JPS627060B2 - - Google Patents
Info
- Publication number
- JPS627060B2 JPS627060B2 JP57103614A JP10361482A JPS627060B2 JP S627060 B2 JPS627060 B2 JP S627060B2 JP 57103614 A JP57103614 A JP 57103614A JP 10361482 A JP10361482 A JP 10361482A JP S627060 B2 JPS627060 B2 JP S627060B2
- Authority
- JP
- Japan
- Prior art keywords
- container
- layer
- stretch
- film
- evoh
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 claims description 39
- 235000014171 carbonated beverage Nutrition 0.000 claims description 29
- 229920006257 Heat-shrinkable film Polymers 0.000 claims description 16
- 230000004888 barrier function Effects 0.000 claims description 16
- 230000035699 permeability Effects 0.000 claims description 11
- 229920006300 shrink film Polymers 0.000 claims description 5
- 229920005992 thermoplastic resin Polymers 0.000 claims description 5
- 230000002209 hydrophobic effect Effects 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 59
- UFRKOOWSQGXVKV-UHFFFAOYSA-N ethene;ethenol Chemical compound C=C.OC=C UFRKOOWSQGXVKV-UHFFFAOYSA-N 0.000 description 37
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 37
- 238000000034 method Methods 0.000 description 37
- 239000004743 Polypropylene Substances 0.000 description 12
- 238000009820 dry lamination Methods 0.000 description 12
- 239000012790 adhesive layer Substances 0.000 description 10
- 229920000139 polyethylene terephthalate Polymers 0.000 description 10
- 239000005020 polyethylene terephthalate Substances 0.000 description 10
- 238000009792 diffusion process Methods 0.000 description 9
- 238000007765 extrusion coating Methods 0.000 description 9
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 8
- 239000005977 Ethylene Substances 0.000 description 8
- 238000004090 dissolution Methods 0.000 description 7
- 229920003023 plastic Polymers 0.000 description 7
- 239000004033 plastic Substances 0.000 description 7
- 238000007127 saponification reaction Methods 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 6
- 238000010030 laminating Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229920002292 Nylon 6 Polymers 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- -1 polypropylene Polymers 0.000 description 5
- 238000003475 lamination Methods 0.000 description 4
- 229920002635 polyurethane Polymers 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000000071 blow moulding Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010103 injection stretch blow moulding Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 239000005033 polyvinylidene chloride Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 235000016795 Cola Nutrition 0.000 description 1
- 241001634499 Cola Species 0.000 description 1
- 235000011824 Cola pachycarpa Nutrition 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 229920006226 ethylene-acrylic acid Polymers 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920000909 polytetrahydrofuran Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Details Of Rigid Or Semi-Rigid Containers (AREA)
Description
本発明は多層フイルムを被覆した炭酸飲料用延
伸ブロー容器に関するものであり、さらに詳しく
は延伸ブロー容器の胴部周囲全面又は、肩上部か
ら底部にかかる胴部周囲全面に、疎水性熱可塑性
樹脂(以下、TPと略称する)の層(以下TP層と
略称する)とエチレン−ビニルアルコール共重合
体(以下EVOHと略称する)の層(以下、EVOH
層と略称する)とを有する二層以上のCO2遮断性
に優れた多層熱収縮フイルムを、TP層が必ず最
外層にある様にして熱収縮により密着させたこと
を特徴とする多層フイルムを被覆した炭酸飲料用
延伸ブロー容器に関するものである。
近年、ブロー成形法の進歩に伴い、ポリプロピ
レン(以下、PPと略称する)製延伸ブロー容
器、ポリエチレンテレフタレート(以下、PET
と略称する)製延伸ブロー容器が食品包装用に使
用されており、特に従来ガラス容器で占められて
いた(コーラ類の)炭酸飲料容器分野において
は、PET延伸ブロー容器が主流を占めようとし
ているのが現状である。しかしながらPET及び
PP延伸ブロー容器には、透明性、耐落下衝撃
性、軽量性、低コスト性に優れている反面、共に
共通の欠点がある。すなわち、CO2遮断性に劣つ
ているという最大の欠点を有している為、炭酸飲
料を充填した場合、CO2が容易に容器外へ透過
し、容器内のCO2の圧力損失が大きくなるという
問題点である。さらに炭酸飲料類は、比較的長期
にわたり流通販売される為、容器内のCO2の圧力
損失の問題点は最も致命的であり、特に500ml程
度の小容量サイズの延伸ブロー容器は、内容量に
対する容器の表面積が大きくなる為、CO2の圧力
損失が大きくなりすぎ実用に供しがたいものであ
る。現状の炭酸飲料業界では、2程度の大容量
サイズの延伸ブロー容器に炭酸飲料を充填した場
合のCO2の圧力損失は、約3ケ月間で15%以内で
あることが炭酸飲料充填延伸ブロー容器の許容基
準として知られているが、十分に満足されるもの
ではなく、特に500ml程度の小容量サイズの場合
は、上記許容基準を容易に越えてしまうという問
題点がある。
本発明者等は、かかる事情に鑑み鋭意研究を重
ねた結果、2程度の大容量サイズの延伸ブロー
容器は勿論のこと500ml程度の小容量サイズの延
伸ブロー容器でも、容器内のCO2の圧力損失が少
なく、しかも流通期間が長期に延長された場合に
おいても、充分実用に供せられる炭酸飲料用延伸
ブロー容器を発明するに至つたのである。
一般に、プラスチツクの気体透過は、プラスチ
ツクで隔てられた系の濃度差、すなわち、分圧差
のある場合に、その差を無くする方向に起り、そ
の過程は、プラスチツクへの気体の溶解及び拡散
によるものであることが知られている。炭酸飲料
充填延伸ブロー容器についても同様にCO2の多量
に含んでいる炭酸飲料から延伸ブロー容器への
CO2の溶解及び拡散による透過が起る為、容器内
においてはCO2量が減少しCO2の圧力損失とな
る。又、プラスチツクに対するCO2の溶解度は、
ある一定条件下では、各プラスチツクについて一
定であることが知られている。従つて炭酸飲料充
填延伸ブロー容器においても、ある一定条件下で
は、延伸ブロー容器に対するCO2の溶解度は一定
であり、容器内においては一定のCO2の圧力損失
を示す。さらに又プラスチツクに対するCO2の拡
散係数は、ある一定条件下では各プラスチツクに
ついて一定であることが知られている。従つて、
炭酸飲料充填延伸ブロー容器においても、ある一
定条件下では延伸ブロー容器に対するCO2の拡散
係数は一定でありCO2透過量は、時間の経過と共
に増加し容器内のCO2の圧力損失は増加する。
すなわち、炭酸飲料充填延伸ブロー容器におけ
るCO2の圧力損失の過程を分析すると次の如くに
なる。
1 CO2を多量に含んでいる炭酸飲料から延伸ブ
ロー容器へのCO2の溶解が進むと共に溶解した
CO2が容器外へ透過し始める。この段階での
CO2の透過は、不定常状態でありCO2透過量が
少ない為CO2の透過は、容器内のCO2の圧力損
失にあまり関係せず、主に延伸ブロー容器への
CO2の溶解が関係する。
2 容器に対するCO2の溶解が一定値に達すると
共に、CO2の透過は大きくなり定常状態の透過
へ移行し始め、その後定常状態となる。この段
階で容器に対するCO2の溶解に起因する圧力損
失は一定となりCO2の透過に起因する圧力損失
は、時間の経過と共に大きくなる。
以上の如く、炭酸飲料充填延伸ブロー容器にお
けるCO2の圧力損失の原因としては、延伸ブロー
容器へのCO2の溶解と延伸ブロー容器からのCO2
の拡散による透過によるものであることが挙げら
れる。従つて、炭酸飲料充填延伸ブロー容器にお
けるCO2の圧力損失を防止する方法としては次の
二方法がある。
(1) 延伸ブロー容器へのCO2の溶解性を低下させ
る方法。
(2) 延伸ブロー容器からのCO2の拡散による透過
を低下させる方法。
一般に(1)を満足させれば(2)も同時に満足させる
ことの出来るものが多いのであるが、(1)又は、(1)
と(2)とを満足させる方法としては、CO2の溶解性
が低く且つ、CO2の拡散による透過の低い熱可塑
性樹脂、例えばEVOHを層成分とする多層延伸ブ
ロー容器を用いることが挙げられるが、これらの
容器は製造が困難であり、又共押出成形が必要で
非常にコストが高くなり過ぎる為実用性に乏し
く、さらに又、内層と外層との接着性に劣る場合
は、接着層も設けなければならないことから、さ
らにコストアツプにつながるという問題がある。
本発明者等は、かかる事情を考慮し、低コスト
でしかも簡便な方法で炭酸飲料延伸ブロー容器に
おけるCO2の圧力損失を小さくする方法を鋭意研
究した結果、延伸ブロー容器からのCO2の拡散に
よる透過を防止すれば、容器内のCO2の圧力損失
はほとんど延伸ブロー容器へのCO2の溶解のみに
起因するだけとなり、容器内のCO2の圧力損失を
小さくすることが出来ることを発見した。すなわ
ち、本発明者等は、延伸ブロー容器からのCO2の
拡散による透過を防止することにより容器内の
CO2の圧力損失を小さくする方法を研究した結
果、延伸ブロー容器の胴部周囲全面又は肩上部か
ら底部にかかる胴部周囲全面にCO2遮断性に優れ
た熱収縮フイルムを熱収縮で密着させる方法によ
り、CO2の拡散による透過をほとんど防止出来、
容器内のCO2の圧力損失を小さくすることの出来
ることが判明した。これは、延伸ブロー容器にお
いて、口部から肩部及び底部は比較的肉厚が厚い
為、これらの部分からのCO2透過が低く、透過し
たCO2はほとんど胴部からの透過によるものであ
ることを示していた。
尚、本発明において使用されるCO2遮断性に優
れた熱収縮フイルム用樹脂としては、EVOHが適
しているが、EVOH層は湿気の増大によりCO2遮
断性が低下する為、湿気の影響を受けない様に、
TP層が必ず最外層にある如くTP層を少なくとも
片面に積層することが必要である。
即ち、本発明は、延伸ブロー容器の胴部周囲全
面又は肩上部から底部にかかる胴部周囲全面に、
TP層とEVOH層とから成る二層以上のCO2遮断
性に優れた多層熱収縮フイルムが、熱収縮により
密着したことによりブロー容器内のCO2の圧力損
失が少ない炭酸飲料用延伸ブロー容器を提供する
ものである。
又、本発明は、炭酸飲料用延伸ブロー容器に使
用されるCO2遮断性に優れた多層熱収縮フイルム
を熱収縮により密着させる為、炭酸飲料用延伸ブ
ロー容器に対する形状適合性に優れている炭酸飲
料用延伸ブロー容器を提供するものである。
すなわち、本発明は、炭酸飲料用延伸ブロー容
器にCO2遮断性に優れた多層熱収縮フイルムを熱
収縮させるだけで密着性に優れるようになる為、
容易に製造出来るという生産性に優れているとい
う特徴を有する炭酸飲料用延伸ブロー容器を提供
するものである。
尚、本発明を実施するに際して必要に応じて
CO2遮断性に優れた多層熱収縮フイルムに印刷を
施すようにすれば、美感に優れたラベルとして使
用することもでき、美麗な商品価値の高い炭酸飲
料用延伸ブロー容器を提供することができる。即
ち、現状の延伸ブロー容器には、印刷された熱収
縮ラベルが使用されており、上記の場合は、この
熱収縮ラベルをCO2遮断性に優れた熱収縮ラベル
に変えるだけで良い為、工程変更及び設備増加の
必要性もなく、非常に簡便で且つ低コストでCO2
の圧力損失の防止を可能にするラベルとして使用
することができるものである。
ここで、胴部周囲全面に多層フイルムを被覆し
た炭酸飲料用延伸ブロー容器の断面を第1図に示
し、肩上部から底部にかかる胴部周囲全面に多層
フイルムを被覆した炭酸飲料用延伸ブロー容器の
断面を第2図に示す。又、CO2遮断性に優れた多
層熱収縮フイルムの断面を第3図〜第5図に示
す。図中、符号1は、延伸ブロー容器であり、2
は、多層熱収縮フイルムである。さらに、3は、
EVOH層、4は、TP層、5は、接着層を表す。
本発明において使用される延伸ブロー容器に
は、PET延伸ブロー容器とPP延伸ブロー容器と
があり、透明性、光沢性、剛性、等の点で、
PET延伸ブロー容器が優れている。尚、延伸ブ
ロー容器の製造方法としては、射出延伸ブロー成
形法と押出延伸ブロー成形法とが代表的であり、
その一例として射出延伸ブロー成形法について述
べると、熱可塑性樹脂から成る有底パリソンを金
型内に射出成形し、室温に冷却後延伸温度に再加
熱し、延伸ブロー成形する方法が挙げられる。
次に、本発明に使用されるCO2遮断性に優れた
多層熱収縮フイルムについて説明すると、CO2遮
断層としては、EVOH層が使用される。EVOHは
エチレン含有率20〜60モル%、ケン化度90%以上
であることが好ましくエチレン含有率が20モル%
以下であると、成形性が困難となり、エチレン含
有率が60モル%以上及びケン化度90%以下である
と、CO2遮断性が低下する為、上記範囲にあるこ
とが好ましい。さらに、CO2遮断性に優れた多層
熱収縮フイルムのCO2透過度としては、第1表に
示される如く、20c.c./m2day(30℃67%RH)以
下特に10c.c./m2day(30℃67%RH)以下である
ことが好ましい。つまりCO2透過度が20c.c./m2
day(30℃67%RH)以下の場合は、容器からの
CO2の透過を遮断し容器内のCO2の圧力損失を少
なくするという効果が大きくなつてくる為であ
る。
The present invention relates to a stretch-blown container for carbonated beverages coated with a multilayer film. More specifically, the present invention relates to a stretch-blown container for carbonated beverages coated with a multilayer film, and more specifically, a hydrophobic thermoplastic resin ( (hereinafter abbreviated as TP) layer (hereinafter abbreviated as TP layer) and a layer of ethylene-vinyl alcohol copolymer (hereinafter abbreviated as EVOH) (hereinafter abbreviated as EVOH)
A multilayer heat shrinkable film having two or more layers with excellent CO 2 barrier properties, which has two or more layers (abbreviated as ``layer''), is bonded tightly by heat shrinking so that the TP layer is always the outermost layer. The present invention relates to a coated stretch-blown container for carbonated beverages. In recent years, with advances in blow molding methods, polypropylene (hereinafter abbreviated as PP) stretch-blown containers, polyethylene terephthalate (hereinafter abbreviated as PET)
PET stretch-blown containers are used for food packaging, and especially in the field of carbonated beverage containers (for colas), which have traditionally been dominated by glass containers, PET stretch-blown containers are becoming mainstream. is the current situation. However, PET and
While PP stretch-blown containers have excellent transparency, drop impact resistance, light weight, and low cost, they both have common drawbacks. In other words, the biggest drawback is that it has poor CO 2 barrier properties, so when filled with carbonated drinks, CO 2 easily permeates outside the container, resulting in a large pressure loss of CO 2 inside the container. This is the problem. Furthermore, since carbonated beverages are distributed and sold for a relatively long period of time, the problem of pressure loss due to CO 2 inside the container is the most critical issue. Since the surface area of the container becomes large, the pressure loss of CO 2 becomes too large, making it difficult to put it into practical use. In the current carbonated beverage industry, the CO 2 pressure loss when filling a carbonated beverage into a stretch-blown container with a large capacity of about 2 is within 15% over a period of approximately 3 months. However, it is not fully satisfied, and there is a problem that the above-mentioned tolerance standard is easily exceeded, especially in the case of a small volume size of about 500 ml. The inventors of the present invention have conducted extensive research in light of the above circumstances, and have found that not only stretch-blown containers with a large capacity of about 2,000 ml, but also stretch-blown containers with a small capacity of about 500 ml can reduce the CO 2 pressure inside the container. They have succeeded in inventing a stretch-blown container for carbonated beverages that causes little loss and can be put to practical use even if the distribution period is extended over a long period of time. In general, gas permeation through plastic occurs in the direction of eliminating the concentration difference, that is, partial pressure difference, in a system separated by plastic, and this process is due to the dissolution and diffusion of gas into the plastic. It is known that Similarly, regarding stretch-blown containers filled with carbonated beverages, carbonated beverages that contain a large amount of CO 2 are transferred to stretch-blown containers.
Since permeation occurs due to dissolution and diffusion of CO 2 , the amount of CO 2 decreases inside the container, resulting in a pressure loss of CO 2 . Also, the solubility of CO 2 in plastic is
It is known that under certain conditions it is constant for each plastic. Therefore, even in a stretch blow container filled with carbonated beverages, under certain conditions, the solubility of CO 2 in the stretch blow container is constant, and the pressure loss of CO 2 within the container is constant. Furthermore, it is known that the diffusion coefficient of CO 2 to plastics is constant for each plastic under certain conditions. Therefore,
Even in stretch-blown containers filled with carbonated beverages, under certain conditions, the diffusion coefficient of CO 2 to the stretch-blown container remains constant, and the amount of CO 2 permeation increases over time, resulting in an increase in the pressure loss of CO 2 inside the container. . That is, an analysis of the process of CO 2 pressure loss in a stretch-blow container filled with carbonated beverages reveals the following. 1. CO 2 from a carbonated beverage containing a large amount of CO 2 was dissolved as it progressed into a stretched blow container.
CO 2 begins to permeate out of the container. at this stage
Since the permeation of CO 2 is in an unsteady state and the amount of CO 2 permeation is small, the permeation of CO 2 is not significantly related to the pressure loss of CO 2 in the container, and is mainly due to the flow into the stretch blow container.
It involves the dissolution of CO2 . 2 As the dissolution of CO 2 in the container reaches a certain value, the permeation of CO 2 increases and begins to shift to steady state permeation, which then becomes steady state. At this stage, the pressure loss caused by the dissolution of CO 2 in the container becomes constant, and the pressure loss caused by the permeation of CO 2 increases with the passage of time. As mentioned above, the causes of CO 2 pressure loss in a stretch-blown container filled with carbonated beverages are the dissolution of CO 2 into the stretch-blown container and the CO 2 from the stretch-blown container.
One example is that this is due to permeation due to diffusion. Therefore, there are the following two methods for preventing CO 2 pressure loss in a stretch blow container filled with carbonated beverages. (1) A method of reducing the solubility of CO 2 in a stretch blow container. (2) A method of reducing permeation by diffusion of CO 2 from a stretch blow container. Generally, if (1) is satisfied, (2) can also be satisfied in many cases, but (1) or (1)
A method to satisfy (2) is to use a multilayer stretch blow container whose layer component is a thermoplastic resin that has low CO 2 solubility and low permeability due to CO 2 diffusion, such as EVOH. However, these containers are difficult to manufacture, require coextrusion, and are extremely costly, making them impractical.Furthermore, if the adhesiveness between the inner and outer layers is poor, the adhesive layer may also be difficult to manufacture. There is a problem in that this further increases the cost since it has to be provided. Taking these circumstances into consideration, the inventors of the present invention have conducted intensive research on a low-cost and simple method for reducing the pressure loss of CO 2 in stretch-blown containers for carbonated beverages. It was discovered that if the permeation of CO 2 in the container was prevented, the pressure loss of CO 2 in the container would be caused only by the dissolution of CO 2 into the stretch-blow container, and the pressure loss of CO 2 in the container could be reduced. did. That is, the present inventors have discovered that by preventing the permeation of CO 2 from a stretch blow container due to diffusion, the inside of the container can be improved.
As a result of researching ways to reduce CO 2 pressure loss, we decided to heat-shrink a heat-shrinkable film with excellent CO 2 barrier properties to the entire area around the body of a stretch-blow container, or from the top of the shoulder to the bottom. This method can almost prevent CO 2 from permeating through diffusion.
It has been found that the pressure loss of CO 2 inside the container can be reduced. This is because the stretch blow container has relatively thick walls from the mouth to the shoulders and bottom, so CO 2 permeation from these parts is low, and most of the permeated CO 2 comes from the body. It showed that. Note that EVOH is suitable as the resin for the heat-shrinkable film with excellent CO 2 barrier properties used in the present invention, but the CO 2 barrier properties of the EVOH layer decrease with increased humidity, so it is difficult to avoid the effects of moisture. So as not to accept it,
It is necessary to laminate the TP layer on at least one side so that the TP layer is always the outermost layer. That is, the present invention provides for the entire area around the body of a stretch blow container or the entire area around the body from the top of the shoulder to the bottom.
A stretch blow container for carbonated beverages with low pressure loss of CO 2 inside the blow container because the multilayer heat shrinkable film with excellent CO 2 barrier properties, consisting of two or more layers consisting of a TP layer and an EVOH layer, is tightly bonded through heat shrinkage. This is what we provide. In addition, the present invention uses a multilayer heat-shrinkable film with excellent CO 2 barrier properties used in stretch-blown containers for carbonated beverages to adhere tightly through heat shrinkage. A stretch-blown beverage container is provided. That is, the present invention provides excellent adhesion by simply heat-shrinking a multilayer heat-shrinkable film with excellent CO 2 barrier properties to a stretch-blow container for carbonated beverages.
The object of the present invention is to provide a stretch-blown container for carbonated beverages that is easy to manufacture and has excellent productivity. In addition, when carrying out the present invention, if necessary,
By printing on a multilayer heat-shrinkable film with excellent CO 2 barrier properties, it can be used as a label with excellent aesthetic appeal, making it possible to provide a stretch-blown container for carbonated beverages that is beautiful and has high commercial value. . In other words, printed heat-shrinkable labels are currently used for stretch-blown containers, and in the above case, it is only necessary to change the heat-shrinkable labels to heat-shrinkable labels that have excellent CO 2 barrier properties, making the process easier. There is no need to change or increase equipment, and it is very simple and low-cost to reduce CO 2
It can be used as a label to prevent pressure loss. FIG. 1 shows a cross section of a stretch-blown container for carbonated beverages in which the entire circumference of the body is covered with a multilayer film. A cross section of is shown in Fig. 2. Further, cross-sections of a multilayer heat-shrinkable film with excellent CO 2 barrier properties are shown in FIGS. 3 to 5. In the figure, numeral 1 is a stretch blow container, 2
is a multilayer heat shrink film. Furthermore, 3 is
The EVOH layer, 4 represents the TP layer, and 5 represents the adhesive layer. The stretch-blown containers used in the present invention include PET stretch-blown containers and PP stretch-blown containers, which have the following characteristics in terms of transparency, gloss, rigidity, etc.
PET stretch-blown containers are superior. In addition, typical methods for manufacturing stretch blow containers include injection stretch blow molding method and extrusion stretch blow molding method.
An example of the injection stretch blow molding method is a method in which a bottomed parison made of a thermoplastic resin is injection molded into a mold, cooled to room temperature, then reheated to the stretching temperature, and stretch blow molded. Next, the multilayer heat-shrinkable film with excellent CO 2 barrier properties used in the present invention will be explained. As the CO 2 barrier layer, an EVOH layer is used. EVOH preferably has an ethylene content of 20 to 60 mol% and a degree of saponification of 90% or more, preferably an ethylene content of 20 mol%.
If it is below, moldability becomes difficult, and if the ethylene content is 60 mol % or more and the degree of saponification is 90% or less, the CO 2 barrier property decreases, so it is preferably within the above range. Furthermore, as shown in Table 1, the CO 2 permeability of a multilayer heat-shrinkable film with excellent CO 2 blocking properties is 20 c.c./m 2 day (30°C, 67% RH) or less, especially 10 c.c. /m 2 day (30°C, 67%RH) or less. In other words, the CO 2 permeability is 20 c.c./m 2
day (30℃67%RH) or less, the
This is because the effect of blocking the permeation of CO 2 and reducing the pressure loss of CO 2 inside the container becomes greater.
【表】
伸ブロー容器使用
さらに又、CO2透過度が20c.c./m2day(30℃67
%RH)以下である為には、EVOH層の厚みは2
μ以上あれば良いが成形加工性、製膜均一性及び
実用性の面から3〜20μの範囲が良好である。
一方、本発明に使用されるTPとしては、ポリ
エチレン、PP、ポリブテン−1、エチレン−プ
ロピレン共重合体、エチレン−酢酸ビニル共重合
体、エチレン−アクリル酸共重合体、エチレン−
アクリル酸エステル共重合体、アイオノマー等の
ポリオレフイン系樹脂、ポリスチレン、耐衝撃性
ポリスチレン、アクリロニトリル−ブタジエン−
スチレン三元共重合体等のポリスチレン系樹脂、
ポリ塩化ビニリデン、塩化ビニル−塩化ビニリデ
ン共重合体、アクリロニトリル−塩化ビニリデン
共重合体、アクリル酸エステル−塩化ビニリデン
共重合体等のポリ塩化ビニリデン系樹脂、ポリ塩
化ビニル、塩化ビニルと他のビニル系単量体との
共重合体等のポリ塩化ビニル系樹脂、PET、ポ
リブチレンテレフタレート、エチレングリコール
及びシクロヘキサンジメタノールとテレフタル酸
との脱水縮合物、ジメチルテレフタレートとポリ
テトラメチレンエーテルグリコールとのエステル
交換物等のポリエステル系樹脂、ナイロン−6、
ナイロン6.6等のポリアミド系樹脂、さらにポリ
カーボネート系樹脂等があり、これらの単独又は
二種以上の混合物が挙げられる。又、これらの
TPには滑剤、酸化防止剤、帯電防止剤、紫外線
吸収剤、着色剤等の添加剤が必要に応じて添加さ
れる。さらに又、TP層とEVOH層との間に接着
層を必要に応じて、設けることが出来る。従つ
て、構成としてはTP層/EVOH層、TP層/接着
層/EVOH層、TP層/EVOH層/TP層、TP
層/接着層/EVOH層/接着層/TP層が挙げら
れる。接着層は、多層熱収縮フイルムの製造方法
により異なり、ドライラミネート法の場合は、例
えば、二液反応型ポリウレタン系接着剤が使用さ
れ、その他押出ラミネート用アンカーコーテイン
グ剤が使用されるが、共押出成形の場合は、無水
マレイン酸グラフト変性ポリオレフイン類、エチ
レン−酢酸ビニル共重合体部分ケン化物類が使用
される。
次に本発明において使用される多層熱収縮フイ
ルムの熱収縮性に関して説明すると、熱収縮性を
有するのはEVOH層であつても良く、TP層であ
つても良く、又は両層が共に熱収縮性を有してい
ても良く多層熱収縮フイルムが100℃5秒間の熱
風中で縦方向(以下MDと称す)が3〜30%、好
ましくは5〜15%、横方向(以下TDと称す)が
10〜50%好ましくは20〜40%の熱収縮性を有する
ことが、延伸ブロー容器への形状適合性の点で望
ましい。そのフイルムの製造方法としては、公知
の方法により一軸又は二軸延伸されたEVOHに
TPを押出コーテイング又はドライラミネート法
により積層する方法、さらに該積層物のEVOH面
にTPを押出コーテイング又はドライラミネート
法により積層する方法、又は公知の方法により一
軸又は二軸延伸されたTPにEVOHを押出コーテ
イング又はドライラミネート法により積層する方
法、さらに該積層物のEVOH面にTPを押出コー
テイング又はドライラミネート法により積層する
方法、又は一軸延伸されたEVOHにTPを押出コ
ーテイング又はドライラミネート法により積層
後、他方向に延伸する方法、さらに該積層物の
EVOH面にTPを押出コーテイング又はドライラ
ミネート法により積層する方法、又は一軸延伸さ
れたTPにEVOHを押出コーテイング又は、ドラ
イラミネート法により積層後、他方向に延伸する
方法、さらに該積層物のEVOH面にTPを押出コ
ーテイング又は、ドライラミネート法により積層
する方法、又、EVOHとTPとから成る二層以上
の未延伸積層物を共押出法又はドライラミネート
法により作成し、その後公知の方法で一軸又は二
軸延伸する方法等があり、特に限定されるもので
はないが、経済性を考慮すると共押出による積層
延伸が望ましい。
又、本発明における多層熱収縮フイルムの形状
としては、円筒状フイルム及びフラツト状フイル
ムがあるが、外観、強度の点からは円筒状フイル
ムが望ましい。しかし円筒状フイルムの場合は、
印刷に難点がある為、フラツト状フイルムに印刷
後、シールする方法が採られる。又そのシール方
法としては、熱板シール、インパルスシール、溶
断シール、高周波シール、超音波シール等の他、
粘着テープ円筒状にする方法もあり、さらにシー
ル形態としては、合掌シール、封筒貼りシール、
合い紙を入れてシールする形態が挙げられるが、
作業性及び外観的には、封筒貼りシールが望まし
い。従つて、多層熱収縮フイルムの構成として
は、TP層/EVOH層/TP層又は、TP層/接着
層/EVOH層/接着層/TP層の構成が望まし
い。しかし、ナイロン−6とEVOHとの組み合わ
せの場合は、相互熱融着性が優れている為、二層
構成でも封筒貼りシール性及び美感に優れた封筒
貼りシールが可能である。このようにして、作成
された円筒状の多層熱収縮フイルムを、熱収縮後
において、延伸ブロー容器の肩上部から底部にか
かる胴部周囲全面に適合する様に裁断し、これを
容器の胴部にかぶせ、シユリンクトンネル内へ送
入し、熱収縮で密着させることにより本発明の多
層フイルムを被覆した炭酸飲料用延伸ブロー容器
が製造される。
以上の如く、本発明は、CO2遮断性に優れてい
る多層熱収縮フイルムを現状にて使用されている
熱収縮ラベルの代りに使用することにより、容器
内のCO2の圧力損失を防止出来、且つ工程変更及
び設備増加の必要性も無い為非常に簡便で、しか
も低コストで使用出来るという利点を有しており
炭酸飲料業界に与える意義は、極めて大きいもの
である。
以下、実施例について説明する。
実施例 1
ナイロン−6層、10μ厚み/エチレン含有率33
モル%、ケン化度99%のEVOH層、10μ厚みにな
る様にチユーブラー法により共押出積層延伸を行
い、EVOH面に印刷を施し、全体層20μの多層フ
イルムを作成した。この多層フイルムの熱収縮率
は100℃の熱風中5秒間でMD:10%、TD:20%
であり、CO2透過度は4.1c.c./m2day(30℃67%
RH)であつた。この多層フイルムを使用して、
EVOH面が、内面になる様に、且つ、PET延伸
ブロー容器径よりも少し大きめの径になる様に封
筒貼りシールを行い、熱収縮後において、内容積
500ml胴部肉厚0.4mmのPET延伸ブロー容器の肩上
部から底部にかかる胴部周囲全面に適合する様
に、円筒状フイルムを一定長さに裁断し、これを
容器の胴部にかぶせ100℃のシユリンクトンネル
内へ5秒間送入し熱収縮により密着させた。この
容器に100mlの水を充填し容器内のCO2圧力が2.8
Kg/cm2になる様にCO2を封入し30℃で3ケ月及び
6ケ月間保存した。3ケ月後の容器内CO2の圧力
損失は8.5%であり6ケ月後の圧力損失は9.1%で
あつた。
実施例 2
ナイロン−6層、10μ厚み/エチレン含有率33
モル%、ケン化度99%のEVOH層5μ厚み/ナイ
ロン−6層10μ厚みになる様に、チユーブラー法
により共押出積層延伸を行い、ナイロン−6面に
印刷を施し、全体層25μの多層フイルムを作成し
た。この多層フイルムの熱収縮率は、100℃の熱
風中5秒間でMD:14%、TD:25%であり、CO2
透過度は7.3c.c./m2day(30℃67%RH)であつ
た。
以下、実施例1と同様に実施した。
3ケ月後のCO2の圧力損失は9.2%であり、6
ケ月後の圧力損失は9.8%であつた。
実施例 3
PP層8μ厚み/無水マレイン酸変性PP層2μ
厚み/エチレン含有率33モル%、ケン化度99%の
EVOH層5μ厚み/無水マレイン酸変性PP層2
μ厚み/PP層8μ厚みになる様にチユーブラー
法により共押出積層延伸を行い、PP面に印刷を
施し、全体層25μの多層フイルムを作成した。こ
の多層フイルムの熱収縮率は、100℃の熱風中
MD:12%、TD:23%であり、CO2透過度は2.8
c.c./m2day(30℃67%RH)であつた。
以下、実施例1と同様に実施した。
3ケ月後のCO2の圧力損失は6.9%であり、6
ケ月後の圧力損失は7.4%であつた。
実施例 4
チユーブラー法により二軸延伸したエチレン含
有率33モル%、ケン化度99%のEVOH層10μ厚み
のフイルムに印刷を施し、両側に二液反応型ポリ
ウレタン系アンカーコーテイング層を介して低密
度ポリエチレンをそれぞれ15μ厚みに押出コーテ
イングし、全体層40μの多層フイルムを作成し
た。この多層フイルムを熱収縮率は、100℃の熱
風中、5秒間でMD:11%、TD:23%であり、
CO2透過度は1.3c.c./m2day(30℃67%RH)であ
つた。
以下、実施例1と同様に実施した。
3ケ月後のCO2の圧力損失は6.3%であり、6
ケ月後の圧力損失は6.6%であつた。
実施例 5
チユーブラー法により二軸延伸した10μ厚みの
PPフイルムに印刷を施し、印刷面に二液反応型
ポリウレタン系アンカーコーテイングを行い、エ
チレン含有率33モル%、ケン化度99%のEVOHを
10μ厚みに押出コーテイングし、その後EVOH面
に10μ厚みの二軸延伸PPフイルムをドライラミ
ネート法により積層させ、全体層30μの多層フイ
ルムを作成した。この多層フイルムの熱収縮率
は、100℃の熱風中5秒間でMD:14%、TD:25
%であり、CO2透過度は3.2c.c./m2day(30℃67%
RH)であつた。
以下、実施例1と同様に実施した。
3ケ月後のCO2の圧力損失は7.3%であり、6
ケ月後の圧力損失は7.8%であつた。
比較例
チユーブラー法により二軸延伸したナイロン−
6、15μ厚みのフイルムに印刷を施し、両側に二
液反応型ポリウレタン系アンカーコーテイング層
を介して低密度ポリエチレンをそれぞれ15μ厚み
に押出コーテイングし、全体層45μの多層フイル
ムを作成した。この多層フイルムの熱収縮率は、
100℃の熱風中で、5秒間でMD:15%、TD:24
%であり、CO2透過度は96c.c./m2day(30℃67%
RH)であつた。
以下、実施例1と同様に実施した。
3ケ月後のCO2の圧力損失は17.8%であり、6
ケ月後の圧力損失は25.3%であつた。[Table] Use of stretch blow container Furthermore, CO 2 permeability is 20c.c./m 2 day (30℃67
%RH), the thickness of the EVOH layer must be 2.
It is good if it is at least μ, but a range of 3 to 20 μ is preferable from the viewpoints of molding processability, uniformity of film formation, and practicality. On the other hand, the TP used in the present invention includes polyethylene, PP, polybutene-1, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-
Acrylic acid ester copolymers, polyolefin resins such as ionomers, polystyrene, impact-resistant polystyrene, acrylonitrile-butadiene-
Polystyrene resins such as styrene terpolymer,
Polyvinylidene chloride resins such as polyvinylidene chloride, vinyl chloride-vinylidene chloride copolymer, acrylonitrile-vinylidene chloride copolymer, acrylic acid ester-vinylidene chloride copolymer, polyvinyl chloride, vinyl chloride and other vinyl monomers Polyvinyl chloride resins such as copolymers with polymers, PET, polybutylene terephthalate, dehydrated condensates of ethylene glycol and cyclohexanedimethanol with terephthalic acid, transesterified products of dimethyl terephthalate and polytetramethylene ether glycol, etc. polyester resin, nylon-6,
Examples include polyamide resins such as nylon 6.6, and polycarbonate resins, and these may be used alone or as a mixture of two or more. Also, these
Additives such as lubricants, antioxidants, antistatic agents, ultraviolet absorbers, and colorants are added to the TP as necessary. Furthermore, an adhesive layer can be provided between the TP layer and the EVOH layer, if necessary. Therefore, the composition is TP layer/EVOH layer, TP layer/adhesive layer/EVOH layer, TP layer/EVOH layer/TP layer, TP layer
layer/adhesive layer/EVOH layer/adhesive layer/TP layer. The adhesive layer differs depending on the manufacturing method of the multilayer heat-shrinkable film; in the case of dry lamination, for example, a two-component reactive polyurethane adhesive is used, and other anchor coating agents for extrusion lamination are used, but coextrusion In the case of molding, maleic anhydride graft-modified polyolefins and partially saponified ethylene-vinyl acetate copolymers are used. Next, to explain the heat shrinkability of the multilayer heat shrinkable film used in the present invention, the heat shrinkable layer may be the EVOH layer, the TP layer, or both layers may be heat shrinkable. The multilayer heat shrinkable film may have a property of 3 to 30% in the longitudinal direction (hereinafter referred to as MD), preferably 5 to 15% in the transverse direction (hereinafter referred to as TD) in hot air at 100°C for 5 seconds. but
It is desirable to have a heat shrinkability of 10 to 50%, preferably 20 to 40%, from the viewpoint of conformability to a stretch blow container. The film is manufactured using EVOH that has been uniaxially or biaxially stretched by a known method.
A method of laminating TP by extrusion coating or dry lamination, a method of laminating TP on the EVOH side of the laminate by extrusion coating or dry lamination, or a method of laminating EVOH on TP that has been uniaxially or biaxially stretched by a known method. A method of laminating by extrusion coating or dry lamination method, a method of laminating TP on the EVOH side of the laminate by extrusion coating or dry lamination method, or a method of laminating TP on uniaxially stretched EVOH by extrusion coating or dry lamination method. , a method of stretching in other directions, and a method of stretching the laminate in another direction.
A method in which TP is laminated on the EVOH surface by extrusion coating or dry lamination, or a method in which EVOH is laminated on uniaxially stretched TP by extrusion coating or dry lamination and then stretched in the other direction, and the EVOH surface of the laminate is laminated in the other direction. TP is laminated by extrusion coating or dry lamination, or an unstretched laminate of two or more layers of EVOH and TP is created by coextrusion or dry lamination, and then uniaxial or dry lamination is performed by a known method. There are methods such as biaxial stretching, which are not particularly limited, but in consideration of economic efficiency, lamination stretching by coextrusion is preferable. Further, the shape of the multilayer heat-shrinkable film in the present invention includes a cylindrical film and a flat film, but a cylindrical film is preferable from the viewpoint of appearance and strength. However, in the case of a cylindrical film,
Since printing is difficult, a method is used that prints on a flat film and then seals it. In addition, the sealing methods include hot plate seals, impulse seals, fusing seals, high frequency seals, ultrasonic seals, etc.
There is also a method of making adhesive tape into a cylindrical shape, and there are also other sticker forms such as gassho stickers, envelope stickers,
One example is inserting a sheet of paper and sealing it.
In terms of workability and appearance, envelope stickers are preferable. Therefore, the structure of the multilayer heat-shrinkable film is preferably TP layer/EVOH layer/TP layer or TP layer/adhesive layer/EVOH layer/adhesive layer/TP layer. However, in the case of a combination of nylon-6 and EVOH, they have excellent mutual thermal adhesion, so even with a two-layer structure, envelope stickers with excellent envelope pasting properties and aesthetic appearance are possible. After heat shrinking, the cylindrical multilayer heat shrink film thus created is cut to fit the entire circumference of the body from the upper shoulder to the bottom of the stretched blow container. A stretch-blown container for carbonated beverages coated with the multilayer film of the present invention is manufactured by placing the container over the container, feeding it into a shrink tunnel, and bonding it tightly by heat shrinking. As described above, the present invention makes it possible to prevent CO 2 pressure loss inside the container by using a multilayer heat shrink film with excellent CO 2 barrier properties in place of the currently used heat shrink labels. Moreover, since there is no need to change the process or increase equipment, it has the advantage of being extremely simple and low-cost to use, and its significance to the carbonated beverage industry is extremely large. Examples will be described below. Example 1 Nylon - 6 layers, 10μ thickness/ethylene content 33
An EVOH layer with mol% and saponification degree of 99% was coextruded and laminated and stretched using the tubular method to a thickness of 10μ, and printing was applied to the EVOH surface to create a multilayer film with a total thickness of 20μ. The heat shrinkage rate of this multilayer film is MD: 10%, TD: 20% in hot air at 100℃ for 5 seconds.
The CO 2 permeability is 4.1cc/m 2 day (30℃67%
RH). Using this multilayer film,
Paste and seal the envelope so that the EVOH surface becomes the inner surface and the diameter is slightly larger than the diameter of the PET stretched blow container, and after heat shrinking, the inner volume will be reduced.
A cylindrical film was cut to a certain length so as to fit the entire circumference of the body from the top of the shoulder to the bottom of a 500ml PET stretch blow container with a body wall thickness of 0.4 mm.The film was placed over the body of the container and heated at 100℃. The material was introduced into the Shrink tunnel for 5 seconds and bonded tightly by heat shrinkage. Fill this container with 100ml of water and the CO 2 pressure inside the container will be 2.8
CO 2 was sealed at a concentration of kg/cm 2 and stored at 30°C for 3 and 6 months. The pressure loss of CO 2 in the container after 3 months was 8.5%, and the pressure loss after 6 months was 9.1%. Example 2 Nylon - 6 layers, 10μ thickness/ethylene content 33
A multilayer film with a total thickness of 25μ is obtained by co-extrusion lamination and stretching using the tubular method so that the EVOH layer with mole% and saponification degree of 99% is 5μ thick and the nylon 6 layer is 10μ thick.The 6 sides of the nylon are printed. It was created. The heat shrinkage rate of this multilayer film is MD: 14%, TD: 25% in 100℃ hot air for 5 seconds, and CO 2
The permeability was 7.3 cc/m 2 day (30°C, 67% RH). The following steps were carried out in the same manner as in Example 1. The CO 2 pressure loss after 3 months was 9.2%, 6
The pressure loss after several months was 9.8%. Example 3 PP layer 8μ thick/maleic anhydride modified PP layer 2μ
Thickness/ethylene content 33 mol%, saponification degree 99%
EVOH layer 5μ thickness/maleic anhydride modified PP layer 2
Coextrusion lamination and stretching was carried out using the tubular method so that the thickness was μ/PP layer 8μ, and printing was applied to the PP surface to create a multilayer film with a total thickness of 25μ. The heat shrinkage rate of this multilayer film in hot air at 100℃ is
MD: 12%, TD: 23%, CO2 permeability is 2.8
cc/m 2 day (30°C, 67%RH). The following steps were carried out in the same manner as in Example 1. The pressure loss of CO 2 after 3 months was 6.9%, 6.
The pressure loss after several months was 7.4%. Example 4 A 10μ thick EVOH layer with an ethylene content of 33 mol% and a saponification degree of 99% was biaxially stretched by the tubular method, and a low density film was coated with a two-component reactive polyurethane anchor coating layer on both sides. Polyethylene was extrusion coated to a thickness of 15μ to create a multilayer film with a total thickness of 40μ. The heat shrinkage rate of this multilayer film is MD: 11% and TD: 23% in 5 seconds in hot air at 100°C.
The CO 2 permeability was 1.3 cc/m 2 day (30°C, 67% RH). The following steps were carried out in the same manner as in Example 1. The pressure loss of CO 2 after 3 months is 6.3%, 6
The pressure loss after several months was 6.6%. Example 5 A 10μ thick film biaxially stretched by the tubular method.
Printing is performed on PP film, a two-component reactive polyurethane anchor coating is applied to the printed surface, and EVOH with an ethylene content of 33 mol% and a saponification degree of 99% is applied.
Extrusion coating was performed to a thickness of 10μ, and then a 10μ thick biaxially stretched PP film was laminated on the EVOH surface by dry lamination to create a multilayer film with a total thickness of 30μ. The heat shrinkage rate of this multilayer film is MD: 14%, TD: 25 in hot air at 100℃ for 5 seconds.
%, and the CO 2 permeability is 3.2cc/m 2 day (30℃67%
RH). The following steps were carried out in the same manner as in Example 1. The pressure loss of CO 2 after 3 months was 7.3%, 6
The pressure loss after several months was 7.8%. Comparative example Nylon biaxially stretched by tubular method
6. A 15μ thick film was printed and extrusion coated with low density polyethylene to a thickness of 15μ on both sides via a two-component reactive polyurethane anchor coating layer to create a multilayer film with a total thickness of 45μ. The heat shrinkage rate of this multilayer film is
MD: 15%, TD: 24 in 5 seconds in hot air at 100℃
%, and the CO 2 permeability is 96c.c./m 2 day (30℃67%
RH). The following steps were carried out in the same manner as in Example 1. The CO 2 pressure loss after 3 months was 17.8%, 6
The pressure loss after several months was 25.3%.
第1図及び第2図は本発明の実施例にかかる多
層フイルムを被覆した炭酸飲料用延伸ブロー容器
の断面図であり、第3〜5図は本発明の実施例に
おいて使用される多層熱収縮フイルムの断面図で
ある。
1……延伸ブロー容器、2……多層熱収縮フイ
ルム、3……EVOH層、4……TP層、5……接
着層。
1 and 2 are cross-sectional views of a stretch blow container for carbonated beverages coated with a multilayer film according to an embodiment of the present invention, and FIGS. 3 to 5 are multilayer heat-shrinkable containers used in an embodiment of the present invention. FIG. 3 is a cross-sectional view of the film. 1...Stretch blow container, 2...Multilayer heat shrink film, 3...EVOH layer, 4...TP layer, 5...Adhesive layer.
Claims (1)
から底部にかかる胴部周囲全面に、疎水性熱可塑
性樹脂層とエチレン−ビニルアルコール共重合体
層とを有する二層以上のCO2遮断性に優れた多層
熱収縮フイルムを、前記疎水性熱可塑性樹脂層が
最外層にある様にして熱収縮により密着させたこ
とを特徴とする多層フイルムを被覆した炭酸飲料
用延伸ブロー容器。 2 多層熱収縮フイルムのCO2透過度が20c.c./m2
day(30℃、67%RH)以下であることを特徴と
する特許請求の範囲第1項記載の多層フイルムを
被覆した炭酸飲料用延伸ブロー容器。[Claims] 1. Two or more layers comprising a hydrophobic thermoplastic resin layer and an ethylene-vinyl alcohol copolymer layer on the entire circumference of the body of the stretch blow container or on the entire circumference of the body from the top of the shoulder to the bottom. A stretch blow for carbonated beverages coated with a multilayer film, characterized in that the multilayer heat shrinkable film with excellent CO 2 barrier properties is adhered by heat shrinking with the hydrophobic thermoplastic resin layer being the outermost layer. container. 2 CO 2 permeability of multilayer heat shrink film is 20 c.c./m 2
A stretch blow container for carbonated beverages coated with the multilayer film according to claim 1, characterized in that the temperature is less than 1 day (30° C., 67% RH).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10361482A JPS591352A (en) | 1982-06-15 | 1982-06-15 | Stretched blow vessel for aerated drink coated with multilayer film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10361482A JPS591352A (en) | 1982-06-15 | 1982-06-15 | Stretched blow vessel for aerated drink coated with multilayer film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS591352A JPS591352A (en) | 1984-01-06 |
JPS627060B2 true JPS627060B2 (en) | 1987-02-14 |
Family
ID=14358647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10361482A Granted JPS591352A (en) | 1982-06-15 | 1982-06-15 | Stretched blow vessel for aerated drink coated with multilayer film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS591352A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8186301B2 (en) | 2005-05-27 | 2012-05-29 | Kirin Beer Kabushiki Kaisha | Apparatus for manufacturing gas barrier plastic container, method for manufacturing the container, and the container |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4573596A (en) * | 1983-10-08 | 1986-03-04 | Plastipak Packaging, Inc. | Plastic container with vapor barrier |
JPS6162824U (en) * | 1984-09-28 | 1986-04-28 | ||
JPH0228188Y2 (en) * | 1984-11-07 | 1990-07-30 | ||
JPH0344668Y2 (en) * | 1985-01-08 | 1991-09-19 | ||
JPS61132243U (en) * | 1985-02-06 | 1986-08-18 | ||
JPH0235649Y2 (en) * | 1985-12-09 | 1990-09-27 | ||
WO1996001184A1 (en) * | 1994-07-05 | 1996-01-18 | Mitsui Petrochemical Industries, Ltd. | Multilayer laminate and use |
JPH0743634U (en) * | 1994-10-24 | 1995-09-05 | プラスチパック パッケージング インコーポレーテッド | Plastic container with fluid shield label |
CA2523239A1 (en) * | 2003-04-25 | 2004-11-11 | Masayuki Kashimura | Heat-shrinkable layered film and package made with the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS48733U (en) * | 1971-05-21 | 1973-01-08 |
-
1982
- 1982-06-15 JP JP10361482A patent/JPS591352A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS48733U (en) * | 1971-05-21 | 1973-01-08 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8186301B2 (en) | 2005-05-27 | 2012-05-29 | Kirin Beer Kabushiki Kaisha | Apparatus for manufacturing gas barrier plastic container, method for manufacturing the container, and the container |
Also Published As
Publication number | Publication date |
---|---|
JPS591352A (en) | 1984-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6312772B1 (en) | Multilayer laminate formed from a substantially stretched non-molten wholly aromatic liquid crystalline polymer and non-polyester thermoplastic polymer | |
US6268026B1 (en) | Multilayer laminate formed from a substantially stretched non-molten wholly aromatic liquid crystalline polymer and non-liquid crystalline polyester and method for forming same | |
US4919984A (en) | Multilayer plastic container | |
US4879177A (en) | Monoaxially oriented shrink film | |
US4911963A (en) | Multilayer film containing amorphous nylon | |
CA1258614A (en) | Process for applying copolyester barrier layer on polyester container | |
US4764403A (en) | Multilayer biaxially oriented heat set articles | |
US4894267A (en) | Blow-molded plastic bottle with barrier structure for food packages | |
EP0229715A2 (en) | Multilayered polyolefin high shrinkage low-shrink force shrink film | |
EP0207719A2 (en) | Oxygen barrier oriented film | |
US5232754A (en) | Barrier label for beverage bottle | |
JPS627060B2 (en) | ||
JPS63218352A (en) | Laminating structure | |
US4938683A (en) | Monoaxially oriented shrink film | |
US4675219A (en) | Process for drawing plastic laminates | |
JPH062505B2 (en) | Plastic container having multilayer label and method of manufacturing the same | |
JP3998798B2 (en) | In-mold labeling container | |
JPH04232048A (en) | ethylene propylene terpolymer film | |
JP2003237753A (en) | In-mold label and container therewith | |
AU646144B2 (en) | High abuse ionomer bag | |
JPS61259944A (en) | Oriented multilayer plastic bottle and manufacture thereof | |
JPH0460830B2 (en) | ||
JPH01153444A (en) | Hollow container | |
JPS63214446A (en) | Polypropylene laminated heat shrinkable film | |
JPS6040989B2 (en) | resin laminate |