B2 (en) | Method for purifying nitrogen trifluoride gas | |
JPS6032316A (en) | Method for adjustment of atmosphere of n2 sealing in semiconductor industry workshop | |
JP4363089B2 (en) | Carbon dioxide treatment method | |
SU997739A1 (en) | Absorber for separating ethylene from gaseous mixture |