[go: up one dir, main page]

JPS61197415A - Purification of dichlorosilane - Google Patents

Purification of dichlorosilane

Info

Publication number
JPS61197415A
JPS61197415A JP3834385A JP3834385A JPS61197415A JP S61197415 A JPS61197415 A JP S61197415A JP 3834385 A JP3834385 A JP 3834385A JP 3834385 A JP3834385 A JP 3834385A JP S61197415 A JPS61197415 A JP S61197415A
Authority
JP
Japan
Prior art keywords
dichlorosilane
sih2cl2
purity
gas
nitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3834385A
Other languages
Japanese (ja)
Other versions
JPH0688772B2 (en
Inventor
Tadami Sugimoto
杉本 忠身
Takahiro Murayama
村山 敬博
Yoshiro Suzuki
鈴木 与四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP3834385A priority Critical patent/JPH0688772B2/en
Publication of JPS61197415A publication Critical patent/JPS61197415A/en
Publication of JPH0688772B2 publication Critical patent/JPH0688772B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To obtain a high-purity dichlorosilane, with simple apparatus and operation, in high efficiency, by contacting a nitrilesupporting high-silica zeolite with gaseous dichlorosilane, thereby removing the boron compounds from the dichlorosilane. CONSTITUTION:SiH2Cl2 is discharged from the bomb 1 in gaseous state, controlled to a specific flow rate by the mass flow-controller 2, and introduced into the absorption column 4 packed with high-silica zeolite 3 supporting a nitrile. The boron compounds existing in the SiH2Cl2 as impurities are adsorbed and removed in the absorption column 4, and the obtained high-purity SiH2Cl2 gas is passed through the line filter 5, and condensed and collected in the collector 8 and the recovering device 9 cooled with the freezing mixture. At the start of the operation, the line is substituted with an inert gas such as N2, etc., and the outlet line 8a is supplied constantly with an inert gas 10 during the operation. A high-purity SiH2Cl2 useful as a raw material for the production of semiconductor silicon can be produced by this process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はジクロロシランの精製方法に関し、さらに詳し
くはジクロロシラン中のホウ素化合物、特に三塩化ホウ
素を除去して半導体シリコン製造原料として用いられる
高純度ジクロロシランとする、ジクロロシランの製造方
法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for purifying dichlorosilane, and more specifically, to a method for purifying dichlorosilane by removing boron compounds, particularly boron trichloride, from dichlorosilane. The present invention relates to a method for producing dichlorosilane to obtain pure dichlorosilane.

〔従来の技術〕[Conventional technology]

半導体シリコンの製造原料として使用されるジクロロ7
ランは高純度であることが要求され、ホウ素化合物を含
有すると、その量が極微量であっても、半導体シリコン
の電気的性能に悪い影響を与える。
Dichloro7 used as a raw material for manufacturing semiconductor silicon
The orchid is required to be highly pure, and if it contains a boron compound, even a very small amount, it will adversely affect the electrical performance of semiconductor silicon.

従来、ジクロロシラン(以下31)1.α、と記す)か
らホウ素化合物を除去するには、 (tlsiH。
Conventionally, dichlorosilane (hereinafter referred to as 31)1. To remove boron compounds from (denoted as α, ), (tlsiH.

C6に種々のホウ素化合物の捕集剤を添加し【蒸溜する
方法(特公昭46−22755. U−8−P −31
26248)、(2J水分と接触させた後蒸瑠する方法
し特公昭56−32247. DD−P−155615
1、(31吸着剤に吸着させる方法(GB−P−895
495)等がある。
Distillation method by adding various boron compound scavengers to C6 (Japanese Patent Publication No. 46-22755. U-8-P-31
26248), (method of contacting with 2J water and then steaming), Japanese Patent Publication No. 56-32247. DD-P-155615
1, (31 Method of adsorption with adsorbent (GB-P-895)
495) etc.

StH,C6,は沸点:a2℃で、空気忙触れると自然
発火するので、開放系で扱うことは出来ない。
StH, C6, has a boiling point of a2°C and spontaneously ignites when exposed to air, so it cannot be handled in an open system.

従って、(1)の蒸溜法の装置は加圧密閉系となり、装
置は複雑で、また材質も耐食性が要求され、高級ステン
レス鋼、又は特殊表面処理した材質を使用するため高価
なものとなり、さらに釜残が出るととKよる製品の汚染
等の問題がある。
Therefore, the equipment for the distillation method in (1) is a pressurized closed system, which is complicated, requires corrosion resistance, and is expensive because it uses high-grade stainless steel or a material with a special surface treatment. If the residue is left in the pot, there are problems such as product contamination due to K.

また(2;の方法は、三塩化ホウ素(Begs)が水と
瞬時に反応することを利用したものであるが、上記rl
)の、!!溜法の欠点の外、りQクシラン類も水と接触
して加水分解するので、これによるロスがあるばかりで
なく、加水分解によってH(lが生成し、これが水と共
存するため、極めて腐食性となり、ステンレスもおかさ
れ、さらにクロロシラン類の加水分解生成物(ポリシロ
キサンといわれている)により装置がつまり、これは濃
NaOHでなければ溶解しないので、極めてやっかいで
ある。(3)の吸着法は、塩化ホウ素と反応する有機物
を、活性炭、シリカゲル等に担持させて、これにホウ素
化合物を含有するシラン又は塩化シランを接触通過させ
る方法である。
In addition, method (2;) utilizes the instantaneous reaction of boron trichloride (Begs) with water, but the above rl
)of,! ! In addition to the shortcomings of the distillation method, RIQsilanes are also hydrolyzed when they come into contact with water, which not only causes losses, but also generates H(l) through hydrolysis, which coexists with water and is extremely corrosive. This is extremely troublesome because the hydrolysis products of chlorosilanes (called polysiloxanes) clog the equipment and can only be dissolved with concentrated NaOH.(3) Adsorption The method is to support an organic substance that reacts with boron chloride on activated carbon, silica gel, or the like, and then pass silane or chlorinated silane containing a boron compound in contact with the organic substance.

しかしs S i $ Cel中のホウ素化合物の除去
に使用すると、活性炭を担体とした場合、未知成分が多
量に生成し、シリカゲルにおいては、HCeの生成が多
くなる。
However, when used to remove boron compounds in s S i $ Cel, when activated carbon is used as a carrier, a large amount of unknown components are produced, and when silica gel is used, a large amount of HCe is produced.

さらに、これらには、低沸点で、かつ空気に触れると発
火する物質には採用出来ない装置が記載されている。
Furthermore, these documents describe devices that cannot be used for substances that have a low boiling point and ignite when exposed to air.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

幡明は上記の問題点を解消し、固体分解物又はHCJの
発生がなく、簡単な装置、容易な操作によってホウ素化
合物を除去するジクロロシランの81M法を提供するこ
とを目的とする。
Hanmei aims to solve the above-mentioned problems and provide an 81M method for dichlorosilane, which does not generate solid decomposition products or HCJ and removes boron compounds using a simple device and easy operation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の目的を達成するためになされたもので、
その要旨は、ジクロロシランを気相状態でニトリルを担
持したハイシリカゼオライトと接触せしめ、含有するホ
ウ素化合物を除去するジクロロシランの精製法化ある。
The present invention has been made to achieve the above objects,
The gist of this method is to develop a method for purifying dichlorosilane by bringing dichlorosilane into contact with a high silica zeolite carrying nitrile in a gas phase to remove the boron compounds contained therein.

〔作 用〕[For production]

本発明に係る方法は、三塩化ホウ素と容易に反応して不
揮発性付加化合物をつ(るニトリルを担持させた、Si
H,(Jl  に対して不活性、かつ吸着力の高いハイ
シリカゼオライトを用いているので、SIH,CINの
分解が起らず、常温、常圧下で、効率よくホウ素化合物
を除去することが出来る。
The method according to the present invention uses Si
Since high silica zeolite, which is inert to H, (Jl) and has high adsorption power, is used, SIH and CIN do not decompose, and boron compounds can be efficiently removed at room temperature and pressure. .

〔発明の具体的構成〕[Specific structure of the invention]

以下本発明に係るS1ルC#、の精製法を図面を参照し
て説明する。
The method for purifying S1 C# according to the present invention will be described below with reference to the drawings.

第1[は本発明の方法を実施する装置の一例を示すもの
で、図中符号1は5IH1(Jtの入ったボンベである
。ボンベ1よりガスとして導出されたS1ルC6は、マ
ス7c2−コントローラー2を過つ【所定の流量となり
、ニトリルを担持した〕1イシリカゼオライト3が充填
された吸着筒4に導かれ、含有されているホウ素化合物
が吸着除去される。このホウ素化合物が除去された高純
度S1.ICI。
The first figure shows an example of an apparatus for carrying out the method of the present invention, and the reference numeral 1 in the figure is a cylinder containing 5IH1 (Jt). After passing through the controller 2, it is guided to an adsorption column 4 filled with isilica zeolite 3 (which has a predetermined flow rate and supports nitrile), and the boron compounds contained therein are adsorbed and removed. High purity S1.ICI.

ガスは、ラインフィルター5を通った後、寒剤6によっ
てそれぞれ冷却された捕集67、回収器8を通って高純
度51H1C1l19として凝縮捕集される。上記操作
はスタート時、ライン内をN2等の不活性ガスで置換し
た後行なわれ、また運転中は回収器8の出口ライン8&
に常時不活性ガスlOを導入し、空気が装置ライン内に
逆流するのを防止する。なお、図中11は圧力指示計で
あり、系は常温で操作されろ。
After passing through the line filter 5, the gas passes through a collector 67 and a collector 8, each cooled by a cryogen 6, and is condensed and collected as high-purity 51H1C1119. The above operation is performed at the start after replacing the inside of the line with an inert gas such as N2, and during operation, the outlet line 8 &
Inert gas 1O is constantly introduced into the system to prevent air from flowing back into the equipment line. Note that 11 in the figure is a pressure indicator, and the system should be operated at room temperature.

この方法において、三塩化ホウ素と反応して不揮発性物
質となるニトリルは、通常のニトリル、例えばアセトニ
トリル、プロピオニトリル、ブチロニトリル、バレロニ
トリル、カプロニトリル。
In this method, the nitrile that reacts with boron trichloride to become a nonvolatile substance is a common nitrile, such as acetonitrile, propionitrile, butyronitrile, valeronitrile, capronitrile.

アククロニトリル、クロロアセトニトリル、ベンゾニト
リル、フエエルア奄トニトリル、P−メ?ルペンゾニト
リル、P−メトオキシベンゾニトリル、P−りr:10
ベンゾニトリル、P−ニトロベンゾニトリル、フタロニ
トリル、イソ7タロニトリル、サクシノニトリル、ゲル
タロニトリル、アジポニトリル等であり、いずれも有効
に使用出来る。
Accuronitrile, chloroacetonitrile, benzonitrile, fueruasatonitrile, P-Me? Lupenzonitrile, P-methoxybenzonitrile, P-rir: 10
These include benzonitrile, P-nitrobenzonitrile, phthalonitrile, iso7talonitrile, succinonitrile, geltalonitrile, adiponitrile, and any of them can be used effectively.

また、ハイシリカゼオライトとは、S1/A4(%ル比
、以下同じ)が1.5より大きいゼオライトをいう。S
t/Ag:17〜1.2の人聾ゼオライト、Si/AI
l:1〜1.5のX型ゼオライトは、8iH,(J。
Moreover, high silica zeolite refers to a zeolite with an S1/A4 (% ratio, the same hereinafter) larger than 1.5. S
t/Ag: 17-1.2 deaf zeolite, Si/AI
The X-type zeolite with l:1 to 1.5 is 8iH, (J.

が酸性のため、結晶構造が破壊されるので使用出来ない
It cannot be used because it is acidic and the crystal structure is destroyed.

ハイシリカゼオライトとしては、例えばY型ゼオライト
:I虹/Ag:1.5〜3、ユニオン昭和製JE−15
P  Si、/A41:AM、/−)y社111ゼオa
:i  St/Ag:5、東洋曹達製Moldemit
+s系TSZ  Si/Ad:9.3、等が市販サレテ
イるO ハイシリカゼオライトにニトリルを担持させるには、溶
媒にニトリルを溶解した溶液にハイシリ・カゼオライド
を浸漬した後溶媒を除去する一般的手法で行なわれる。
Examples of high-silica zeolite include Y-type zeolite: I-niji/Ag: 1.5-3, Union Showa JE-15
P Si, /A41:AM, /-)Y company 111 Zeo a
:i St/Ag: 5, Moldemit manufactured by Toyo Soda
+s-based TSZ Si/Ad:9.3, etc. are commercially available.In order to support nitrile on high-silica zeolite, a general method is to immerse the high-silica caseolide in a solution in which nitrile is dissolved in a solvent, and then remove the solvent. It will be held in

しかし、水分が僅か存在した状態で31)(t (J’
tを接触させると、分解してHClを発生し、また固形
物によって配管が閉塞する。
However, 31)(t (J'
When it comes into contact with t, it decomposes and generates HCl, and the pipes are clogged by the solids.

この際、ハイシリカゼオライトにニトリルを担持させた
後、完全脱水しようとすると、担持したニトリルが一部
揮散するので、溶媒、ハイシリカゼオライトは完全に脱
水乾燥したものを用いなければならない。
At this time, if a high silica zeolite is supported on a nitrile and then completely dehydrated, a portion of the supported nitrile will volatilize, so the solvent and the high silica zeolite must be completely dehydrated and dried.

アセトンはニトリルのよい溶媒であるが、水分を吸収し
易いため、あらかじめ充分脱水しておいても、担持させ
る操作中に再び水を吸収してしまう。したがって、溶媒
としては水と溶解しあわない塩素化炭化水素、例えばク
ロロホルム、塩化メチレン、四塩化炭素、ジクロロエタ
ン、トリクロロエチレン等が好適に使用される。
Although acetone is a good solvent for nitriles, it easily absorbs water, so even if it is sufficiently dehydrated in advance, it will absorb water again during the supporting operation. Therefore, as the solvent, chlorinated hydrocarbons that are insoluble in water, such as chloroform, methylene chloride, carbon tetrachloride, dichloroethane, and trichloroethylene, are preferably used.

ジクロロシラン中、ホウ素化合物は三塩化ホウ素(B(
1,)の形をなしている。B(1,はHa pニー10
7°C,bp:12.5°Cで沸点は5111.C6゜
に近く、ボンベ入81H2Cgtを気化導出したガス中
の濃度は、液中の濃度とほぼ同じで、通常100〜20
0m111b程度であり、これを上記吸着筒に通すこと
によって、Bとして(以下同じ) 1 ppb以下とす
ることが出来る。
In dichlorosilane, the boron compound is boron trichloride (B(
1,). B(1, is Ha p knee 10
7°C, bp: 12.5°C and the boiling point is 5111. The concentration in the gas obtained by vaporizing 81H2Cgt in a cylinder, which is close to C6°, is almost the same as the concentration in the liquid, usually 100 to 20
By passing this through the adsorption cylinder, the B content can be reduced to 1 ppb or less (the same applies hereinafter).

次に実施列、比較例を示して本発明の詳細な説明する。Next, the present invention will be explained in detail by showing examples and comparative examples.

〔実施例1〕 あらかじめ、無水硫酸ソーダを投入して充分脱水シたク
ロロホルムtoOmjKサクシノニトリル:4.2!i
を溶解し、これにJE−15p(ユニオン昭和製)の漬
インチペレット:4,2.9(JE−157の約10w
t%)を投入した。これをロータリーエバポレーターに
いれ、常温で2時間浸漬しこの間ゆっくり口伝攪拌した
。ついで減圧下、50°Cでクロロホルムを全量とばし
、乾固したのち、21uIy5の吸着筒に146vrv
tL (50cTA)充填した。
[Example 1] Chloroform to OmjK succinonitrile, which was sufficiently dehydrated by adding anhydrous sodium sulfate in advance: 4.2! i
Dissolve and add soaked inch pellets of JE-15p (manufactured by Union Showa): 4.2.9 (approximately 10w of JE-157) to this solution.
t%) was added. This was placed in a rotary evaporator and immersed at room temperature for 2 hours, during which time it was slowly stirred by mouth. Next, the entire amount of chloroform was evaporated at 50°C under reduced pressure, and after drying, 146vrv was added to a 21uIy5 adsorption cylinder.
tL (50 cTA) was loaded.

一方SiH,C1l、にBCfk5vrt%となルヨう
に添加し、これをH・で希釈し、StH* (Jt :
1、OXl 0 mol/l 、BC/3  : 47
X10moしτの混合ガスを調製した。このガスを上記
吸着筒に室温、3 y : 18 o h” ”t’通
り、出cl/X中)T3C4゜等を分析した0分析には
ガスクロマトグラフ法及びアルカリ溶液捕集I CP 
(#溝結合高周波プラズマ)法(Sl、nの分析)を併
用した。両法の値はよく一致した。
On the other hand, BCfk5vrt% was added to SiH, C1l, diluted with H, and StH* (Jt:
1, OXl 0 mol/l, BC/3: 47
A mixed gas of X10mo and τ was prepared. This gas was transferred to the above adsorption cylinder at room temperature, and analyzed for T3C4°, etc. (3y: 18 oh"t' street, exit Cl/X). For analysis, gas chromatography and alkali solution collection ICP
(#groove-coupled high-frequency plasma) method (analysis of Sl, n) was used in combination. The values of both methods were in good agreement.

結果を第2図および第1表に示す。図中C,C0は、そ
れぞれ出口、入口における5iHs C1* aB(1
,の濃度、■は通過したガスの容量、voは吸着剤の容
量である。
The results are shown in FIG. 2 and Table 1. In the figure, C and C0 are 5iHs C1*aB(1
, the concentration of , ■ is the volume of gas passed through, and vo is the volume of adsorbent.

図より明かたように、最初は初期吸着によりSiH!(
Jtも吸着してしまうが、800ベッドボリウムC以下
B、Vと記す、V/V、)付近より流出し始める。その
後12500B、VまでB(J。
As is clear from the figure, SiH! (
Although Jt is also adsorbed, it begins to flow out from around 800 bed volume C or below (denoted as B, V, V/V). After that, 12500B, B (J.

は検出されなかった。すなわち、8oo〜12500B
、V間はBcls’に含まなイS i)% C1@が得
られる。なお、破過点12までのB Ce m吸着量は
B(J、・82り/1 fi・吸着剤であった。
was not detected. That is, 8oo~12500B
, V is not included in Bcls'. In addition, the amount of B Ce m adsorbed up to breakthrough point 12 was B(J,·82 ri/1 fi·adsorbent).

〔実施例2〕 SiH,(J、にBC#、を12wt%となるように添
加し、これをH・で希釈してSiH,(J、 :tOX
l 0−” mol/J 、 B Cg@  : 1.
2X10−%ol/Jの混合ガスな調製し、これを−2
11EIIIOの吸着筒に88萌L(30cra)充填
して用いた外は、実施例1と全く同じにして行なった。
[Example 2] BC# was added to SiH, (J, to a concentration of 12 wt%, and this was diluted with H to form SiH, (J, :tOX
l 0-” mol/J, B Cg@: 1.
Prepare a mixed gas of 2X10-% ol/J and add this to -2
The procedure was carried out in exactly the same manner as in Example 1, except that 88 L (30 cra) of 11EIIIO was filled into an adsorption cylinder.

結果を第1表に示す。The results are shown in Table 1.

〔実施例3〕 8LH,C1l、にBCI、を110wtPPとなるよ
うに添加した希釈しないガスを、サクシノニトリ#10
wt%担持したJE−15−pを17顎ダの吸着筒に1
001L充填して流した外は実施例1と同じよう忙して
B(1,の除去を行なった。この際、StH,CeRの
凝縮を防ぐため、ガス貯留器、各配管を40°C程度に
加温しガスが安定して流れるようにした。結果を第1表
に示す。
[Example 3] An undiluted gas containing 8LH, C1l, and BCI added to 110wtPP was added to Succinonitri #10.
JE-15-p loaded with wt% was added to a 17-jaw adsorption tube.
After filling and flushing 001L, B(1) was removed in a busy manner as in Example 1. At this time, in order to prevent condensation of StH and CeR, the gas reservoir and each piping were heated to about 40°C. It was heated to ensure a stable gas flow.The results are shown in Table 1.

第1表より明かたように、BCI3の吸着量は、実施例
2. 1. 3の順に低下しているが、これは、ガス中
のB(1,濃度が高い程BC(1,が多(吸着されるこ
と、SLH,Cl*の濃度が高い程、その吸着量が多く
なり、B(1,の吸着量を低下させること、およびBe
ら/81H,C(1m +B(Js  f)大きい程B
(1,の吸着量が増加すること、など一般吸着の吸着能
傾向に従うためと思料する。
As is clear from Table 1, the amount of BCI3 adsorbed in Example 2. 1. This is because the higher the concentration of B(1) in the gas, the more BC(1) is adsorbed; the higher the concentration of SLH, Cl*, the more , reducing the adsorption amount of B(1, and Be
/81H,C(1m +B(Js f) The larger the B
(This is thought to be due to the adsorption capacity trend of general adsorption, such as an increase in the adsorption amount of 1).

したがって、取扱いを容易にし、運転時間を大幅に短縮
するため及びガスクロマトグラフィによる分析を答易く
するため不活性ガスで希釈し、B(Jm /5tl−I
、 CI!、 +B(J、を大ぎくしても、同一条件で
運転を行えば、吸着剤の優劣の比較は可能である。
Therefore, in order to facilitate handling, significantly shorten operating time, and facilitate analysis by gas chromatography, B(Jm/5tl-I) was diluted with an inert gas.
, CI! , +B(J), it is possible to compare the superiority of adsorbents as long as they are operated under the same conditions.

B(1,0分析法は、トリフェニルクロロメタン((C
IHa )s CCII )のトリクロロメタン(CI
(Jl)溶液に81ルCJ*を接触させ、BCe、を不
揮発成分として捕集し、S1為C6,、CHCら を放
散除去した後有機物を分解しICP法によりBを検出し
た。この分析法は、サンプル2001において、Bとし
て1 ppbまでを再現よく分析出来る。
B(1,0 analysis method is triphenylchloromethane ((C
Trichloromethane (CI
(Jl) solution was brought into contact with 81 CJ*, BCe was collected as a nonvolatile component, S1, C6, CHC, etc. were dissipated and removed, the organic matter was decomposed, and B was detected by ICP method. This analysis method can analyze up to 1 ppb of B in sample 2001 with good reproducibility.

〔実施例4,5、比較例1〜3〕 実施例4は、アジポニトリルを使用したもの、実施例5
は、比較例と比較するためB(J〆stHcg*−83
(J、を大き(したもの、比較例1,2は担体として活
性炭、シリカゲルを使用したもの、比較例3は、BCg
、捕集剤としてニトリル以外のトリフェニルクロルメタ
ンを使用したものである。結果を第2表に示す。
[Examples 4 and 5, Comparative Examples 1 to 3] Example 4 uses adiponitrile, Example 5
B(J〆stHcg*-83
Comparative Examples 1 and 2 used activated carbon and silica gel as carriers, Comparative Example 3 used BCg
, using triphenylchloromethane other than nitrile as a scavenger. The results are shown in Table 2.

〔効果〕〔effect〕

以上述べたように本発明に係るS LH* Cll*の
精製方法は、Si、I%CIl*に対して安定で、吸着
力の高いハイシリカゼオライトにニトリルを担持させた
吸着剤を用い、これにボンベより気化導出したホウ素化
合物を含有した5iHIC/lを、常温、常圧下で接触
通過させるのみで、半導体シリコン製造用として充分な
程度にホウ素化合物が除宏されるので、装置、操作が簡
単で、効率のよい精製を可能とする優れた方決である。
As described above, the method for purifying S LH* Cll* according to the present invention uses an adsorbent in which nitrile is supported on high-silica zeolite, which is stable and has high adsorption power for Si and I% CIl*. By simply passing 5iHIC/l containing a boron compound vaporized from a cylinder under normal temperature and pressure, the boron compound is removed to a sufficient extent for semiconductor silicon production, making the equipment and operation simple. This is an excellent method that enables efficient purification.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法を実施する装置の一例を示す図
、第2図は、吸着筒出口成分の経時変化を示す図である
。 1・・・・・・ボンベ、2・・・・・・マス7a−コン
トローラー、3・・・・・・ニトリル担持したハイシリ
カゼオライト、4・・・・・・吸着筒、6・・・・・・
寒剤、7・・・・・・捕集器、8・・・・・・回収器、
8&・・・・・・出口ライン、9・・・・・・高純度S
 iH* C6,10・・・・・・不活性ガス、12・
・・・・・破過点、C・・・・・・吸着筒出口濃度、C
0・・・・・・吸着筒入口濃度、■・・・・・・通過ガ
ス量、vo・・・・・・吸着剤容量。
FIG. 1 is a diagram showing an example of an apparatus for carrying out the method of the present invention, and FIG. 2 is a diagram showing changes over time in the components at the outlet of the adsorption column. 1...Cylinder, 2...Mass 7a-controller, 3...Nitrile-supported high silica zeolite, 4...Adsorption cylinder, 6...・・・
Cryogen, 7...Collection device, 8...Collection device,
8 &... Exit line, 9... High purity S
iH* C6,10...Inert gas, 12.
... Breakthrough point, C ... Adsorption cylinder outlet concentration, C
0...adsorption cylinder inlet concentration, ■...passing gas amount, vo...adsorbent capacity.

Claims (1)

【特許請求の範囲】[Claims] ジクロロシランを気相状態でニトリルを担持したハイシ
リカゼオライトと接触せしめ、含有するホウ素化合物を
除去することを特徴とするジクロロシランの精製法。
1. A method for purifying dichlorosilane, which comprises bringing dichlorosilane into contact with a high silica zeolite supporting nitrile in a gas phase to remove contained boron compounds.
JP3834385A 1985-02-27 1985-02-27 Dichlorosilane purification method Expired - Lifetime JPH0688772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3834385A JPH0688772B2 (en) 1985-02-27 1985-02-27 Dichlorosilane purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3834385A JPH0688772B2 (en) 1985-02-27 1985-02-27 Dichlorosilane purification method

Publications (2)

Publication Number Publication Date
JPS61197415A true JPS61197415A (en) 1986-09-01
JPH0688772B2 JPH0688772B2 (en) 1994-11-09

Family

ID=12522636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3834385A Expired - Lifetime JPH0688772B2 (en) 1985-02-27 1985-02-27 Dichlorosilane purification method

Country Status (1)

Country Link
JP (1) JPH0688772B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057242A (en) * 1987-03-24 1991-10-15 Novapure Corporation Composition, process, and apparatus, for removal of water and silicon mu-oxides from chlorosilanes
JP2011500489A (en) * 2007-10-20 2011-01-06 エボニック デグサ ゲーエムベーハー Removal of dissimilar metals from inorganic silanes
WO2011024276A1 (en) 2009-08-27 2011-03-03 電気化学工業株式会社 Method for purifying chlorosilane
JP2012511529A (en) * 2008-12-11 2012-05-24 エボニック デグサ ゲーエムベーハー Purification of silicon compounds
CN102701216A (en) * 2012-06-19 2012-10-03 中国恩菲工程技术有限公司 Impurity removing method for dichlorosilane
CN102701217A (en) * 2012-06-19 2012-10-03 中国恩菲工程技术有限公司 Impurity removing equipment for dichlorosilane

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057242A (en) * 1987-03-24 1991-10-15 Novapure Corporation Composition, process, and apparatus, for removal of water and silicon mu-oxides from chlorosilanes
JP2011500489A (en) * 2007-10-20 2011-01-06 エボニック デグサ ゲーエムベーハー Removal of dissimilar metals from inorganic silanes
JP2012511529A (en) * 2008-12-11 2012-05-24 エボニック デグサ ゲーエムベーハー Purification of silicon compounds
WO2011024276A1 (en) 2009-08-27 2011-03-03 電気化学工業株式会社 Method for purifying chlorosilane
KR20120090990A (en) 2009-08-27 2012-08-17 덴끼 가가꾸 고교 가부시키가이샤 Method for purifying chlorosilane
JP5513511B2 (en) * 2009-08-27 2014-06-04 電気化学工業株式会社 Purification method of chlorosilane
CN102701216A (en) * 2012-06-19 2012-10-03 中国恩菲工程技术有限公司 Impurity removing method for dichlorosilane
CN102701217A (en) * 2012-06-19 2012-10-03 中国恩菲工程技术有限公司 Impurity removing equipment for dichlorosilane

Also Published As

Publication number Publication date
JPH0688772B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
US5051117A (en) Process for removing gaseous contaminating compounds from carrier gases containing halosilane compounds
CN107848796B (en) Hydrogen recovery system and hydrogen separation and recovery method
JP2001342566A (en) CVD thin film forming process and CVD thin film manufacturing apparatus
TWI544957B (en) Method for purification of off-gas and device for the same
JP2002255542A (en) Method for purifying gas for semiconductor
CN101107196B (en) Refining method of disilicon hexachloride and high-purity disilicon hexachloride
JP5617956B2 (en) Method for producing high purity boron trichloride
JPS61197415A (en) Purification of dichlorosilane
CS227317B2 (en) Method of preparing hydrogen cyanide
JPH0353017B2 (en)
CN108745295B (en) A kind of siloxane adsorption material and its application
US6033460A (en) Reactive matrix for removing moisture from a fluorine containing gas and process
US6790419B1 (en) Purification of gaseous inorganic halide
JPS641405B2 (en)
EP0714849B1 (en) Production process for refined hydrogen iodide
SU1161157A1 (en) Method of cleaning gases from mercury
CN101327930A (en) Application of Anhydrous Magnesium Chloride in Silane Purification
JP2796754B2 (en) Mercury removal from liquid hydrocarbons
JPH01132535A (en) Concentration of acetylene gas
CN101597069A (en) A kind of purification method of ammonia gas
JPS6278116A (en) Purification of arsine
JP3512285B2 (en) Method for producing purified hydrogen iodide
JPH0710339B2 (en) Carbon monoxide adsorbent
JPS62258388A (en) Method for purifying organometallic compound
Tolmachev et al. Adsorption techniques for fine purification of substances for microelectronics and optics