[go: up one dir, main page]

JPS6266675A - Mos type semiconductor device - Google Patents

Mos type semiconductor device

Info

Publication number
JPS6266675A
JPS6266675A JP20684685A JP20684685A JPS6266675A JP S6266675 A JPS6266675 A JP S6266675A JP 20684685 A JP20684685 A JP 20684685A JP 20684685 A JP20684685 A JP 20684685A JP S6266675 A JPS6266675 A JP S6266675A
Authority
JP
Japan
Prior art keywords
channel
substrate
drain
gate
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20684685A
Other languages
Japanese (ja)
Inventor
Takeya Ezaki
豪弥 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20684685A priority Critical patent/JPS6266675A/en
Publication of JPS6266675A publication Critical patent/JPS6266675A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve saturating characteristic and to readily form an ultrafine channel by forming a channel doped region which arrives at a low specific resistance substrate in an inverted wedge shape in the channel. CONSTITUTION:A P<-> type layer 11 is epitaxially grown on a P<+> type low specific resistance substrate 10 to form a substrate 1. In this case, B is doped in the layer 11 to form a channel doped region 71 which arrives at the substrate 10 in an inverted wedge shape. Then, an insulating film SiO2 film is laminated on the surface, a gate 3 is further laminated, and with the gate 3 as a mask a source 4 and a drain 5 are formed by implanting arsenic, thereby forming an MOS semiconductor device. The resistance from the channel of the surface to the substrate is reduced by the shape of the region 71 to readily discharge holes generated by avalanche to suppress a potential rise and to suppress the expansion of a drain depleted layer toward the source in the substrate, thereby enhancing saturating characteristic of a drain current. The channel length is specified by the region 71 of this shape to readily form an ultrafine channel.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はMOS型半導体装置に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a MOS type semiconductor device.

従来の技術 MOS型半導体の微細化は、写真蝕刻法の進歩に支えら
れている。実際チャネル長の短縮はゲートパターン巾の
縮小化によって達成されてきている。しかし、それ以上
に短縮化を図るため別の手段を用いることも研究されて
いる。収束イオンビー A (Focused  Io
n  B@am :以下FIB と略す)によるチャネ
ル形成がその一例である〔ジャパニーズ ジャーナル 
オプ アプライド フィジックス(Japanese 
JournaJ of Applied Physic
s)Vol、23(j984)L543 、)。その断
面図を第3図に示す。リース4・ドレイン5間にマスク
レスでB(ボロン)を注入し戸領域7を形成した。
BACKGROUND OF THE INVENTION The miniaturization of MOS type semiconductors has been supported by advances in photolithography. In fact, shortening of the channel length has been achieved by reducing the width of the gate pattern. However, research is also being conducted into using other means to shorten the time even further. Focused Io A
An example of this is channel formation by nB@am (hereinafter abbreviated as FIB) [Japanese Journal
Op Applied Physics (Japanese)
Journal of Applied Physics
s) Vol, 23(j984)L543,). A sectional view thereof is shown in FIG. B (boron) was injected between the lease 4 and the drain 5 without a mask to form a door region 7.

ボロンのビーム径は約0.2μmで、ドースはlX10
”Cl1lE−2であった。戸領域7の巾、すなわちB
の分布で実効チャネル長を規定しようとするものである
The boron beam diameter is approximately 0.2 μm, and the dose is lX10
"Cl11E-2.The width of door area 7, that is, B
This is an attempt to define the effective channel length using the distribution of .

発明が解決しようとする問題点 上記従来例は短チヤネル形成の有力な手段であるが、ド
レイン近傍での7バランシエにより発生する正孔がP+
領域7内に吸い込まれそこの電位を高めるので、ドレイ
ン電流が増大する正帰還を起こしていた。
Problems to be Solved by the Invention The above conventional example is an effective means of forming a short channel, but the holes generated by the 7-balance near the drain are P+
Since it is sucked into the region 7 and increases the potential there, positive feedback occurs in which the drain current increases.

このため、領和領域のドレイン抵抗rp(三avD/θ
ID )が小さく、増巾器の利得が低い(論理回路では
、インバータ波形整形能力が低い)という実用上の問題
があった。
Therefore, the drain resistance rp (3avD/θ
There was a practical problem that ID) was small and the gain of the amplifier was low (in a logic circuit, the inverter waveform shaping ability was low).

本発明は高い飽和特性を持つ微細チャネル長のMO8型
半導体装置を提供することを目的とするものである。
An object of the present invention is to provide an MO8 type semiconductor device with a fine channel length and high saturation characteristics.

、問題点を解決するための手段 本発明は、上記問題点を解決するための手段として、チ
ャネル内に逆くさび形で、低比抵抗基板に達したチャネ
ルドープ領域を設ける。
, Means for Solving the Problems In the present invention, as a means for solving the above-mentioned problems, an inverted wedge-shaped channel doped region is provided in the channel and reaches the low resistivity substrate.

作  用 この逆くさび形チャネルドープ領域は、表面近傍では0
.1〜0.2μmと細くても、基板内部では広いので、
表面のチャネルから基板までの抵抗が小さく、アパラ/
シエによ・り発生する正孔が容易に放電される。すなわ
ち、チャネルドープ領域の電位浮上りが抑制される。
Effect: This inverted wedge-shaped channel doped region has zero near the surface.
.. Even if it is as thin as 1 to 0.2 μm, it is wide inside the board, so
The resistance from the surface channel to the substrate is small, making it possible to
Holes generated by shearing are easily discharged. That is, potential rise in the channel doped region is suppressed.

また、その形状のため、ドレイン空乏層の基板内でのソ
ース方向への拡がりすなわち、パンチスルーが抑制され
る。この両面から、ドレイン電流の飽和特性が改善され
るのである。。
Further, due to the shape, expansion of the drain depletion layer in the substrate toward the source, that is, punch-through is suppressed. From both of these aspects, the saturation characteristics of the drain current are improved. .

説明する。第1図り本発明の第1の実施例装置の1断面
図である。
explain. FIG. 1 is a sectional view of a first embodiment of the device of the present invention.

戸基板10上に、P一層11をエプタキシャル成長させ
基板1を構成する。これには、シランSiH4の熱分解
による気相成長法や、分子線エビタキシャ/I/技術(
M B E =Moleculax BeamEpit
axiaj  technology )を用いるが、
このとき、FIBにより選択的に所望の位置にBをドー
プして逆くさび形のチャネルドープ領域71を形成する
(選択ドープエピ成長:第31回応用物理学関係連合講
演会(1984)予稿集P、eeo。
A P layer 11 is epitaxially grown on the door substrate 10 to form the substrate 1. For this purpose, vapor phase growth method using thermal decomposition of silane SiH4 and molecular beam epitaxy/I/technology (
M B E =Moleculax Beam Epit
axiaj technology) is used, but
At this time, B is selectively doped at a desired position by FIB to form an inverted wedge-shaped channel doped region 71 (selective doped epi-growth: 31st Applied Physics Conference (1984) Proceedings P, eeo.

宮内他)。Miyauchi et al.).

表面を熱酸化して10nm厚のSiO□膜2を成長させ
、その上にポリシリコンのゲート3を形成する。n層型
のソース4・ドレイン5をゲート3をマスクとした砒素
注入(ドース3 X 10” tx−2)により形成す
る。このとき、ゲート3はn層型になる。なお3層6は
ソース・ドレインとチャネルドープ領域間の電界を緩和
するための領域で、ゲート醸化の前に砒素注入(ドース
1o12〜10” cm−2)して形成する。
The surface is thermally oxidized to grow a 10 nm thick SiO□ film 2, and a polysilicon gate 3 is formed thereon. The n-layer type source 4 and drain 5 are formed by arsenic implantation (dose 3 x 10" tx-2) using the gate 3 as a mask. At this time, the gate 3 becomes an n-layer type. Note that the third layer 6 is the source - A region for relaxing the electric field between the drain and channel doped regions, formed by arsenic implantation (dose 1012 to 10" cm-2) before gate formation.

実効チャネル長Leff Id、図示されている如く、
チャネルドープ領域の5t−1102界面における巾で
規定されている。このL@ffは、FIBの最小ビーム
径程度になし得るから0.1μという、現状の写真蝕刻
法では困難な微細化がなされる。
Effective channel length Leff Id, as shown,
It is defined by the width at the 5t-1102 interface of the channel doped region. Since this L@ff can be made to be about the minimum beam diameter of FIB, it is possible to achieve a fineness of 0.1 μ, which is difficult to achieve with the current photolithography method.

チャネルドープ領域71の不純物濃度は、表面近傍では
閾値から決まるが、基板内部では抵抗を下げるため製法
上許容される値まで高濃度にドープする方がよい。
The impurity concentration of the channel doped region 71 is determined by the threshold near the surface, but in order to lower the resistance inside the substrate, it is better to dope it to a high concentration to a value allowed by the manufacturing method.

第2図に本発明の他の実施例を示す。第1図との違いは
、逆くさび形チャネルドープ領域が表面に達せず、距離
tabだけ離れているところにある。
FIG. 2 shows another embodiment of the invention. The difference from FIG. 1 is that the inverted wedge-shaped channel doped region does not reach the surface, but is separated by a distance tab.

この場合でも閾値Vt>o すなわちエンハンスメント
型になし得る。それは、ゲート3と基板との仕事函数差
φMSが、基板表面を空乏化する向き(nチャネルに対
して%s >O、Pチャネルに対してφMs<O)  
である場合に、チャネル厚みt。hとn層の濃度を適宜
設定すれば良い。第1図を表面チャネル型とすると第2
図はいわゆる埋込チャネル型に相当する。なお、ここで
言うP+基板10は、基板の一部、例えば相補型MOS
のPウェルの底面に選択的に形成された1拡散層であっ
てもよい。
Even in this case, the threshold value Vt>o, that is, the enhancement type can be used. This is due to the direction in which the work function difference φMS between the gate 3 and the substrate depletes the substrate surface (%s > O for n-channel, φMs < O for P-channel).
If , the channel thickness t. The concentrations of the h and n layers may be set appropriately. If Fig. 1 is a surface channel type, the second
The figure corresponds to a so-called buried channel type. Note that the P+ substrate 10 referred to here refers to a part of the substrate, for example, a complementary MOS
It may also be one diffusion layer selectively formed on the bottom of the P-well.

発明の効果 本発明は、以上述べたごとく、逆くさび形のチャネルド
ープ領域によりチャネル長を規定しているため、微細な
チャネル形成が容易であると共に、aチャネル領域から
基板内部への抵抗が低くチャネルドープ領域の電位浮上
りが小さいこととb基板内部ではチャネルドープ領域の
巾が広いので、基板内でのドレインソース間パンチスル
ーが起こシ難いことにより、飽和特性が優れている(ド
レイン抵抗が高い)。これは高密度大規模集積回路にお
いて、高感度増巾器やパルス波形整形回路の構成にとっ
て重要な効果である。
Effects of the Invention As described above, in the present invention, since the channel length is defined by the inverted wedge-shaped channel doped region, it is easy to form a fine channel, and the resistance from the a-channel region to the inside of the substrate is low. Since the potential rise in the channel doped region is small and the width of the channel doped region is wide inside the b-substrate, punch-through between the drain and source within the substrate is difficult to occur, resulting in excellent saturation characteristics (drain resistance is low). expensive). This is an important effect for the construction of high-sensitivity amplifiers and pulse waveform shaping circuits in high-density, large-scale integrated circuits.

本発明では、この様な効果が、ソース・ドレイン拡散層
の容景増大を伴なっていないということも特徴である。
Another feature of the present invention is that such an effect is not accompanied by an increase in the appearance of the source/drain diffusion layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるMOS型半導体装置
の断面図、第2図は本発明の他の実施例の断面図、第3
図は従来例の断面図である。 10・・・・・・戸基板、11・・・・・・P−エピタ
キシャル層、2・・・・・・Sio2.3・・・−・・
ゲート、4,6・・・・・・ソース・ドレイン、e・・
・・・・n層、71・・・・・・チャネルドープ領域。
FIG. 1 is a cross-sectional view of a MOS type semiconductor device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of another embodiment of the present invention, and FIG.
The figure is a sectional view of a conventional example. 10...Door substrate, 11...P-epitaxial layer, 2...Sio2.3...-
Gate, 4, 6... Source/drain, e...
. . . n layer, 71 . . . channel doped region.

Claims (1)

【特許請求の範囲】[Claims] 少なくともその一部が低比抵抗層である一導電型半導体
基板と、前記基板表面にゲート絶縁膜を介して設けられ
たゲートと、前記ゲートの両端に形成された二導電型の
ソース・ドレインと、前記ソース・ドレイン間を接続せ
るための二導電型の低濃度層と、表面に近づく程その巾
が減少する逆くさび形であって表面あるいはその近傍か
ら前記低比抵抗層に接する深さにわたって形成され前記
リース・ドレイン間に位置する一導電型高濃度領域を含
んで成るMOS型半導体装置。
a semiconductor substrate of one conductivity type, at least a part of which is a low resistivity layer; a gate provided on the surface of the substrate via a gate insulating film; and a source/drain of two conductivity types formed at both ends of the gate. , a biconductivity type low concentration layer for connecting the source and drain, and an inverted wedge shape whose width decreases as it approaches the surface, extending from the surface or the vicinity to the depth where it contacts the low resistivity layer. A MOS type semiconductor device comprising a high concentration region of one conductivity type formed and located between the lease and drain.
JP20684685A 1985-09-19 1985-09-19 Mos type semiconductor device Pending JPS6266675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20684685A JPS6266675A (en) 1985-09-19 1985-09-19 Mos type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20684685A JPS6266675A (en) 1985-09-19 1985-09-19 Mos type semiconductor device

Publications (1)

Publication Number Publication Date
JPS6266675A true JPS6266675A (en) 1987-03-26

Family

ID=16530024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20684685A Pending JPS6266675A (en) 1985-09-19 1985-09-19 Mos type semiconductor device

Country Status (1)

Country Link
JP (1) JPS6266675A (en)

Similar Documents

Publication Publication Date Title
US5320974A (en) Method for making semiconductor transistor device by implanting punch through stoppers
US4737471A (en) Method for fabricating an insulated-gate FET having a narrow channel width
JP3462301B2 (en) Semiconductor device and manufacturing method thereof
KR910000929B1 (en) Metal Oxide Semiconductor Field Effect Transistor
US6930361B2 (en) Semiconductor device realizing characteristics like a SOI MOSFET
US5557129A (en) Semiconductor MOSFET device having a shallow nitrogen implanted channel region
US5014108A (en) MESFET for dielectrically isolated integrated circuits
US4737469A (en) Controlled mode field effect transistors and method therefore
JPS61160975A (en) MOS field effect transistor
JPS60226185A (en) Semiconductor device
JPH02203566A (en) Mos type semiconductor device
JPS5893279A (en) Manufacturing method of semiconductor device
US6380036B1 (en) Semiconductor device and method of manufacturing the same
JPS60247974A (en) semiconductor equipment
JP3221901B2 (en) Semiconductor device
JPS6266675A (en) Mos type semiconductor device
JPS6025028B2 (en) Manufacturing method of semiconductor device
JPH04127537A (en) Manufacture of mosfet
JP3017838B2 (en) Semiconductor device and manufacturing method thereof
JP3194921B1 (en) Method of manufacturing raised strap structure MOS transistor
JPH06112478A (en) Semiconductor device and manufacture thereof
JP3426587B2 (en) Semiconductor device and manufacturing method thereof
JPS6141150B2 (en)
EP0051134B1 (en) Field effect transistor circuit arrangements
JPS6153773A (en) Semiconductor device and production thereof