JPS6262164A - Adsorption type heat pump - Google Patents
Adsorption type heat pumpInfo
- Publication number
- JPS6262164A JPS6262164A JP20284985A JP20284985A JPS6262164A JP S6262164 A JPS6262164 A JP S6262164A JP 20284985 A JP20284985 A JP 20284985A JP 20284985 A JP20284985 A JP 20284985A JP S6262164 A JPS6262164 A JP S6262164A
- Authority
- JP
- Japan
- Prior art keywords
- adsorption
- temperature
- activated carbon
- water
- heat pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、見かけ密度が0.1〜0.8 jl/crr
t”、気孔率が50〜90%、平均直径1〜500μm
のマクロ孔を有する網状構造活性炭を吸着剤として充填
した吸着塔と、作動媒体を入れた蒸発器及び凝縮器を連
結してなる冷却モード及び昇温モードの吸着式し一トボ
ンプに関するものであり、冷房。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention has an apparent density of 0.1 to 0.8 jl/crr.
t'', porosity 50-90%, average diameter 1-500 μm
This invention relates to an adsorption pump with a cooling mode and a heating mode, which is formed by connecting an adsorption tower filled with network-structured activated carbon having macropores as an adsorbent, and an evaporator and a condenser containing a working medium. cooling.
冷蔵、冷却等の低温分野あるいは、給湯、暖房。Low-temperature fields such as refrigeration and cooling, or hot water supply and space heating.
昇温、指熱等の高温分野に於けるエネルギーの有効利用
に広く応用出来る。It can be widely applied to the effective use of energy in high-temperature fields such as heating and finger heating.
(従来技術とその問題点)
固体@着剤を用いる@着底のケミカルヒートポンプは、
コンプレッサーなどの動力源を用いる必要がなく、駆動
エネルギーとして比較的低温度の熱エネルギーが利用出
来るなどの利点があり、シリカゲル、活性アルミナ、ゼ
オライト、活性炭等の各種吸着剤を用いたヒートポンプ
が検討されている。(Prior art and its problems) Chemical heat pumps that use solid @adhesive @bottom
Heat pumps using various adsorbents such as silica gel, activated alumina, zeolite, and activated carbon are being considered because they have the advantage of not requiring a power source such as a compressor and can use relatively low-temperature thermal energy as driving energy. ing.
これらの吸着剤は、各種の作動媒体との組合せでその吸
着特性がきまり、ヒートポンプ用吸着剤としての適合性
が評価されるが、例えば、ゼオライト−水系では、汲み
上げ温度差は大きく取れるが再生、脱着がしにくく、再
生温度を高くして、再生温度差を大きく取らなければな
らないという欠点を有しており、活性アルミナもゼオラ
イトと舶似した欠点がある。The adsorption properties of these adsorbents are determined by their combination with various working media, and their suitability as adsorbents for heat pumps is evaluated. Activated alumina has the same drawbacks as zeolite, in that it is difficult to desorb and requires a high regeneration temperature with a large difference in regeneration temperature.
また、シリカゲル−水系では、100℃以下の比較的低
い熱源によっても再生可能であるが、吸脱着量差を大き
く取れないという欠点を有している。In addition, the silica gel-water system can be regenerated by a relatively low heat source of 100° C. or less, but has the disadvantage that it cannot maintain a large difference in the amount of adsorption and desorption.
ところで、従来の活性炭は、水を作動媒体とした場合、
相対圧P/Ps (P :水蒸気分圧、Ps:水の飽和
蒸気圧)が0.6〜0.6近傍で吸着n1が大きくかわ
り、操作圧力をこの吸着」変化の大きいところをはさん
で両側に取ることにより、吸脱着を容易に行なうことが
でき、吸脱1nD1差も大きく取れるという利点を有し
ていることがわかっている。しかしながら一方で、操作
圧力が相対圧0.6〜0.6近傍と大きいので汲み上げ
温度差が小さくなるという重大な欠点を有しており、夾
用上の大きな障害となっている。By the way, when conventional activated carbon uses water as a working medium,
When the relative pressure P/Ps (P: partial pressure of water vapor, Ps: saturated vapor pressure of water) is around 0.6 to 0.6, the adsorption n1 changes significantly, and the operating pressure is adjusted across the area where this adsorption has a large change. It has been found that by providing it on both sides, adsorption and desorption can be carried out easily and the difference in 1nD1 between adsorption and desorption can be made large. However, on the other hand, it has a serious drawback in that the operating pressure is as high as a relative pressure of around 0.6 to 0.6, so the difference in pumping temperature becomes small, which is a major obstacle in its use.
また、上記の各種固体吸着剤は、通常、粉末あるいは粒
状として用いられるので、圧力損失が大きく、被吸着物
質の移動が迅速でなく、吸着塔内での吸着缶分布の偏り
が起りやすく、塔内での吸着剤の充填むらも加わり、吸
着塔内の場所による温バεの不均一や伝熱速度のばらつ
きが生じて好ましくない。In addition, since the various solid adsorbents mentioned above are usually used in powder or granular form, the pressure loss is large, the movement of the adsorbed substance is not rapid, and the distribution of adsorption cans within the adsorption tower is likely to be uneven. In addition, uneven filling of the adsorbent within the adsorption tower causes non-uniformity in the temperature ε and variations in the heat transfer rate depending on the location within the adsorption tower, which is undesirable.
X:発…町;0:目イ白太スプ4存1文→:本発明者は
、従来の@着式ヒートポンプの上記の如き欠点を改善す
べく鋭B、研究の結果本発明を率50〜90重F%、平
均直径1〜600μmのマクロ孔を有する網状構造活性
炭を吸着剤として充実した吸着塔と、作動媒体を入れた
蒸発器及び?5!縮器を連結してなる冷却モード及び昇
温モードの吸犬)式ヒートポンプである。X: Start... Town; 0: Eye White Thick Sprout 4 Existing 1 sentence →: The present inventor has developed the present invention as a result of research in order to improve the above-mentioned drawbacks of conventional @-type heat pumps. An adsorption tower filled with network-structured activated carbon having macropores of ~90 F% and an average diameter of 1 to 600 μm as an adsorbent, an evaporator containing a working medium, and an evaporator containing a working medium. 5! This is a suction type heat pump with a cooling mode and a heating mode, which is connected to a compressor.
本発明の網状構造活性炭は、従来の粉末活性炭あるいは
粒状活性炭:こ比較し次の如き優れた特長を有している
。The network activated carbon of the present invention has the following superior features compared to conventional powder activated carbon or granular activated carbon.
即ち、粒状活性炭に比べ、吸脱着速度が極めて速く、短
時間に吸脱着を完了させうる。充実塔内での吸着剤の充
用状態が均一でかつ通気性も良好であるため充#を塔内
での吸着Q分布のばらつきが少なく、従って温度分布の
むらも減少し、吸陪熱の取出しゃ、収着塔の昇温、降温
を迅速に行なうのに好適である。That is, compared to granular activated carbon, the rate of adsorption and desorption is extremely high, and adsorption and desorption can be completed in a short time. Since the filling state of the adsorbent in the packed column is uniform and the air permeability is good, there is little variation in the adsorption Q distribution within the packed column, which reduces unevenness in the temperature distribution, making it easy to extract the absorption heat. It is suitable for quickly raising and lowering the temperature of the sorption tower.
また本発明の網状構造活性炭は、その賦活方法を選択す
ることにより、ミクロ孔の細孔半径(rlの分布の極大
値がr<8A以下のほめて細かい細孔を有し、かつ、比
表面ff 500〜1000m2#程度の活性鼾とする
ことができる。In addition, by selecting the activation method, the network activated carbon of the present invention has very fine pores with a maximum value of the distribution of micropore radii (rl) of r<8A or less, and has a specific surface ff Active snoring can be about 500 to 1000 m2#.
本発明のミクロ孔とは、細孔半径r≦20 /。The micropores of the present invention have a pore radius r≦20/.
の細孔のことであり、またマクロ孔とは細孔半径r)1
00Aの細孔のことを貰う。A macropore is a pore with a pore radius r)1
I received information about the 00A pore.
さて、本うご明の駁着式ヒートポンプに用いる網状構造
活性炭を製造するための前駆体となる合成樹脂複合多孔
体は、例えば、特公昭58−54082号、特開昭57
−51109号、特開昭57−118009号等で開示
された方法、あるいはその他の公知の方法により製造す
ることができ、ポリビニルアルコール系樹脂とフェノー
ル樹脂あるいはメラミン樹脂を気孔形成材とともに反応
させ、反応終了後、気孔形成材を除去ずれはよいつ
上記の合成樹脂複合多孔体は、限定された賦活条件下で
賦活することにより細孔半径1rlの分布の極大値がT
UBAとなり、相対圧の低い鎖酸での水分吸50fよを
大きい網状構造活性炭とすることができる。Now, the synthetic resin composite porous body which is a precursor for manufacturing the network activated carbon used in Hon Ugomei's locking type heat pump is known, for example, from Japanese Patent Publication No. 58-54082 and Japanese Patent Application Laid-Open No. 57-57.
It can be produced by the method disclosed in No. 51109, JP-A-57-118009, etc., or other known methods, in which polyvinyl alcohol resin and phenol resin or melamine resin are reacted together with a pore-forming material. After the pore-forming material is removed, the above synthetic resin composite porous material is activated under limited activation conditions, so that the maximum value of the distribution of pore radius 1rl is T.
It becomes UBA, and can be made into a network-structured activated carbon with a large water absorption capacity of 50f using a chain acid with a low relative pressure.
上記の限定された賦活条件とは、水蒸気雰囲気あるいは
空気雰囲気中停の酸化性雰囲気下で700℃程度以下の
温度で賦活することである。例えば、水蒸気雰囲気中で
は500〜700℃程度の温度範囲、空気雰囲気中では
260〜500℃程度の賦活温度が適当である。賦活温
度が高過ぎると賦活後の活性炭の細孔半径が大きくなり
過ぎ、相対圧の低い領域での水分吸着量が著しく低下し
、好ましくない。The above-mentioned limited activation conditions are activation at a temperature of about 700° C. or lower in an oxidizing atmosphere such as a steam atmosphere or an air atmosphere. For example, an activation temperature range of about 500 to 700°C is appropriate in a steam atmosphere, and an activation temperature of about 260 to 500°C in an air atmosphere. If the activation temperature is too high, the pore radius of the activated carbon becomes too large, and the amount of water adsorption in the region of low relative pressure decreases significantly, which is not preferable.
通常、活性炭、シリカゲル蝉の微細な細孔を有する吸着
剤の細孔容積や細孔径分布は@素ガス。Normally, the pore volume and pore size distribution of activated carbon and silica gel adsorbents with fine pores are @ elementary gas.
エタンガス、ブタンガス等の@着等温線より求められる
。最も一般的には吸着ガスとして窒素ガスを、マタキャ
リャーガスとしてヘリウムガスを用い、液体窒素温度ま
で冷却して吸着剤の細孔への窒素ガスの吸着量と窒素分
圧の関係を求めることにより吸着等温線が得られる。It is determined from the @deposition isotherm of ethane gas, butane gas, etc. Most commonly, nitrogen gas is used as the adsorbent gas and helium gas is used as the carrier gas, and the relationship between the amount of nitrogen gas adsorbed into the pores of the adsorbent and the nitrogen partial pressure is determined by cooling the adsorbent to liquid nitrogen temperature. gives the adsorption isotherm.
吸着等温線より細孔容積及び細孔半径を求める方法とし
ては、毛管凝縮に基づ(Kelvin式が提案され、一
般的には本式に基づく解析が行なわれている。As a method for determining pore volume and pore radius from adsorption isotherms, the Kelvin equation has been proposed based on capillary condensation, and analysis based on this equation is generally performed.
P、吸着ガスが細孔に凝縮するときの飽和蒸気圧
PO?常態での吸着ガスの飽和蒸気圧
19表面張力
■、液体窒素の1分子体積
几、ガス定数
T、絶対温度
”T−+細孔のケルビン半径
細孔のケルビン半径に対しては、毛管凝縮以外の吸着に
対する補正が必要であり、例えば、樋口の単分子層吸着
量だけを補正する方法、あるいはHalsey式による
補正法等がよく用いられている。P, the saturated vapor pressure PO when the adsorbed gas condenses into the pores? Saturated vapor pressure of the adsorbed gas under normal conditions 19 Surface tension ■, 1 molecule volume of liquid nitrogen, gas constant T, absolute temperature "T - + Kelvin radius of pore For Kelvin radius of pore, other than capillary condensation For example, Higuchi's method of correcting only the monomolecular layer adsorption amount, or a correction method using the Halsey equation, etc., are often used.
毛管凝縮以外に基づ(Kelvin式の適用範囲は厳密
には゛、細孔半径20A〜800A程度といわれている
がKelvin式に替わる厳密な細孔半径1111J定
法は未だ確立されておらず、細孔半径2OA以下の領域
lこ於ても、しばしばKelvin式を適用した解析が
用いられている。本発明に於ける細孔半径及び細孔径分
布の解析は、Kelvin式をその一般的に用いられて
いる補正法と合せて適用したものである。Based on methods other than capillary condensation (Strictly speaking, the applicable range of the Kelvin formula is said to be from 20A to 800A, but a strict pore radius 1111J standard method to replace the Kelvin formula has not yet been established. Even in the region with a radius of 2OA or less, analysis using the Kelvin equation is often used.In the analysis of the pore radius and pore size distribution in the present invention, the Kelvin equation is applied to the commonly used analysis. This is applied in conjunction with the existing correction method.
さて、市販の粒状活性炭及び、本発明の網状構造活性炭
の水に対する吸着等温線の結果を@1図に示す。第1図
は20℃での測定結果を示すが、50℃及び70℃での
測定でもほぼ同一の吸着等温線が得られた。Now, the results of adsorption isotherms for water of commercially available granular activated carbon and the network activated carbon of the present invention are shown in Figure @1. Although FIG. 1 shows the measurement results at 20°C, almost the same adsorption isotherm was obtained in measurements at 50°C and 70°C.
従来、活性炭はシリカゲルやゼオライトと異なり非極性
物質であるため、第1図Aに示す如く、低相対圧下(P
/Pg ’::、 0.5以下)では水分吸着量が極め
て少ないことが知られている。しかしながら本発明者ら
は、窮状構造活性炭の組成と賦活条件を観念検討するこ
とにより細孔半径(rlの分布の極大値がr<8Aであ
り、第1図Bに示す如く低相対圧下で水分吸着量の大き
いヒートポンプ用@着剤として極めて好適な活性炭を見
い出したものである。Conventionally, activated carbon is a non-polar substance unlike silica gel or zeolite, so it has been used under low relative pressure (P) as shown in Figure 1A.
/Pg'::, 0.5 or less), it is known that the amount of water adsorption is extremely small. However, by conceptually examining the composition and activation conditions of distressed activated carbon, the present inventors found that the maximum value of the distribution of pore radius (rl) is r<8A, and as shown in Figure 1B, moisture content under low relative pressure. We have discovered activated carbon that has a large adsorption capacity and is extremely suitable as an adhesive for heat pumps.
吸着式ヒートポンプの作動媒体としては、水の他、メタ
ノール、エタノール、ブタノール、シクロヘキサノ−〜
、ベンジルアルコーA/等のアルコ−/vseアンモニ
ア、アセトンあるいはベンゼン。In addition to water, the working media for adsorption heat pumps include methanol, ethanol, butanol, and cyclohexano.
, benzyl alcohol A/and other alcohols/vse ammonia, acetone or benzene.
トルエン、キシレン等の芳香族炭化水素等を用いること
が出来る。これら作動媒体の中では、水は蒸発の潜熱が
約I Q Keal/moj’と最も大きく、O℃〜1
00℃の温度範囲の作動媒体としては最も好ましい。0
℃以下の低温領域では、作動媒体としてメタノ−1エタ
ノールなどの低級アルコ゛−ル類が、また、100℃以
上の高温領域では、シクロへキサノーM、ベンジルアル
コール、キシレン等の高沸点の炭化水素が好適である。Aromatic hydrocarbons such as toluene and xylene can be used. Among these working media, water has the largest latent heat of evaporation at approximately IQ Keal/moj',
It is most preferred as a working medium in the temperature range of 00°C. 0
In the low temperature range below 100°C, lower alcohols such as methanol-1 ethanol are used as the working medium, and in the high temperature range above 100°C, high boiling point hydrocarbons such as cyclohexanol M, benzyl alcohol, and xylene are used as the working medium. suitable.
吸着式ヒートポンプは、比較的温度の低い60〜100
℃の低温熱源を利用出来、また太陽熱尋を利用して吸着
剤の再生と蓄熱を同時に行なえるという利点を有してお
り、これらの特長をいかしたヒートポンプの作動媒体と
しては水が最も好適である。従って、以下実施beとし
ては、水を作UJa+^体とする場合につき説明する。Adsorption heat pumps have relatively low temperatures of 60 to 100
It has the advantage of being able to utilize a low-temperature heat source at 100°F (°C), and to simultaneously regenerate the adsorbent and store heat using solar heat. Water is the most suitable working medium for a heat pump that takes advantage of these features. be. Therefore, in the following embodiment, a case will be described in which water is made into a UJa+^ body.
(発明の効果)
本発明の網状構造活性炭を用いた冷却モード及び昇温モ
ードのしえ着底ヒートポンプの概略図を第2図(1)
(2)に示す。(Effects of the Invention) Figure 2 (1) shows a schematic diagram of a bottom-mounted heat pump in cooling mode and temperature rising mode using the network activated carbon of the present invention.
Shown in (2).
第2因(1)に示す冷却モードの場合には、まず蒸発器
と吸着塔を連結して蒸発器より作動検体を蒸発させ吸着
剤に所定の吸着量に到達するまで吸着させる。このとき
作動媒体の蒸発により蒸発器の温度が低下し、熱交換器
を通して環境温度1“aの水をTcoldまで低下させ
ることができる。作動媒体の吸着量が所定値に到達した
らバルブを切換え、吸着塔と凝縮器を接続し、吸着塔に
熱源温度T8の温水を流して昇温し、作動媒体を脱着し
て凝縮器で凝縮させる。&Nが終了したらバルブを切換
え再び最初の吸着過程に戻る。In the case of the cooling mode shown in the second factor (1), first, an evaporator and an adsorption tower are connected, and the working analyte is evaporated from the evaporator and adsorbed by the adsorbent until a predetermined adsorption amount is reached. At this time, the temperature of the evaporator decreases due to the evaporation of the working medium, and the water at the environmental temperature of 1"a can be lowered to Tcold through the heat exchanger. When the adsorption amount of the working medium reaches a predetermined value, switch the valve, The adsorption tower and condenser are connected, and hot water with a heat source temperature T8 is flowed through the adsorption tower to raise the temperature, and the working medium is desorbed and condensed in the condenser. When &N is completed, switch the valve and return to the first adsorption process again. .
@2図(2)に示す昇温モードの場合には、まず、蒸発
器と吸着塔を連結し、両方に熱源温度Ts のii、
、1.l!ト、を流しながら吸着剤に作動媒体を吸着
させ、吸着熱による吸着塔の昇温を熱交換により取出し
温水の温度を熱#j、温度TsよりThot才で上昇さ
せ、ろことができる。吸着塔での吸N量が所定量に到]
、・1(1,・、・バルブを切換え作動媒体を吸着剤よ
り脱着さII一温度Ta、の凝縮器に凝縮させる。脱着
終了後は/<fi・ブを切換え再び吸着過程に戻る。@2 In the case of the temperature increase mode shown in Figure (2), first, the evaporator and adsorption tower are connected, and both are heated to a heat source temperature Ts ii,
, 1. l! The working medium is adsorbed on the adsorbent while flowing the water, and the temperature rise in the adsorption tower due to the heat of adsorption is removed by heat exchange, and the temperature of the hot water is raised by Thot from the temperature Ts to heat #j, which can be filtered. The amount of N absorbed in the adsorption tower reaches the specified amount]
, 1 (1, . . .) The working medium is desorbed from the adsorbent and condensed in the condenser at temperature Ta by switching the valve. After the desorption is complete, switch /<fi·B and return to the adsorption process again.
箕°、8図に本発明の吸着式ヒートポンプで水を作!1
キ、・l la!体として用いた場合の作動媒体と吸着
剤の間と、・]牢葡関係を表わす相対圧P/p、 (P
、水魚気分;へ、k g 1水の飽和蒸気圧)一温度
図を示す。Minoh, Figure 8 shows how water is produced using the adsorption heat pump of the present invention! 1
Ki,・l la! The relative pressure P/p, which represents the relationship between the working medium and the adsorbent when used as a
, water fish mood; to, kg g 1 water saturated vapor pressure) 1 temperature diagram is shown.
・’f、’、 、)’d明の網状構造活性炭で水を作動
媒体とするhl(1、ρ・には、第1図Bの@着等混線
より、操作圧力の館゛叫PA ’c K圧佃(脱着側)
で相対圧P/P、 =0.05・0.25.高圧側(吸
着側)で0.25〜0.50 程度に’、’%)ぶrと
ができ、好ましくは、低圧側(脱1着側)°C相対r’
t P/P8 = 0.05〜0.20、高圧側で相対
圧T’7.1)s −0−25〜0.40程度に設定す
ることが出来る。・'f,', ,)'d HL (1, ρ), which uses water as a working medium, is made of network-structured activated carbon, and from the @ arrival etc. crosstalk in Figure 1B, the operating pressure is called PA'. c K Pressure (detachable side)
and relative pressure P/P, =0.05・0.25. The high pressure side (adsorption side) has a fluctuation of about 0.25 to 0.50', '%), and preferably the low pressure side (desorption side) °C relative r'
t P/P8 = 0.05 to 0.20, and the relative pressure T'7.1)s can be set to about 0.05 to 0.40 on the high pressure side.
e11+ 、:置r、、2o℃の水を冷却する場合、高
圧側(gニーii I+’°: ) テc7)It対E
EヲP/P8=0.80とすると、ス8の0点と0点の
平衡関係より、熱交換による損失を無視するならば理論
的には2℃まで温度低下が可能となり、?@却幅は18
℃となる。ところが従来の活性炭の場合には、図IAの
@着等混線を示すので操作圧力の範囲を普く取る必要が
ある。e11+ ,: Place r,, When cooling water at 2o℃, the high pressure side (gney ii I+'°: ) Te c7) It vs. E
If EwoP/P8 = 0.80, then from the equilibrium relationship between the 0 and 0 points of S8, if we ignore the loss due to heat exchange, it is theoretically possible to lower the temperature to 2°C, and ? @The width is 18
℃. However, in the case of conventional activated carbon, it exhibits crosstalk such as @ arrival as shown in Figure IA, so it is necessary to have a wide range of operating pressures.
例え、ば、高圧側(吸着側)の相対圧をP/Ps−(L
60に設定すると、図8の0点と0点の平衡関係より理
論的に到達可”能な温度は12℃で、冷却温度幅は8℃
となり、本発明のヒートポンプの冷却効果が[]めで大
きいことがわかる。同様に昇温モードSr於ても、本発
明の網状構造活性炭を用い吸着側の操作圧力をP/p、
!= OJ Olこ設定するならば、伝ス1七損失を焦
視りまた理論的に可能な汲み上げ温度は、60℃の温水
で28℃(第3図■〜σ))、即ち88℃までの昇温が
可能となり、従来の活性炭を用い操作圧力を吸着側でP
/P8= 0.60とした場合の12℃(第3図■〜@
)に比べて著しく大きくなる。For example, if the relative pressure on the high pressure side (adsorption side) is P/Ps-(L
When set to 60, the theoretically achievable temperature is 12 degrees Celsius based on the equilibrium relationship between 0 points and 0 points in Figure 8, and the cooling temperature range is 8 degrees Celsius.
It can be seen that the cooling effect of the heat pump of the present invention is large in [ ]. Similarly, in the temperature increasing mode Sr, the operating pressure on the adsorption side is set to P/p using the network activated carbon of the present invention.
! = OJ If we set this, the theoretically possible pumping temperature is 28°C (Fig. It is now possible to raise the temperature, and the operating pressure can be reduced to P on the adsorption side using conventional activated carbon.
12℃ when /P8=0.60 (Fig. 3 ■~@
) is significantly larger than that of
本発明の網状構造活性炭、炭を吸着剤2〜する吸着式1
: −、、)ボ;・プは2、上シr+の如く冷却8jす
1幅、昇温温1′T帖を大きく取ることができ、エネル
ギー効率を3がしく1川]ニさせることができる。Network structure activated carbon of the present invention, adsorption formula 1 using carbon as an adsorbent 2 to 1
:-、、)Bo;・P is 2. Like the upper series r+, it is possible to increase the cooling width by 1 width and the heating temperature by 1'T, and the energy efficiency can be increased by 3. can.
ま≠・、本発明の網状構造活性炭は、吸脱着速度が)水
めて速く、短時間に吸脱着を完了させうる。The network activated carbon of the present invention has an extremely fast adsorption/desorption rate, and can complete adsorption/desorption in a short period of time.
5すた、充ホ塔内での充填状態が均一でかつ通気性(・
)良好であり、充填塔内の吸着渣分布のばらつきが少な
く%パー温むらが発生しにくく、吸着熱の取Li、i
F、、、、、や、g1゛1塔の昇温、降温を迅速に行な
うことができろ。5. The packing condition in the filling tower is uniform and has good air permeability (・
) is good, there is little variation in the distribution of adsorbed residue in the packed column, %par temperature unevenness is less likely to occur, and the absorption of heat of adsorption is improved.
It should be possible to quickly raise and lower the temperature of the F... and g1゛1 towers.
ii ic才た本発明の吸着式ヒートポンプでは、吸身
剤である網状構造活性炭の再生温度を60〜90℃:の
比改的低い温度レベルで行なうことが出来るので、太陽
熱エネルギーを利用して再生することが出張、その場合
には網状構造活性炭を光熱材として利用し、蓄51され
た熱をうJ房あるいは給湯シス・メ“へ等に利用するこ
とも可能である。ii In the adsorption heat pump of the present invention, the regeneration temperature of the network-structured activated carbon, which is the absorption agent, can be carried out at a relatively low temperature level of 60 to 90°C, so it can be regenerated using solar thermal energy. If you are going on a business trip, in that case, it is possible to use the network activated carbon as a light and heat material and use the stored heat for a refrigerator or hot water supply system.
以F、火施例により具体的に説明する。Hereinafter, this will be explained in detail using examples.
1μlIイ[例1
屯合!fi700.けん化度88%のポリビニルアル−
1・・・ル5Kgを熱水で溶解後、馬鈴薯澱粉8.2恥
を加えて加熱し、糊化した。この溶解液に固形分深度6
0重量%の水溶性レゾール樹脂(昭和高分子■製品、B
凡T、−2854)17恥を加えて十分に撹拌した後、
更に87%のホルマリン9Kg及び80Tl1%の蓚酸
8.5 KIIを加えて均一に混合し、水を加えて液量
調整し、総液址を1ooI!とした。1 μl I [Example 1 Tonai! fi700. Polyvinyl alcohol with saponification degree of 88%
1. After dissolving 5 kg of 1.5 kg in hot water, 8.2 kg of potato starch was added and heated to gelatinize. This solution has a solid content depth of 6
0% by weight water-soluble resol resin (Showa Kobunshi ■ product, B
(T, -2854) After adding 17 ounces and stirring thoroughly,
Furthermore, 9 kg of 87% formalin and 8.5 KII of 80 Tl 1% oxalic acid were added and mixed uniformly, and water was added to adjust the liquid volume to bring the total liquid volume to 1ooI! And so.
この混合液を内径120φX700mmLの型枠に注型
し、60℃で24時間反応させた後、洗浄してPV八人
/フェノール合成樹脂複合多孔体を得た。This mixed solution was poured into a mold having an inner diameter of 120 φ and 700 mm L, reacted at 60° C. for 24 hours, and then washed to obtain a PV Yatsunin/phenol synthetic resin composite porous body.
該合成樹脂複合多孔体を電気炉に入れ、80’C/hr
の昇氾速腐で650℃才で昇温し、水蒸気雰囲気下で5
時間賦活し、網状構造活性炭を得た。The synthetic resin composite porous body was placed in an electric furnace and heated at 80'C/hr.
The temperature rises to 650 degrees Celsius due to rapid flooding of
After time activation, network activated carbon was obtained.
該網状構造活性炭は、見かけ密度ρ= 0.21 i/
cm8、気孔率87%で、マクロ孔の平均直径は100
μmでミクロ孔の線孔半径1rlの分布の極大値はr<
8人であった。The network activated carbon has an apparent density ρ=0.21 i/
cm8, porosity 87%, average diameter of macropores 100
The maximum value of the distribution of the linear hole radius 1rl of micropores in μm is r<
There were 8 people.
上記網状構造活性炭による20’Cでの水の吸着等混線
の測定結果が@1図Bである。50’C及び70℃での
吸着等温線も横軸を相対圧P/Psで整理すると20℃
の場合とほぼ同じになった。The measurement results of crosstalk such as water adsorption at 20'C by the network activated carbon are shown in Figure 1B. The adsorption isotherms at 50'C and 70°C are also 20°C when the horizontal axis is organized by the relative pressure P/Ps.
It became almost the same as in the case of .
上記の網状構造活性炭を用い、第2図に示すヒートポン
プにより冷熱を得る実験を行なった。Using the above network activated carbon, an experiment was conducted to obtain cold heat using a heat pump shown in FIG.
実験の操作条件は、吸着塔に於ける、網状構造活性炭の
水分吸着量が、脱着時0.05j1/7、吸着時0.2
0ji/!/となる様に設定した。対応する操作圧力の
範囲は、相対圧P/P、 = 0.12〜0.80であ
る。The operating conditions for the experiment were that the amount of moisture adsorbed by the network activated carbon in the adsorption tower was 0.05j1/7 during desorption and 0.2 during adsorption.
0ji/! / was set. The corresponding operating pressure range is relative pressure P/P = 0.12-0.80.
また、冷却に用いる水の温度は’ra=g2o℃である
。Further, the temperature of water used for cooling is 'ra=g2o°C.
まず蒸発器に20℃の水を流し、バルブを開いて吸着塔
内の網状構造活性炭で蒸発器より蒸発する水を吸着させ
た。この操作により20℃の水温は6℃まで低下した。First, water at 20° C. was poured into the evaporator, a valve was opened, and the water evaporated from the evaporator was adsorbed by the network activated carbon in the adsorption tower. This operation lowered the water temperature from 20°C to 6°C.
第4図の平衡関係より理論的には2℃まで温度幅で18
℃の温度低下が可能であるが、本実験では伝熱損失など
により14℃任下した。40分間吸着させた後、バルブ
を切換え吸着塔と凝縮器を連絡し、吸着塔へ温水を流し
て吸着剤から水を脱着させ凝縮器へ凝縮させた。From the equilibrium relationship shown in Figure 4, the temperature range is 18
It is possible to lower the temperature by 14°C, but in this experiment, it was lowered to 14°C due to heat transfer loss. After adsorption for 40 minutes, the valve was changed to connect the adsorption tower and the condenser, and hot water was flowed into the adsorption tower to desorb water from the adsorbent and condense it into the condenser.
脱着に必要な温水の温度Tslは、第4図の平衡関係よ
り59℃であるが本実験では、伝熱損失を考慮し、65
℃の温水を流し、40分間脱着した。The temperature Tsl of the hot water required for desorption is 59°C based on the equilibrium relationship shown in Figure 4, but in this experiment, taking heat transfer loss into consideration, the temperature Tsl of the hot water is 65°C.
Desorption was carried out for 40 minutes by running warm water at ℃.
本実施例の結果より、第1図Bに示す如き水の吸着等混
線を示す網状構造活性炭を用いることにより20℃の水
を6℃まで冷却することができた。From the results of this example, water at 20° C. could be cooled to 6° C. by using activated carbon having a network structure exhibiting crosstalk such as adsorption of water as shown in FIG. 1B.
市販の粒状活性炭(粒度10〜32mesh、 比表
面積1,080m24.充坦密度0.45 g /c>
a )の水の吸着等温線は第1図人のとおりであった。Commercially available granular activated carbon (particle size 10-32 mesh, specific surface area 1,080 m24, packed density 0.45 g/c>
The water adsorption isotherm of a) was as shown in Figure 1.
この粒状活性炭を用い、実施例1と同様にしてヒートポ
ンプにより冷水を得る実験を行なった。吸着1は実施例
1と同球に脱着時0.06&/i、吸着時0.201/
lに設定した。対応する操作圧力の範囲は、P/Ps
= 0.42〜0.61であった。Using this granular activated carbon, an experiment was conducted to obtain cold water using a heat pump in the same manner as in Example 1. Adsorption 1 was 0.06&/i when attached to the same sphere as Example 1, and 0.201/i when adsorbed.
It was set to l. The corresponding operating pressure range is P/Ps
= 0.42 to 0.61.
この市販粒状活性炭による吸脱着操作の平衡関係を@5
図に示す。9g5図かられかる様JCR論的に低下させ
つる温度幅は7.5℃で20℃の温水を12.6℃まで
低下可能であるが実際には16℃までしか低下出来なか
った。吸着操作は40分間行ない、その後吸着塔と凝縮
器を連結し、65℃の温水で20分間脱着した。The equilibrium relationship of adsorption and desorption operations using this commercially available granular activated carbon is @5
As shown in the figure. As shown in Figure 9g5, the JCR theoretically lowering temperature range is 7.5°C, and it is possible to lower 20°C hot water to 12.6°C, but in reality it was only possible to lower it to 16°C. The adsorption operation was carried out for 40 minutes, and then the adsorption tower and condenser were connected, and desorption was carried out with warm water at 65° C. for 20 minutes.
これらの結果より、本発明の網状構造活性炭を用いるこ
とにより、冷却の温度幅を大きくとれるが判明した。From these results, it was found that by using the network activated carbon of the present invention, the temperature range of cooling can be widened.
実施例2
実施例1と同じ網状構造活性炭を用いヒートポンプによ
る昇温実験を行なった。熱源温度(Ta2)62℃の温
水で蒸発器及び吸着塔を加熱し、蒸発器より蒸発した水
を網状構造活性炭に吸着させた。Example 2 Using the same network structure activated carbon as in Example 1, a temperature raising experiment using a heat pump was conducted. The evaporator and adsorption tower were heated with hot water having a heat source temperature (Ta2) of 62° C., and the water evaporated from the evaporator was adsorbed onto the network activated carbon.
操作条件は実施例1と同様、吸着量0.05 CP/P
a=0.12)〜0.20 jl/11 (P/Ps
= 0.80 )とした。The operating conditions are the same as in Example 1, adsorption amount 0.05 CP/P.
a=0.12) ~ 0.20 jl/11 (P/Ps
= 0.80).
本実施例の条件下での吸着平衡関係を第4図に示した。The adsorption equilibrium relationship under the conditions of this example is shown in FIG.
62℃の熱源温度は、理論的には90℃まで28℃の昇
温か可能であるが、本実施例では40分■0の吸着時間
で62℃より75℃まで18℃昇温することができた。The heat source temperature of 62°C can theoretically be raised by 28°C to 90°C, but in this example, it is possible to raise the temperature from 62°C to 75°C by 18°C in an adsorption time of 40 minutes. Ta.
脱着は、@着塔と凝縮器を連結し、凝縮器に18℃の水
を通すことにより40分間実施した。Desorption was carried out for 40 minutes by connecting the adsorption tower and the condenser and passing water at 18° C. through the condenser.
〔比較例2〕
実施例2と同様にして比較例1に用いた市販の粒状活性
炭を用い、ヒートポンプによる昇温実験を行なった。ヒ
ートポンプの操作範囲は、比較例1の場合と同様に吸着
量0.05 (P/Ps = 0.42 ) 〜0.2
0(P/Pg−0,61)、熱源温度は62℃とした。[Comparative Example 2] In the same manner as in Example 2, a temperature raising experiment using a heat pump was conducted using the commercially available granular activated carbon used in Comparative Example 1. The operating range of the heat pump is the adsorption amount 0.05 (P/Ps = 0.42) to 0.2 as in Comparative Example 1.
0 (P/Pg-0.61), and the heat source temperature was 62°C.
第5図に示す平衡関係より、市販粒状活性炭を吸着剤と
するヒートポンプでは理論的に到迷可能な温度は71.
5℃であり昇温可能な温度幅は9,5℃と小さい。本実
験では、40分間吸着を実施し、実際に得られた温水の
温度は、66℃であった。From the equilibrium relationship shown in Figure 5, the temperature that can theoretically be reached in a heat pump using commercially available granular activated carbon as an adsorbent is 71.
The temperature range within which the temperature can be raised is as small as 9.5°C. In this experiment, adsorption was carried out for 40 minutes, and the temperature of the actually obtained hot water was 66°C.
脱藩は、吸着塔と凝縮器を連節し、kGii器に18℃
の水を通して20分間実施した。For decoupling, the adsorption tower and condenser are connected, and the temperature is set at 18℃ in the kGii vessel.
of water for 20 minutes.
第1図は、市販の粒状活性炭及び本発明に係る網状構造
活性炭の水に対する吸着等混線M%第2図は本発明に係
る網状構造活性炭を用いた冷却モード及び昇温モードの
吸着式ヒートポンプのU略図、第8図は本発明の@着底
ヒートポンプで水を作動媒体として用いた場合の作動媒
体と吸着剤との間の平衡関係を表わす相対圧(P/Ps
)一温度図、第4図は本発明に係る網状活性炭−水系ヒ
ートポンプの平衡関係図、第5図は市販粒状活性炭−水
系ヒートポンプの平衡関係図を表わす。
出足・1人 鐘紡株式会社°・・′
し
第3図
活よ生皮−永系ヒートボンフ′f)″+ffi関係第4
図Figure 1 shows adsorption crosstalk M% of commercially available granular activated carbon and network activated carbon according to the present invention for water; Figure 2 shows adsorption heat pumps in cooling mode and temperature rising mode using network activated carbon according to the present invention U schematic diagram, Figure 8 shows the relative pressure (P/Ps
4 shows an equilibrium relationship diagram of a reticulated activated carbon-water heat pump according to the present invention, and FIG. 5 shows an equilibrium relationship diagram of a commercially available granular activated carbon-aqueous heat pump. Start / 1 person Kanebo Co., Ltd. °...' 3rd figure activity rawhide - permanent heatbonf'f)''+ffi related 4th
figure
Claims (2)
率50〜90%、平均直径1〜500μmのマクロ孔を
有する網状構造活性炭を吸着剤として充填した吸着塔と
、作動媒体を入れた蒸発器及び凝縮器を連結してなる冷
却モード及び昇温モードの吸着式ヒートポンプ(1) An adsorption tower filled with network activated carbon as an adsorbent, which has an apparent density of 0.1 to 0.8 g/cm^3, a porosity of 50 to 90%, and macropores with an average diameter of 1 to 500 μm, and a working medium. Adsorption heat pump with cooling mode and heating mode, consisting of a connected evaporator and condenser.
布の極大値がr<8Aのものである特許請求の範囲第(
1)項記載の吸着式ヒートポンプ(3)作動媒体が水で
ある特許請求の範囲第(1)項又は第(2)項記載の吸
着式ヒートポンプ(2) The network structure activated carbon has a maximum value of the distribution of the pore radius (r) of the micropores such that r<8A.
(3) The adsorption heat pump according to claim 1 or 2, wherein the working medium is water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20284985A JPH0627593B2 (en) | 1985-09-12 | 1985-09-12 | Adsorption type heat pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20284985A JPH0627593B2 (en) | 1985-09-12 | 1985-09-12 | Adsorption type heat pump |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6262164A true JPS6262164A (en) | 1987-03-18 |
JPH0627593B2 JPH0627593B2 (en) | 1994-04-13 |
Family
ID=16464208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20284985A Expired - Lifetime JPH0627593B2 (en) | 1985-09-12 | 1985-09-12 | Adsorption type heat pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0627593B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003114067A (en) * | 2001-10-05 | 2003-04-18 | Mitsubishi Chemicals Corp | Adsorption heat pump |
JP2006200850A (en) * | 2005-01-21 | 2006-08-03 | Japan Exlan Co Ltd | Sorption type heat exchange module, and its manufacturing method |
JP2008275309A (en) * | 2008-05-23 | 2008-11-13 | Mitsubishi Chemicals Corp | Adsorption heat pump, vehicular air conditioner, dehumidifying air conditioner, and method for using adsorbing material |
JP2009174783A (en) * | 2008-01-25 | 2009-08-06 | National Institute Of Advanced Industrial & Technology | Adsorption heat pump system using low-temperature waste heat |
JP2011202947A (en) * | 2002-08-15 | 2011-10-13 | Denso Corp | Adsorbent for adsorption heat pump and adsorption heat pump using the same |
JP2014185778A (en) * | 2013-03-21 | 2014-10-02 | Toyota Central R&D Labs Inc | Adsorption type heat pump |
WO2017038605A1 (en) * | 2015-08-31 | 2017-03-09 | カルソニックカンセイ株式会社 | Adsorption heat exchanger and method for producing adsorption heat exchanger |
US9863673B2 (en) | 2012-08-22 | 2018-01-09 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Adsorption heat pump system and method of generating cooling power |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9233918B2 (en) | 2008-05-15 | 2016-01-12 | Asahi Kasei Chemicals Corporation | Isocyanate production process |
RU2523201C2 (en) | 2008-05-15 | 2014-07-20 | Асахи Касеи Кемикалз Корпорейшн | Method of obtaining isocyanates with application of diarylcarbonate |
-
1985
- 1985-09-12 JP JP20284985A patent/JPH0627593B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003114067A (en) * | 2001-10-05 | 2003-04-18 | Mitsubishi Chemicals Corp | Adsorption heat pump |
JP2011202947A (en) * | 2002-08-15 | 2011-10-13 | Denso Corp | Adsorbent for adsorption heat pump and adsorption heat pump using the same |
JP2006200850A (en) * | 2005-01-21 | 2006-08-03 | Japan Exlan Co Ltd | Sorption type heat exchange module, and its manufacturing method |
JP2009174783A (en) * | 2008-01-25 | 2009-08-06 | National Institute Of Advanced Industrial & Technology | Adsorption heat pump system using low-temperature waste heat |
JP2008275309A (en) * | 2008-05-23 | 2008-11-13 | Mitsubishi Chemicals Corp | Adsorption heat pump, vehicular air conditioner, dehumidifying air conditioner, and method for using adsorbing material |
JP4710023B2 (en) * | 2008-05-23 | 2011-06-29 | 三菱樹脂株式会社 | Adsorption heat pump, vehicle air conditioner, dehumidifying air conditioner, and method of using adsorbent |
US9863673B2 (en) | 2012-08-22 | 2018-01-09 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Adsorption heat pump system and method of generating cooling power |
JP2014185778A (en) * | 2013-03-21 | 2014-10-02 | Toyota Central R&D Labs Inc | Adsorption type heat pump |
WO2017038605A1 (en) * | 2015-08-31 | 2017-03-09 | カルソニックカンセイ株式会社 | Adsorption heat exchanger and method for producing adsorption heat exchanger |
JP2017048945A (en) * | 2015-08-31 | 2017-03-09 | カルソニックカンセイ株式会社 | Adsorption type heat exchanger and manufacturing method for the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0627593B2 (en) | 1994-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11859877B2 (en) | Hybrid adsorber heat exchanging device and method of manufacture | |
US5456093A (en) | Adsorbent composites for sorption cooling process and apparatus | |
US5535817A (en) | Sorption cooling process and apparatus | |
Tatlıer et al. | A novel approach to enhance heat and mass transfer in adsorption heat pumps using the zeolite–water pair | |
Pérez‐Carvajal et al. | The imine‐based COF TpPa‐1 as an efficient cooling adsorbent that can Be regenerated by heat or light | |
US5503222A (en) | Carousel heat exchanger for sorption cooling process | |
Gordeeva et al. | Selective water sorbents for multiple applications, 5. LiBr confined in mesopores of silica gel: sorption properties | |
Liu et al. | Honeycomb filters made from mesoporous composite material for an open sorption thermal energy storage system to store low-temperature industrial waste heat | |
CN102744036A (en) | Composite adsorbent material and its preparation method and application | |
Atakan et al. | Adsorption kinetics and isotherms of zeolite coatings directly crystallized on fibrous plates for heat pump applications | |
JPS6262164A (en) | Adsorption type heat pump | |
Togawa et al. | Water sorption property and cooling performance using natural mesoporous siliceous shale impregnated with LiCl for adsorption heat pump | |
KR101641985B1 (en) | Honeycomb matrix comprising macroporous desiccant, process and use thereof | |
Farrusseng et al. | Adsorber heat exchanger using Al-fumarate beads for heat-pump applications–a transport study | |
Liu et al. | Experimental testing of a small sorption air cooler using composite material made from natural siliceous shale and chloride | |
Strelova et al. | Dynamics of water adsorption on SAPO-34: Comparison of three adsorbent bed configurations of adsorption chillers | |
JP3440250B2 (en) | Heat exchange metal tube and adsorption heat pump | |
Saha et al. | Experiments for measuring adsorption characteristics of an activated carbon fiber/ethanol pair using a plate-fin heat exchanger | |
EP3366748B1 (en) | A composite material for thermochemical storage and a method for forming a composite material | |
Batukray | An overview on recent development in desiccant materials | |
CN104710719A (en) | Thermosensitive composite material, use thereof and refrigerating device using thermosensitive composite material | |
Yuan et al. | Experimental study on desorption characteristics of SAPO-34 and ZSM-5 zeolite | |
Al-rabadi et al. | Metal Organic Frameworks (MOFs) in Adsorption Heat Transformations | |
Wang et al. | Properties of Solid Composite Sorbents | |
JPH10263394A (en) | Improved adsorbent, its production and adsorption refrigerating machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |