[go: up one dir, main page]

JP2003114067A - Adsorption heat pump - Google Patents

Adsorption heat pump

Info

Publication number
JP2003114067A
JP2003114067A JP2001309856A JP2001309856A JP2003114067A JP 2003114067 A JP2003114067 A JP 2003114067A JP 2001309856 A JP2001309856 A JP 2001309856A JP 2001309856 A JP2001309856 A JP 2001309856A JP 2003114067 A JP2003114067 A JP 2003114067A
Authority
JP
Japan
Prior art keywords
adsorption
adsorbent
vapor pressure
water
adsorbate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001309856A
Other languages
Japanese (ja)
Other versions
JP4669914B2 (en
JP2003114067A5 (en
Inventor
Hiroyuki Kakiuchi
博行 垣内
Takahiko Takewaki
隆彦 武脇
Hideaki Takumi
英昭 宅見
Masanori Yamazaki
正典 山崎
Nobu Watanabe
展 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Denso Corp
Original Assignee
Mitsubishi Chemical Corp
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Denso Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2001309856A priority Critical patent/JP4669914B2/en
Publication of JP2003114067A publication Critical patent/JP2003114067A/en
Publication of JP2003114067A5 publication Critical patent/JP2003114067A5/ja
Application granted granted Critical
Publication of JP4669914B2 publication Critical patent/JP4669914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

(57)【要約】 【課題】 吸着質を低相対蒸気圧域で吸脱着しうる吸着
ヒートポンプまたは除湿空調装置を提供する。 【解決手段】 吸着質と、吸着質を吸脱着する吸着材を
備えた吸脱着部と、該吸脱着部に連結された吸着質の蒸
発を行う蒸発部と、該吸脱着部に連結された吸着質の凝
縮を行う凝縮部とを備えた吸着ヒートポンプにおいて、
該吸着材が A)フレームワーク密度が10.0T/1,000Å3
以上16.0T/1,000Å3以下、 B)細孔径が3Å以上10Å以下、かつ C)微分吸着熱が40kJ/mol以上65kJ/mol以下、であ
るゼオライトであることを特徴とする吸着ヒートポン
プ。
(57) To provide an adsorption heat pump or a dehumidifying air conditioner capable of adsorbing and desorbing an adsorbate in a low relative vapor pressure region. SOLUTION: An adsorbent, an adsorption / desorption portion having an adsorbent for adsorbing and desorbing the adsorbate, an evaporation portion for evaporating the adsorbate connected to the adsorption / desorption portion, and an adsorption / desorption portion connected to the adsorption / desorption portion In an adsorption heat pump with a condensing part that condenses adsorbate,
The adsorbent is A) Framework density is 10.0T / 1,000Å 3
An adsorption heat pump characterized in that it is a zeolite having 16.0 T / 1,000 to 3 or less, B) a pore diameter of 3 to 10 and C) a differential adsorption heat of 40 kJ / mol to 65 kJ / mol.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特定の吸着材を用
いた吸着ヒートポンプ、及び該吸着材を用いた車両用空
調装置並びに除湿空調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorption heat pump using a specific adsorbent, a vehicle air conditioner and a dehumidifying air conditioner using the adsorbent.

【0002】[0002]

【従来の技術】吸着ヒートポンプや除湿空調装置におい
ては、吸着質、例えば水を吸着した吸着材を再生するた
めに、吸着材を加熱して吸着質を脱着させ、乾燥した吸
着材を吸着質の吸着に使用する温度まで冷却して再度吸
着質の吸着に使用する。比較的高温(120℃以上)の
排熱、温熱を、吸着材の再生熱源として利用する吸収式
ヒートポンプが既に実用化されている。しかし一般にコ
ジェネレーション機器、燃料電池、自動車エンジンの冷
却水や太陽熱などによって得られる熱は100℃以下と
比較的低温であるため、現在実用化されている吸収式ヒ
ートポンプの駆動熱源としては利用できず、100℃以
下、更には60℃〜80℃の低温排熱の有効利用が求め
られていた。
2. Description of the Related Art In an adsorption heat pump or a dehumidifying air conditioner, in order to regenerate an adsorbent that adsorbs adsorbate, for example, water, the adsorbent is heated to desorb the adsorbate, and the dried adsorbent is replaced with the adsorbate. Cool to the temperature used for adsorption and use again for adsorption of adsorbate. Absorption heat pumps have already been put into practical use, which utilize exhaust heat and warm heat at a relatively high temperature (120 ° C. or higher) as a heat source for regenerating an adsorbent. However, in general, the heat obtained from cooling water of the cogeneration equipment, fuel cells, automobile engines, solar heat, etc. is a relatively low temperature of 100 ° C. or lower, so it cannot be used as a drive heat source for absorption heat pumps currently in practical use. Therefore, effective utilization of low temperature exhaust heat of 100 ° C. or lower, and further 60 ° C. to 80 ° C. has been demanded.

【0003】また、吸着ヒートポンプの動作原理は同じ
でも利用可能な熱源温度によって吸着材に求められる吸
着特性が大きく異なる。例えば、高温側の熱源として用
いられるガスエンジンコージェネレーションや固体高分
子型燃料電池の排熱温度は60℃〜80℃であり、自動
車エンジンの冷却水の温度は85℃〜90℃である。そ
して冷却側の熱源温度も装置の設置場所によって異な
る。例えば自動車の場合はラジエターで得られる温度で
あり、ビルや住宅などでは水冷塔や河川水などの温度で
ある。つまり、吸着ヒートポンプの操作温度範囲は、ビ
ルなどに設置する場合には低温側が25℃〜35℃、高
温側が60℃〜80℃、自動車などに設置する場合には
低温側が30℃〜40℃、高温側が85℃〜90℃程度
である。このように、排熱を有効利用するためには、低
温側熱源と高温側熱源の温度差が小さくても駆動できる
装置が望まれている。
Further, although the operation principle of the adsorption heat pump is the same, the adsorption characteristics required for the adsorbent material largely differ depending on the available heat source temperature. For example, the exhaust heat temperature of a gas engine cogeneration or polymer electrolyte fuel cell used as a heat source on the high temperature side is 60 ° C to 80 ° C, and the temperature of cooling water of an automobile engine is 85 ° C to 90 ° C. The heat source temperature on the cooling side also differs depending on the installation location of the device. For example, in the case of a car, it is the temperature obtained by a radiator, and in the case of buildings and houses, it is the temperature of water cooling towers and river water. That is, the operating temperature range of the adsorption heat pump is 25 ° C. to 35 ° C. on the low temperature side when installed in a building or the like, 60 ° C. to 80 ° C. on the high temperature side, and 30 ° C. to 40 ° C. on the low temperature side when installed in an automobile or the like. The high temperature side is about 85 ° C to 90 ° C. As described above, in order to effectively use the exhaust heat, a device that can be driven even if the temperature difference between the low temperature side heat source and the high temperature side heat source is small is desired.

【0004】吸着材の周囲が比較的高い温度でも装置が
充分に作動するためには、吸着質を低相対蒸気圧で吸着
させる必要があり、また使用する吸着材を少量にして装
置を小型化するためには吸着材の吸脱着量が多い必要が
ある。そして吸着質の脱着(吸着材の再生)に低温の熱
源を利用するためには脱着温度が低い必要がある。すな
わち吸着ヒートポンプまたは除湿空調装置に用いる吸着
材として(1)吸着質を低い相対蒸気圧で吸着し(高温
で吸着可能)、(2)吸脱着量が多く、(3)吸着質を
高い相対蒸気圧で脱着(低温で脱着可能)する吸着材が
望まれている。
In order for the device to operate sufficiently even at a relatively high temperature around the adsorbent, it is necessary to adsorb the adsorbate at a low relative vapor pressure, and the adsorbent to be used must be small in amount to miniaturize the device. In order to do so, it is necessary that the adsorption / desorption amount of the adsorbent is large. The desorption temperature must be low in order to use a low temperature heat source for desorption of the adsorbate (regeneration of the adsorbent). That is, as an adsorbent used in an adsorption heat pump or a dehumidifying air conditioner, (1) adsorbs an adsorbate at a low relative vapor pressure (it can be adsorbed at a high temperature), (2) has a large adsorption / desorption amount, and (3) has a high relative vapor. An adsorbent that can be desorbed by pressure (desorbable at low temperature) is desired.

【0005】吸着ヒートポンプ用の吸着材としては、一
般的にシリカゲルと低シリカアルミナ比のゼオライトが
用いられてきた。しかし、従来吸着ヒートポンプに利用
されてきた吸着材は、比較的低温の熱源を吸着ヒートポ
ンプの駆動源として利用するには吸脱着能力が不十分で
あった。例えば、吸着ヒートポンプ用のゼオライトの代
表例として13Xの水蒸気吸着等温線を考えると、相対
蒸気圧0.05以下で急激に吸着され、0.05より高
い相対蒸気圧域ではゼオライトの水蒸気吸着量は変化し
ない。吸着剤を再生する際には、周囲の気体の相対湿度
を低下させて一度吸着した水分を脱着して除くが、ゼオ
ライト13Xに吸着された水を脱着するには相対蒸気圧
を下げる必要があるため、150℃〜200℃の熱源が
必要であると言われている。
Silica gel and zeolite with a low silica-alumina ratio have generally been used as adsorbents for adsorption heat pumps. However, the adsorbents that have been conventionally used in adsorption heat pumps have insufficient adsorbing / desorbing ability to use a relatively low temperature heat source as a driving source for the adsorption heat pump. For example, considering a 13X water vapor adsorption isotherm as a typical example of zeolite for an adsorption heat pump, the water vapor adsorption amount of zeolite is rapidly adsorbed at a relative vapor pressure of 0.05 or less, and in a relative vapor pressure range higher than 0.05. It does not change. When regenerating the adsorbent, the relative humidity of the surrounding gas is reduced to desorb and remove the water once adsorbed, but the relative vapor pressure must be lowered to desorb the water adsorbed on the zeolite 13X. Therefore, it is said that a heat source of 150 ° C to 200 ° C is required.

【0006】またヒートポンプ用吸着剤として界面活性
剤のミセル構造を鋳型として合成したメソポーラスモレ
キュラーシーブ(FSM−10など)(特開平9−17
8292号)が、又、デシカント用に通称AlPO4
称される多孔質リン酸アルミニウム系モレキュラーシー
ブ(特開平11−197439号)が検討されている。
メソポーラスモレキュラーシーブ(FSM−10)は相
対蒸気圧0.20と0.35の範囲で吸着量差は0.2
5g/gと大きく、有望な素材である(特開平9−17
8292号:図14のグラフ4;FSM−10)。しか
し、比較的低い相対蒸気圧の範囲では吸着量が小さく、
吸着量変化が大きい相対蒸気圧の範囲においても吸着量
差が小さく、吸着ヒートポンプの性能は不十分である。
また、繰り返し使用すると構造が崩れ、吸着材としての
機能が低下することが指摘されており、耐久性が課題と
なっている。
Further, a mesoporous molecular sieve (FSM-10 etc.) synthesized by using a micelle structure of a surfactant as an adsorbent for a heat pump as a template (JP-A-9-17).
No. 8292), and a porous aluminum phosphate-based molecular sieve commonly referred to as AlPO 4 for desiccant (JP-A-11-197439).
The mesoporous molecular sieve (FSM-10) has an adsorption amount difference of 0.2 in the range of relative vapor pressures of 0.20 and 0.35.
As large as 5 g / g, it is a promising material (Japanese Patent Laid-Open No. 9-17
8292: Graph 4 in FIG. 14; FSM-10). However, the adsorption amount is small in the range of relatively low relative vapor pressure,
Even in the range of the relative vapor pressure where the adsorption amount change is large, the adsorption amount difference is small, and the performance of the adsorption heat pump is insufficient.
Further, it has been pointed out that the structure collapses and the function as an adsorbent is deteriorated when it is repeatedly used, and durability is an issue.

【0007】[0007]

【発明が解決しようとする課題】本発明は吸着質を低相
対蒸気圧域で吸脱着しうる吸着材を用いた、効率の良い
吸着ヒートポンプまたは除湿空調装置の提供を目的とし
てなされたものである。
SUMMARY OF THE INVENTION The present invention has been made for the purpose of providing an efficient adsorption heat pump or dehumidifying air conditioner using an adsorbent capable of adsorbing and desorbing an adsorbate in a low relative vapor pressure region. .

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するために鋭意検討した結果、フレームワーク
密度、細孔径及び吸着熱が特定の範囲のゼオライトを吸
着剤とした吸着ヒートポンプまたは該吸着剤を用いた除
湿空調装置、車両用空調装置が本発明の目的を達成する
ことを見い出した。
Means for Solving the Problems As a result of intensive studies for solving the above-mentioned problems, the present inventors have found that an adsorption heat pump using a zeolite having a framework density, a pore diameter and a heat of adsorption within a specific range as an adsorbent. Further, it has been found that a dehumidifying air conditioner and a vehicle air conditioner using the adsorbent achieve the object of the present invention.

【0009】すなわち本発明の要旨は、吸着質と、吸着
質を吸脱着する吸着材を備えた吸脱着部と、該吸脱着部
に連結された吸着質の蒸発・凝縮を行う蒸発・凝縮部と
を備えた吸着ヒートポンプにおいて、該吸着材が A)フレームワーク密度が10.0T/1,000Å3
以上16.0T/1,000Å3以下、 B)細孔径が3Å以上10Å以下かつ、 C)微分吸着熱が40kJ/mol以上65kJ/mol以下、であ
るゼオライトであることを特徴とする吸着ヒートポンプ
に存する。他の要旨は吸着材により水分を吸着される処
理空気の経路と、加熱源によって加熱された後前記水分
吸着後の吸着材中の水分を脱着して再生する再生空気の
経路を有する除湿空調装置において、該吸着材がA)フ
レームワーク密度が10.0T/1,000Å3以上1
6.0T/1,000Å3以下、B)細孔径が3Å以上
10Å以下かつC)吸着熱が40kJ/mol以上、65kJ/m
ol以下、であるゼオライトであることを特徴とする除湿
空調装置に存する。
That is, the gist of the present invention is to provide an adsorbate, an adsorption / desorption part provided with an adsorbent for adsorbing / desorbing the adsorbate, and an evaporation / condensing part for evaporating / condensing the adsorbate connected to the adsorption / desorption part. In the adsorption heat pump equipped with, the adsorbent has A) a framework density of 10.0 T / 1,000Å 3
Above 16.0 T / 1,000 Å 3 or less, B) Pore size 3 Å or more and 10 Å or less, and C) Zeolite having a differential heat of adsorption of 40 kJ / mol or more and 65 kJ / mol or less. Exist. Another feature is a dehumidifying air conditioner having a path for treated air in which water is adsorbed by an adsorbent and a path for regenerated air that is heated by a heating source and then desorbs and regenerates water in the adsorbent after adsorbing the water. The adsorbent has a framework density of 10.0 T / 1,000 Å 3 or more 1)
6.0T / 1,000Å 3 or less, B) Pore size is 3Å or more and 10Å or less, and C) Heat of adsorption is 40 kJ / mol or more, 65 kJ / m
It exists in a dehumidifying air-conditioning device characterized by being a zeolite having an ol or less.

【0010】[0010]

【発明の実施の形態】以下、本発明について更に詳細に
説明する。吸着ヒートポンプの操作蒸気圧範囲は、次式
で求められる脱着側相対蒸気圧φ1と吸着側相対蒸気圧
φ2によって決定され、φ1とφ2との間が操作可能な
相対蒸気圧範囲である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below. The operating vapor pressure range of the adsorption heat pump is determined by the desorption-side relative vapor pressure φ1 and the adsorption-side relative vapor pressure φ2 obtained by the following equation, and the operable vapor pressure range is between φ1 and φ2.

【0011】脱着側相対蒸気圧φ1=平衡蒸気圧(Tl
ow1)/平衡蒸気圧(Thigh) 吸着側相対蒸気圧φ2=平衡蒸気圧(Tcool)/平
衡蒸気圧(Tlow2) ここで、高温熱源温度Thighは吸着材から吸着質を
脱着して吸着材を再生する際に加熱する熱媒の温度を、
低温熱源温度Tlow1は凝縮部の吸着質の温度を、低
温熱源温度Tlow2は再生後の吸着材を吸着に共する
際に冷却する熱媒の温度を、冷熱生成温度Tcoolは
蒸発部の吸着質の温度すなわち生成した冷熱の温度を、
意味する。なお、平衡蒸気圧は吸着質の平衡蒸気圧曲線
を用いて、温度から求めることができる。
Desorption side relative vapor pressure φ1 = equilibrium vapor pressure (Tl
ow1) / equilibrium vapor pressure (Thigh) Adsorption side relative vapor pressure φ2 = equilibrium vapor pressure (Tcool) / equilibrium vapor pressure (Tlow2) where the high temperature heat source temperature Thigh is to desorb the adsorbate from the adsorbent to regenerate the adsorbent. The temperature of the heating medium to be heated when
The low-temperature heat source temperature Tlow1 is the temperature of the adsorbate in the condenser, the low-temperature heat source temperature Tlow2 is the temperature of the heat medium that cools the adsorbent after regeneration when adsorbing it, and the cold heat generation temperature Tcool is the temperature of the adsorbate in the evaporator. The temperature, that is, the temperature of the generated cold heat,
means. The equilibrium vapor pressure can be calculated from the temperature using the equilibrium vapor pressure curve of the adsorbate.

【0012】以下、吸着質が水である場合の操作蒸気圧
範囲を例示する。高温熱源温度80℃、低温熱源温度3
0℃の場合、操作蒸気圧範囲はφ1〜φ2=0.09〜
0.29である。同様に高温熱源温度が60℃の場合、
操作相対水蒸気圧範囲はφ1〜φ2=0.21〜0.2
9である。また、自動車エンジンの排熱を利用して吸着
ヒートポンプを駆動する場合については特開2000−
140625号に詳細に記載されている。この報告を基
に推算すると、高温熱源温度約90℃、低温熱源温度3
0℃である。この場合、操作相対水蒸気圧範囲はφ1〜
φ2=0.06〜0.29である。
The operating vapor pressure range when the adsorbate is water will be exemplified below. High temperature heat source temperature 80 ℃, low temperature heat source temperature 3
When the temperature is 0 ° C, the operating vapor pressure range is φ1 to φ2 = 0.09 to
It is 0.29. Similarly, when the high temperature heat source temperature is 60 ° C,
Operating relative water vapor pressure range is φ1-φ2 = 0.21-0.2
It is 9. Further, in the case of driving the adsorption heat pump by utilizing the exhaust heat of the automobile engine, Japanese Patent Application Laid-Open No. 2000-
It is described in detail in No. 140625. Estimating based on this report, the high temperature heat source temperature is about 90 ° C and the low temperature heat source temperature is 3
It is 0 ° C. In this case, the operating relative water vapor pressure range is φ1-
φ2 = 0.06 to 0.29.

【0013】以上より、ガスエンジンコージェネレーシ
ョン、固体高分子型燃料電池または自動車エンジンの排
熱を利用して吸着ヒートポンプを駆動する場合、操作相
対水蒸気圧範囲はφ1〜φ2=0.05〜0.30、さ
らに限定すればφ1〜φ2=0.06〜0.29となる
と考えられる。つまり、加熱によって相対水蒸気圧を下
げて吸着材の再生する際に、相対水蒸気圧が0.05、
好ましくは0.06以上の範囲で脱着が完了しなければ
ならない。一方、吸着という点では、相対蒸気圧0.3
0、好ましくは0.29以下の範囲で充分な吸着量が得
られなければならない。つまり、この操作湿度範囲の中
で吸着量の変化が大きい材料が好ましい。したがって通
常は相対蒸気圧0.05〜0.30の範囲において、好
ましくは0.06〜0.29の範囲において吸着量が大
きく変化する材料が好ましい。
From the above, when the adsorption heat pump is driven by utilizing the exhaust heat of the gas engine cogeneration, the polymer electrolyte fuel cell or the automobile engine, the operating relative water vapor pressure range is φ1 to φ2 = 0.05 to 0. 30 and, if further limited, φ1 and φ2 = 0.06 to 0.29. That is, when the relative water vapor pressure is lowered by heating and the adsorbent is regenerated, the relative water vapor pressure is 0.05,
Desorption must be completed within a range of preferably 0.06 or more. On the other hand, in terms of adsorption, the relative vapor pressure is 0.3.
A sufficient adsorption amount must be obtained in the range of 0, preferably 0.29 or less. That is, a material having a large change in adsorption amount within this operating humidity range is preferable. Therefore, usually, a material whose adsorption amount largely changes in a relative vapor pressure range of 0.05 to 0.30, preferably in a range of 0.06 to 0.29 is preferable.

【0014】例えば吸着ヒートポンプにより、5.0k
W(=18,000kJ)の冷房能力を得る場合につい
て想定する。ここで、5.0kWは木造南向き和室16
畳程度、または一般的な自動車のエアコンに使用される
エアコンの冷房能力である。水の蒸発潜熱量は約250
0kJ/kgであり、吸脱着の切り替えサイクルを10
分(6回/時間)とすると、吸着量が0.18g/gで
ある場合、吸着材は6.7kg必要となる。吸着材必要
量Xkg=18000kJ/(2500kJ×0.18
kg/kg×6回/hr)=6.7kg。同様に吸着量
が0.15g/gであると8kg必要となる。また、切
り替えサイクルが6分(10回/時間)となると0.1
8g/gである場合4.0kg、0.15g/gである
場合4.8kgとなる。吸着量は多い程良いが、車両、
例えば自動車など、吸着ヒートポンプの大きさが限られ
たに搭載するには吸着材の重量および容積は少ない程良
い。この相反する要求を両立させるためには吸着量を増
すことが必要であり、吸着量が0.18g/g以上、さ
らには0.20g/g以上の吸着材が好ましいと考えら
れる。
For example, by an adsorption heat pump, 5.0 k
Suppose that a cooling capacity of W (= 18,000 kJ) is obtained. Here, 5.0 kW is a wooden room 16 facing south
It is the air-conditioning capacity of an air conditioner that is used for an air conditioner of a tatami mat or a general automobile. The latent heat of vaporization of water is about 250
0 kJ / kg, 10 cycles of adsorption / desorption switching
Assuming minutes (6 times / hour), if the adsorption amount is 0.18 g / g, 6.7 kg of the adsorbent is required. Required amount of adsorbent Xkg = 18000kJ / (2500kJ × 0.18
kg / kg × 6 times / hr) = 6.7 kg. Similarly, if the adsorption amount is 0.15 g / g, 8 kg is required. When the switching cycle reaches 6 minutes (10 times / hour), it is 0.1
When it is 8 g / g, it becomes 4.0 kg, and when it is 0.15 g / g, it becomes 4.8 kg. The larger the adsorption amount, the better, but
For example, the smaller the weight and volume of the adsorbent is, the better for mounting the adsorption heat pump on an automobile in a limited size. In order to satisfy these conflicting requirements, it is necessary to increase the adsorption amount, and it is considered that an adsorbent having an adsorption amount of 0.18 g / g or more, more preferably 0.20 g / g or more is preferable.

【0015】ここで、吸着ヒートポンプや除湿空調装置
は、吸着材が吸着質を吸脱着する能力を駆動源として利
用している。除湿空調装置においては処理空気中の水分
が吸着質である。吸着ヒートポンプにおいては吸着質で
ある吸着質として、水、エタノールおよびアセトンなど
が使用できるが、中でも安全性、価格、蒸発潜熱の大き
さから、水が最も好ましい。吸着質は蒸気として吸着材
に吸着されるが、吸着材は、狭い相対蒸気圧範囲で吸着
量の変化が大きい材料が好ましい。狭い相対蒸気圧範囲
で吸着量の変化が大きいと、同じ条件で同等の吸着量を
得るために必要な吸着材の量を減らし、冷却熱源と加熱
熱源の温度差が小さくても吸着ヒートポンプを駆動でき
るからである。
Here, the adsorption heat pump and the dehumidifying air conditioner use the ability of the adsorbent to adsorb and desorb the adsorbate as a drive source. In the dehumidifying air conditioner, the moisture in the treated air is the adsorbate. In the adsorption heat pump, water, ethanol, acetone, etc. can be used as the adsorbate which is the adsorbate, but among them, water is the most preferable from the viewpoint of safety, price and latent heat of vaporization. The adsorbate is adsorbed on the adsorbent as vapor, and the adsorbent is preferably a material having a large change in adsorption amount in a narrow relative vapor pressure range. If the change in adsorption amount is large in a narrow relative vapor pressure range, the amount of adsorbent required to obtain the same adsorption amount under the same conditions is reduced, and the adsorption heat pump is driven even if the temperature difference between the cooling heat source and the heating heat source is small. Because you can.

【0016】以下、本発明の吸着ヒートポンプに用いら
れる吸着剤(以下、本発明の吸着剤ということがあ
る。)について説明する。本発明では吸着材としてゼオ
ライトを用いるが、そのフレームワーク密度は10.0
T/1,000Å3以上16.0T/1,000Å3
下、好ましくは10.0T/1,000Å3以上15.
0T/1,000Å3以下である。ここでフレームワー
ク密度とは、ゼオライトの1,000Å3あたりの酸素
以外の骨格を構成する元素の数を意味し、この値はゼオ
ライトの構造により決まるものである。
The adsorbent used in the adsorption heat pump of the present invention (hereinafter sometimes referred to as the adsorbent of the present invention) will be described below. In the present invention, zeolite is used as the adsorbent, and its framework density is 10.0.
T / 1,000 Å 3 or more 16.0T / 1,000Å 3 or less, preferably 10.0T / 1,000Å 3 to 15.
It is 0T / 1,000Å 3 or less. Here, the framework density means the number of elements constituting the skeleton other than oxygen per 1,000 Å 3 of zeolite, and this value is determined by the structure of zeolite.

【0017】即ち、フレームワーク密度は細孔容量と相
関があり、一般的に、より小さいフレームワーク密度の
ゼオライトがより大きい細孔容量を有し、したがって吸
着容量が大きくなる。フレームワーク密度が16.0T
/1,000Å3より大きいと吸着可能な細孔容積が小
さくなり、吸着量が不十分となるため吸着ヒートポンプ
および除湿空調装置の吸着材として適さない。一方、フ
レームワーク密度が10.0T/1,000Å3より小
さいと吸着可能な細孔容積は大きくなるが物質の密度が
小さくなるため好ましくない。
That is, framework density correlates with pore volume, and generally zeolites with smaller framework densities have larger pore capacities and therefore higher adsorption capacities. Framework density is 16.0T
If it is larger than / 1,000 Å 3, the pore volume that can be adsorbed becomes small and the adsorbed amount becomes insufficient, so it is not suitable as an adsorbent for an adsorption heat pump and a dehumidifying air conditioner. On the other hand, if the framework density is less than 10.0 T / 1,000 Å 3, the pore volume that can be adsorbed increases, but the density of the substance decreases, which is not preferable.

【0018】尚、IZAのAtlas Of Zeolite Structure
Types (1996, ELSEVIER)に構造とフレームワーク密度
の関係、細孔径が記載されている。上記フレームワーク
密度を満たすゼオライトの構造としては、IZAが定め
るコードで示すと、AFG、MER、LIO、LOS、
PHI、BOG、ERI、OFF、PAU、EAB、A
FT、LEV、LTN、AEI、AFR、AFX、GI
S、KFI、CHA、GME、THO、MEI、VF
I、AFS、LTA、FAU、RHO、DFO、EM
T、AFY、*BEA等があり、好ましくはAEI、G
IS、KFI、CHA、GME、VFI、AFS、LT
A、FAU、RHO、EMT、AFY、*BEAが挙げ
られる。
The IZA Atlas Of Zeolite Structure
Types (1996, ELSEVIER) describes the relationship between structure and framework density and pore size. As the structure of zeolite satisfying the above framework density, AFG, MER, LIO, LOS,
PHI, BOG, ERI, OFF, PAU, EAB, A
FT, LEV, LTN, AEI, AFR, AFX, GI
S, KFI, CHA, GME, THO, MEI, VF
I, AFS, LTA, FAU, RHO, DFO, EM
T, AFY, * BEA, etc., preferably AEI, G
IS, KFI, CHA, GME, VFI, AFS, LT
A, FAU, RHO, EMT, AFY, * BEA are mentioned.

【0019】又、ゼオライトの構造は、International
Zeolite Association(IZA)が定めるゼオライト構造にお
いてCHA構造、AEI構造又はERI構造を有するゼ
オライトが好ましい。尚、ゼオライトの構造は粉末XR
D(粉末X線回折によりXRDパターンを測定し、Co
llection of Simulated XRD
Powder Patterns For Zeol
ite(1996,ELSEVIER)に記載されたX
RDパターンと比較して決定する。
The structure of zeolite is International
Zeolite having a CHA structure, an AEI structure or an ERI structure in the zeolite structure defined by Zeolite Association (IZA) is preferable. The structure of zeolite is powder XR
D (XRD pattern was measured by powder X-ray diffraction, Co
reflection of Simulated XRD
Powder Patterns For Zeol
X described in ITE (1996, ELSEVIER)
Determined by comparison with the RD pattern.

【0020】尚、上記例示に限らず、フレームワーク密
度がこの領域内にあれば、本発明においての吸着材とし
て好適に使用できると考えられる。本発明の吸着材の細
孔径は3Å以上10Å以下である。中でも、3Å以上、
8Å以下が好ましく、3Å以上、7.5Å以下が好まし
い。細孔径が10Åより大きいと目的とする相対湿度で
吸着が起こらなくなるため不適であり、細孔径が3Åよ
り小さいと吸着質である水分子が吸着材に拡散しにくく
なり不適である。特に、骨格構造にアルミニウムとリン
を含むゼオライト、更には、疎水性を示し、ALPOと
称されるアルミノフォスフェートにおいて、この傾向が
顕著である。
Not limited to the above examples, if the framework density is within this region, it is considered that the framework can be preferably used as the adsorbent in the present invention. The pore size of the adsorbent of the present invention is 3Å or more and 10Å or less. Above all, 3Å or more,
It is preferably 8 Å or less, more preferably 3 Å or more and 7.5 Å or less. If the pore size is larger than 10Å, adsorption will not occur at the target relative humidity, which is unsuitable, and if the pore size is smaller than 3Å, water molecules that are adsorbates are less likely to diffuse into the adsorbent, which is unsuitable. In particular, this tendency is remarkable in the zeolite containing aluminum and phosphorus in the skeleton structure and further in the aluminophosphate called ALPO which exhibits hydrophobicity.

【0021】更に、本発明の吸着材は微分吸着熱が40
kJ/mol以上65kJ/mol以下である。即ち、
100℃以下の熱源で脱着する必要がある吸着ヒートポ
ンプ及び除湿空調装置の吸着材では脱着しやすいことも
重要な特性である。脱着しやすさは吸着力と反比例す
る。よって、吸着の度合いを示す指標である吸着熱は水
の凝縮潜熱に近いことが望ましく、またこれ以上小さく
なることはなく、40kJ/mol以上である。又、我
々の検討によれば、微分吸着熱が65kJ/molより大きい
と100℃以下の熱源で脱着することが困難となる。よ
って、水の凝縮潜熱以上、65kJ/mol以下の微分吸着熱
を示すゼオライトが好ましい。微分吸着熱は、異なる温
度で吸着等温線を測定し、クラジウス−クラペイロンの
式から算出する。今回は25℃と40℃の二温度で吸着
等温線を測定し、その結果から微分吸着熱を算出する方
法を採用した。
Further, the adsorbent of the present invention has a differential heat of adsorption of 40.
It is not less than kJ / mol and not more than 65 kJ / mol. That is,
It is also an important property that the adsorption heat pump and the adsorbent of the dehumidifying air conditioner that need to be desorbed with a heat source of 100 ° C. or less are easily desorbed. Ease of desorption is inversely proportional to adsorption force. Therefore, it is desirable that the heat of adsorption, which is an index indicating the degree of adsorption, be close to the latent heat of condensation of water, and it does not decrease any further and is 40 kJ / mol or more. According to our study, if the heat of differential adsorption is larger than 65 kJ / mol, it is difficult to desorb with a heat source of 100 ° C. or lower. Therefore, a zeolite having a differential heat of adsorption of not less than the latent heat of condensation of water and not more than 65 kJ / mol is preferable. The differential heat of adsorption is calculated from the Clausius-Clapeyron equation by measuring adsorption isotherms at different temperatures. This time, the method of measuring the adsorption isotherm at two temperatures of 25 ° C. and 40 ° C. and calculating the differential heat of adsorption from the results was adopted.

【0022】本発明の吸着材は上記三条件を同時に満た
すことが必要で、一つでも条件を満たさない材料は本発
明の目的には適さない。本発明の吸着材であるゼオライ
トは、骨格構造にアルミニウムとリンを含むのが好まし
い。ここでいうゼオライトは天然のゼオライトでも人工
のゼオライトでもよく、例えば人工のゼオライトではIn
ternational Zeolite Association (IZA)の規定によ
るアルミノフォスフェート類が含まれる。通称ALPO
と称されアルミノフォスフェートが特に好ましい。
The adsorbent of the present invention needs to satisfy the above three conditions at the same time, and a material that does not satisfy even one of the conditions is not suitable for the purpose of the present invention. The zeolite that is the adsorbent of the present invention preferably contains aluminum and phosphorus in its skeletal structure. The zeolite here may be a natural zeolite or an artificial zeolite.
Includes aluminophosphates defined by the ternational Zeolite Association (IZA). Commonly known as ALPO
And aluminophosphates are particularly preferred.

【0023】本発明で用いる特に好ましい吸着材の具体
例としてALPO−34、ALPO−18、ALPO−
17が挙げられ、前二者が特に好ましい。ALPO−3
4はCHA型(フレームワーク密度=14.6T/1,
000Å3、細孔径3.8×3.8Å)のゼオライト、
ALPO−18はAEI型(フレームワーク密度=1
4.8T/1,000Å3、細孔径3.8×3.8Å)
のゼオライト、ALPO−17はERI型(フレームワ
ーク密度=15.7T/1000Å3細孔径3.6×
5.1Å)のゼオライトである。
Specific examples of the particularly preferable adsorbent used in the present invention include ALPO-34, ALPO-18, and ALPO-.
No. 17, and the former two are particularly preferable. ALPO-3
4 is CHA type (framework density = 14.6T / 1,
000Å 3 , zeolite with a pore size of 3.8 × 3.8Å),
ALPO-18 is AEI type (framework density = 1
4.8T / 1,000Å 3 , Pore size 3.8 × 3.8Å)
Zeolite, ALPO-17, is ERI type (framework density = 15.7T / 1000Å 3 pore size 3.6 x
It is a zeolite of 5.1Å).

【0024】更に、本発明で用いる吸着材は、相対蒸気
圧0.05以上0.30以下の範囲に、相対蒸気圧が
0.15変化したときに水の吸着量変化が0.18g/
g以上、好ましくは0.20g/g以上である相対蒸気
圧領域を有する吸着材であり、好ましくは、相対蒸気圧
0.05以上0.20以下の範囲に、相対蒸気圧が0.
15変化したときに水の吸着量変化が0.18g/g以
上、好ましくは0.20g/g以上である相対蒸気圧領
域を有する吸着材である。尚、本発明の水蒸気吸着等温
線は、吸着温度25℃における吸着等温線であり、相対
蒸気圧と水の吸着量変化は水蒸気吸着等温線から求めら
れる。
Further, in the adsorbent used in the present invention, when the relative vapor pressure changes by 0.15, the adsorption amount of water changes by 0.18 g /
It is an adsorbent having a relative vapor pressure region of not less than 0.2 g and preferably not less than 0.20 g / g, and preferably in the range of not less than 0.05 and not more than 0.20 relative vapor pressure.
It is an adsorbent having a relative vapor pressure region in which a change in the amount of water adsorbed when it changes 15 is 0.18 g / g or more, preferably 0.20 g / g or more. The water vapor adsorption isotherm of the present invention is an adsorption isotherm at an adsorption temperature of 25 ° C, and changes in relative vapor pressure and water adsorption amount can be obtained from the water vapor adsorption isotherm.

【0025】本発明の特徴の1つは上記特性を有する吸
着材を用いる点にある。この吸着材は吸着ヒートポンプ
または除湿空調装置を代表とする、吸着質の吸脱着部を
備えた従来公知の各種の空調装置の吸着部に使用でき
る。なお、該除湿空調装置とはいわゆるデシカント空調
装置と同義である。また、狭い範囲の相対蒸気圧変化で
大きな吸着量変化を得られることから、吸着材の充填量
が限られる吸着ヒートポンプ、例えば車両用空調装置等
に適している。
One of the features of the present invention is that an adsorbent having the above characteristics is used. This adsorbent can be used in the adsorbing part of various conventionally known air conditioners having an adsorbing / desorbing part for adsorbates, which is represented by an adsorbent heat pump or a dehumidifying air conditioner. The dehumidifying air conditioner is synonymous with a so-called desiccant air conditioner. Further, since a large change in the adsorption amount can be obtained by changing the relative vapor pressure in a narrow range, it is suitable for an adsorption heat pump having a limited adsorbent filling amount, such as a vehicle air conditioner.

【0026】以下、上記した吸着材を用いる本発明の吸
着ヒートポンプまたは除湿空調装置の作用について、図
1に記載した機器構成の吸着ヒートポンプにより具体的
に説明するが、本発明の吸着ヒートポンプまたは除湿空
調装置はこれに限定されるものではない。本発明の吸着
ヒートポンプの一例の概念図を図1に示す。図1に示す
吸着ヒートポンプは、吸着質を吸脱着可能な吸着材と、
吸着材が充填され吸着質の吸脱着により発生した熱を熱
媒に伝達する吸脱着部である吸着塔1および2と、吸着
質の蒸発により得られた冷熱を外部へ取り出す蒸発器4
と、吸着質の凝縮により得られた温熱を外部へ放出する
凝縮器5から構成されている。なお、吸着ヒートポンプ
を操作する場合には運転に必要な吸脱着量を得られるよ
うに環境温度における吸着等温線から操作条件を求め、
通常は装置を運転する上で最大の吸脱着量を得られるよ
うに決定する。
The operation of the adsorption heat pump or dehumidifying air conditioner of the present invention using the above-mentioned adsorbent will be specifically described below with reference to the adsorption heat pump having the equipment structure shown in FIG. 1. The adsorption heat pump or dehumidifying air conditioner of the present invention will be described below. The device is not limited to this. A conceptual diagram of an example of the adsorption heat pump of the present invention is shown in FIG. The adsorption heat pump shown in FIG. 1 includes an adsorbent capable of adsorbing and desorbing an adsorbate,
Adsorption towers 1 and 2 which are filled with an adsorbent and which transfer heat generated by adsorption / desorption of an adsorbate to a heat medium, and an evaporator 4 for extracting cold heat obtained by evaporation of the adsorbate to the outside.
And a condenser 5 that releases the heat generated by the condensation of the adsorbate to the outside. When operating the adsorption heat pump, determine the operating conditions from the adsorption isotherm at ambient temperature so that the adsorption / desorption amount required for operation can be obtained.
Usually, it is determined so that the maximum adsorption / desorption amount can be obtained when the device is operated.

【0027】図4に示すごとく、吸着材が充填された吸
着塔1及び2は、吸着質配管30により相互に接続さ
れ、該吸着質配管30には制御バルブ31〜34を設け
る。ここで、吸着質は吸着質配管内で吸着質の蒸気また
は吸着質の液体及び蒸気との混合物として存在する。吸
着質配管30には蒸発器4及び凝縮器5が接続されてい
る。吸着塔1及び2は蒸発器4、凝縮器5の間に並列に
接続されており、凝縮器5と蒸発器4の間には凝縮器に
て凝縮された吸着質を蒸発器4に戻すための戻し配管3
を設ける。なお、符号41は蒸発器4からの冷房出力と
なる冷水の入口、符号51は凝縮器5に対する冷却水の
入口である。符号42及び52はそれぞれ冷水及び冷却
水の出口である。また、冷水配管41及び42には、室
内空間(空調空間)と熱交換するための室内機300
と、冷水を循環するポンプ301が接続されている。
As shown in FIG. 4, the adsorption towers 1 and 2 filled with the adsorbent are connected to each other by an adsorbate pipe 30, and the adsorbate pipe 30 is provided with control valves 31 to 34. Here, the adsorbate exists in the adsorbate pipe as a vapor of the adsorbate or a mixture of the liquid and vapor of the adsorbate. An evaporator 4 and a condenser 5 are connected to the adsorbate pipe 30. The adsorption towers 1 and 2 are connected in parallel between the evaporator 4 and the condenser 5, and between the condenser 5 and the evaporator 4 to return the adsorbate condensed in the condenser to the evaporator 4. Return piping 3
To provide. Reference numeral 41 is an inlet of cold water that serves as cooling output from the evaporator 4, and reference numeral 51 is an inlet of cooling water to the condenser 5. Reference numerals 42 and 52 are cold water and cooling water outlets, respectively. In addition, the cold water pipes 41 and 42 have an indoor unit 300 for exchanging heat with the indoor space (air-conditioned space).
And a pump 301 for circulating cold water is connected.

【0028】また、吸着塔1には熱媒配管11が、吸着
塔2には熱媒配管21がそれぞれ接続され、該熱媒配管
11及び21には、それぞれ切り替えバルブ115及び
116並びに215及び216が設けてある。また、熱
媒配管11及び21はそれぞれ吸着塔1及び2内の吸着
材を加熱または冷却するための加熱源または冷却源とな
る熱媒を流す。熱媒は、特に限定されず、吸着塔内の吸
着材を有効に加熱・冷却できればよい。
A heat medium pipe 11 is connected to the adsorption tower 1 and a heat medium pipe 21 is connected to the adsorption tower 2, and the changeover valves 115 and 116 and 215 and 216 are connected to the heat medium pipes 11 and 21, respectively. Is provided. Further, the heat medium pipes 11 and 21 flow the heat medium as a heating source or a cooling source for heating or cooling the adsorbents in the adsorption towers 1 and 2, respectively. The heat medium is not particularly limited as long as it can effectively heat and cool the adsorbent in the adsorption tower.

【0029】温水は切り替えバルブ115、116、2
15、及び216の開閉により、入口113及び/又は
213より導入され、各吸着塔1及び/又は2を通過
し、出口114及び/又は214より導出される。冷却
水も同様の切り替えバルブ115、116、215、及
び216の開閉により、入口111及び/又は211よ
り導入され、各吸着器1及び/又は2を通過し、出口1
12及び/又は212より導出される。また、熱媒配管
11及び/又は21には、図示しないが外気と熱交換可
能に配設された室外機、温水を発生する熱源、熱媒を循
環するポンプが接続されている。熱源としては特に限定
されず、例えば自動車エンジン、ガスエンジンやガスタ
ービンなどのコジェネレーション機器および燃料電池な
どが挙げられ、また、自動車用として用いる時には、自
動車エンジン、自動車用燃料電池が好ましい熱源の例と
して挙げられる。
Hot water is supplied to the switching valves 115, 116, 2
By opening and closing 15, 15 and 216, it is introduced through the inlet 113 and / or 213, passes through the adsorption towers 1 and / or 2, and is led out through the outlet 114 and / or 214. The cooling water is also introduced from the inlets 111 and / or 211 by opening / closing the similar switching valves 115, 116, 215, and 216, passes through the adsorbers 1 and / or 2, and the outlet 1
12 and / or 212. Further, to the heat medium pipes 11 and / or 21, an outdoor unit (not shown) arranged to be able to exchange heat with the outside air, a heat source for generating hot water, and a pump for circulating the heat medium are connected. The heat source is not particularly limited, and examples thereof include an automobile engine, a cogeneration device such as a gas engine and a gas turbine, and a fuel cell, and when used for an automobile, an automobile engine and an automobile fuel cell are examples of preferable heat sources. As.

【0030】図1を用いて吸着式ヒートポンプの運転方
法について説明する。第1行程では制御バルブ31及び
34を閉鎖、制御バルブ32及び33を解放し、吸着塔
1において再生工程を、吸着塔2において吸着工程を行
う。また、切り替えバルブ115、116、215、及
び216を操作し、熱媒パイプ11には温水を、熱媒パ
イプ21には冷却水を流通させる。
A method of operating the adsorption heat pump will be described with reference to FIG. In the first step, the control valves 31 and 34 are closed, the control valves 32 and 33 are opened, and the regeneration step is performed in the adsorption tower 1 and the adsorption step is performed in the adsorption tower 2. Further, the switching valves 115, 116, 215, and 216 are operated to cause hot water to flow through the heat medium pipe 11 and cool water through the heat medium pipe 21.

【0031】吸着塔2を冷却する際には冷却塔等の熱交
換器によって外気、河川水等と熱交換して冷やされた冷
却水を熱媒パイプ21を通して導入し、通常30〜40
℃程度に冷却される。また、制御バルブ32の開操作に
より蒸発器4内の水は蒸発し、水蒸気となって吸着塔2
に流れ込み、吸着材に吸着される。蒸発温度での飽和蒸
気圧と吸着材温度(一般的には20〜50℃、好ましく
は20〜45℃、更に好ましくは30〜40℃)に対応
した吸着平衡圧との差により水蒸気移動が行われ、蒸発
器4においては蒸発の気化熱に対応した冷熱、即ち冷房
出力が得られる。冷却水の温度と生成する冷水温度との
関係から吸着側相対蒸気圧φ2(ここでφ2は生成する
冷水温度における吸着質の平衡蒸気圧を、冷却水の温度
における吸着質の平衡蒸気圧で除すことにより求める)
が決定されるが、φ2は本発明で規定した吸着材が最大
に水蒸気を吸着する相対蒸気圧より大きくなるよう運転
することが好ましい。φ2が本発明で規定した吸着材が
最大に水蒸気を吸着する相対蒸気圧より小さい場合に
は、吸着材の吸着能を有効に利用できず、運転効率が悪
くなるからである。φ2は環境温度等により適宜設定す
ることができるが、φ2における吸着量が通常0.20
以上、好ましくは0.29以上、より好ましくは0.3
0以上となる温度条件で吸着ヒートポンプを運転する。
When the adsorption tower 2 is cooled, the cooling water which has been cooled by exchanging heat with outside air, river water, etc. by a heat exchanger such as a cooling tower is introduced through the heat medium pipe 21, and usually 30-40.
It is cooled to about ℃. Further, by opening the control valve 32, the water in the evaporator 4 evaporates to become water vapor and the adsorption tower 2
Flows into the and is adsorbed by the adsorbent. Water vapor transfer occurs due to the difference between the saturated vapor pressure at the evaporation temperature and the adsorption equilibrium pressure corresponding to the adsorbent temperature (generally 20 to 50 ° C, preferably 20 to 45 ° C, more preferably 30 to 40 ° C). In the evaporator 4, cold heat corresponding to the heat of vaporization of evaporation, that is, cooling output is obtained. From the relationship between the temperature of the cooling water and the temperature of the generated cold water, the adsorption-side relative vapor pressure φ2 (where φ2 is the equilibrium vapor pressure of the adsorbate at the temperature of the generated cooling water is divided by the equilibrium vapor pressure of the adsorbate at the temperature of the cooling water). To obtain)
However, it is preferable to operate so that φ2 becomes larger than the relative vapor pressure at which the adsorbent specified in the present invention maximally adsorbs water vapor. This is because when φ2 is smaller than the relative vapor pressure at which the adsorbent specified in the present invention adsorbs water vapor to the maximum, the adsorbing ability of the adsorbent cannot be effectively utilized and the operation efficiency deteriorates. φ2 can be appropriately set depending on the environmental temperature, etc., but the adsorption amount at φ2 is usually 0.20.
Or more, preferably 0.29 or more, more preferably 0.3
The adsorption heat pump is operated under the temperature condition of 0 or more.

【0032】再生工程にある吸着塔1は通常40〜10
0℃、好ましくは50〜98℃、更に好ましくは60〜
95℃の温水により加熱され、前記温度範囲に対応した
平衡蒸気圧になり、凝縮器5の凝縮温度30〜40℃
(これは凝縮器を冷却している冷却水の温度に等しい)
での飽和蒸気圧で凝縮される。吸着塔1から凝縮器5へ
水蒸気が移動し、凝縮されて水となる。水は戻し配管3
により蒸発器4へ戻される。冷却水の温度と再生に利用
される熱媒(温水)温度との関係から脱着側相対蒸気圧
φ1(ここでφ1は冷却水の温度における吸着質の平衡
蒸気圧を、再生に利用される熱媒(温水)温度における
吸着質の平衡蒸気圧で除すことにより求める)が決定さ
れるが、φ1は本発明で規定する吸着剤が急激に水蒸気
を吸着する相対蒸気圧より小さくなるよう運転すること
が好ましい。もし、φ1が本発明で規定する吸着剤が急
激に水蒸気を吸着する相対蒸気圧より大きいと、本発明
で規定する吸着剤の優れた吸着量が有効に利用できない
からである。φ1は環境温度等により適宜設定すること
ができるが、φ1における吸着量が通常0.06以下、
好ましくは0.05以下となる温度条件で吸着ヒートポ
ンプを運転する。なお、φ1における吸着質の吸着量と
φ2における吸着質の吸着量との差が、通常0.18g
/g以上、好ましくは0.20g/g以上、さらに好ま
しくは0.25g/g以上となるように運転する。以上
が第1行程である。
The adsorption tower 1 in the regeneration step usually has a capacity of 40 to 10
0 ° C, preferably 50 to 98 ° C, more preferably 60 to
It is heated by hot water of 95 ° C to reach the equilibrium vapor pressure corresponding to the above temperature range, and the condensation temperature of the condenser 5 is 30 to 40 ° C.
(This is equal to the temperature of the cooling water cooling the condenser)
It is condensed at the saturated vapor pressure at. Water vapor moves from the adsorption tower 1 to the condenser 5 and is condensed into water. Water return pipe 3
Is returned to the evaporator 4. Desorption side relative vapor pressure φ1 (where φ1 is the equilibrium vapor pressure of the adsorbate at the temperature of the cooling water, the heat used for regeneration) from the relationship between the temperature of the cooling water and the temperature of the heat medium (hot water) used for regeneration. (Determined by dividing by the equilibrium vapor pressure of the adsorbate at the medium (warm water) temperature) is determined, and φ1 is operated so that the adsorbent specified in the present invention becomes smaller than the relative vapor pressure at which the adsorbent rapidly adsorbs water vapor. It is preferable. If φ1 is larger than the relative vapor pressure at which the adsorbent specified by the present invention rapidly adsorbs water vapor, the excellent adsorption amount of the adsorbent specified by the present invention cannot be effectively utilized. φ1 can be appropriately set depending on the environmental temperature, etc., but the adsorption amount at φ1 is usually 0.06 or less,
The adsorption heat pump is preferably operated under a temperature condition of 0.05 or less. The difference between the adsorbed amount of the adsorbate at φ1 and the adsorbed amount of the adsorbate at φ2 is usually 0.18 g.
/ G or more, preferably 0.20 g / g or more, more preferably 0.25 g / g or more. The above is the first step.

【0033】次の第2行程では、吸着塔1が吸着工程、
吸着塔2が再生工程となるように、制御バルブ31〜3
4及び切り替えバルブ115、116、215、及び2
16を切り替えることで、同様に蒸発器4から冷熱、即
ち冷房出力を得ることができる。以上の第1及び第2工
程を順次切り替えることで吸着ヒートポンプの連続運転
を行う。
In the next second step, the adsorption tower 1 uses the adsorption step,
The control valves 31 to 3 are arranged so that the adsorption tower 2 is in the regeneration process.
4 and switching valves 115, 116, 215, and 2
By switching 16 the cold heat, that is, the cooling output can be obtained from the evaporator 4 in the same manner. The adsorption heat pump is continuously operated by sequentially switching the above first and second steps.

【0034】なお、ここでは2基の吸着塔を設置した場
合の運転方法を説明したが、吸着材が吸着した吸着質の
脱着を適宜おこなうことにより、いずれかの吸着塔が吸
着質を吸着できる状態を維持できれば吸着塔は何基設置
してもよい。
Although the operation method in the case where two adsorption towers are installed is described here, either adsorbent can adsorb the adsorbate by appropriately desorbing the adsorbate adsorbed by the adsorbent. Any number of adsorption towers may be installed as long as the state can be maintained.

【0035】[0035]

【実施例】以下、実施例により本発明を更に具体的に説
明するが、本発明は、その要旨を越えない限り、以下の
実施例により限定されるものではない。 合成例1 ALPO−34の合成 ALPO−34をMicroporous and Mesoporous Materia
ls 30, (1999), 145-153にしたがって合成した。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples unless it exceeds the gist. Synthesis Example 1 Synthesis of ALPO-34 ALPO-34 was prepared from Microporous and Mesoporous Materia
It was synthesized according to ls 30, (1999), 145-153.

【0036】85%リン酸7.7gと水20gの溶液に
ベーマイト4.6g(25%含水)を加え1時間攪拌し
た。これにモルホリン7.25gと水38.4gの溶液
を加え、さらに47%フッ化水素水溶液を加えて3時間
攪拌した。これをテフロン(登録商標)内張りのステン
レス製オートクレーブに仕込み、200℃で10日間加
熱した。生成物を濾過、水洗、乾燥し、560℃6時間
空気気流下焼成する事により、AlPO−34を得た。
このゼオライトのXRDを測定したところ、CHA構造
であった。 合成例2 ALPO−18の合成 ALPO−18を特公平1−57041にしたがって合
成した。85%リン酸16.1gと水30gの溶液にベ
ーマイト9.52g(25%含水)を加え、1時間攪拌
した。これに35%テトラエチルアンモニウムヒドロキ
シド水溶液39.38g、37%塩酸2.27gを加
え、3時間攪拌した。これをテフロン内張りのステンレ
ス製オートクレーブに仕込み、150℃14日間加熱し
た。生成物を濾過、水洗、乾燥し、560℃6時間空気
気流下焼成する事により、ALPO−18を得た。この
ゼオライトのXRDを測定したところ、AEI構造であ
った。 実施例1〜2 合成例1のALPO−34(実施例1)、合成例2のA
LPO−18(実施例2)について、以下の方法で25
℃における水蒸気吸着温線を求めた。
4.6 g of boehmite (containing 25% water) was added to a solution of 7.7 g of 85% phosphoric acid and 20 g of water, and the mixture was stirred for 1 hour. A solution of 7.25 g of morpholine and 38.4 g of water was added thereto, a 47% hydrogen fluoride aqueous solution was further added, and the mixture was stirred for 3 hours. This was placed in a stainless steel autoclave lined with Teflon (registered trademark) and heated at 200 ° C. for 10 days. The product was filtered, washed with water, dried, and calcined in an air stream at 560 ° C. for 6 hours to obtain AlPO-34.
When the XRD of this zeolite was measured, it had a CHA structure. Synthesis Example 2 Synthesis of ALPO-18 ALPO-18 was synthesized according to JP-B-1-57041. 9.52 g (25% water content) of boehmite was added to a solution of 16.1 g of 85% phosphoric acid and 30 g of water, and the mixture was stirred for 1 hour. To this, 39.38 g of a 35% tetraethylammonium hydroxide aqueous solution and 2.27 g of 37% hydrochloric acid were added, and the mixture was stirred for 3 hours. This was placed in a Teflon-lined stainless steel autoclave and heated at 150 ° C. for 14 days. The product was filtered, washed with water, dried, and calcined at 560 ° C. for 6 hours in an air stream to obtain ALPO-18. When the XRD of this zeolite was measured, it had an AEI structure. Examples 1-2 ALPO-34 of Synthesis Example 1 (Example 1), A of Synthesis Example 2
About LPO-18 (Example 2), 25
The water vapor adsorption temperature curve at ° C was determined.

【0037】吸着等温線測定装置:ベルソーブ18(日
本ベル(株)) 空気高温槽温度 :50℃、 吸着温度 :25℃、 初期導入圧力 :3.0torr、 導入圧力設定点数 :0、 飽和蒸気圧 :23.76mmHg、 平衡時間 :500秒。
Adsorption isotherm measuring device: Bellsorb 18 (Nippon Bell Co., Ltd.) Air high temperature tank temperature: 50 ° C., adsorption temperature: 25 ° C., initial introduction pressure: 3.0 torr, introduction pressure set point: 0, saturated vapor pressure : 23.76 mmHg, equilibration time: 500 seconds.

【0038】ALPO−34の25℃及び40℃におけ
る水蒸気の吸着等温線を図2に示す。図2から吸着温度
25℃における吸着等温線において、相対蒸気圧0.0
6付近で急激に水蒸気を吸着しており、相対蒸気圧範囲
0.05〜0.20の吸着量変化量は0.24g/gで
あることがわかる。尚、ALPO−34のフレームワー
ク密度は14.6T/1,000Å3、細孔径は3.8
×3.8Åである。又、図2に示す25℃と40℃での
吸着等温線からクラジウス−クラペイロンの式を用いて
微分吸着熱を求めると約60kJ/molとなる。
The adsorption isotherms of water vapor of ALPO-34 at 25 ° C. and 40 ° C. are shown in FIG. From FIG. 2, in the adsorption isotherm at an adsorption temperature of 25 ° C., a relative vapor pressure of 0.0
It can be seen that water vapor is rapidly adsorbed in the vicinity of 6, and the amount of change in adsorption amount in the relative vapor pressure range of 0.05 to 0.20 is 0.24 g / g. The framework density of ALPO-34 is 14.6T / 1,000Å 3 , and the pore size is 3.8.
× 3.8Å. Further, the differential heat of adsorption is about 60 kJ / mol when calculated from the adsorption isotherms at 25 ° C. and 40 ° C. shown in FIG. 2 using the Clausius-Clapeyron equation.

【0039】ALPO−18の吸着温度25℃における
水蒸気の吸着等温線を図3に示す。吸着等温線図3から
相対蒸気圧0.08付近で急激に水蒸気を吸着してお
り、相対蒸気圧範囲0.05〜0.20の吸着量変化量
は0.30g/gであることがわかる。尚、ALPO−
18はフレームワーク密度が14.8T/1,000Å
3、細孔径が3.8×3.8Åである。図3に示すとお
り25℃と40℃での吸着等温線からクラジウス−クラ
ペイロンの式を用いて微分吸着熱を求めると約60kJ/m
olとなる。
The adsorption temperature of ALPO-18 at 25 ° C.
The adsorption isotherm of water vapor is shown in FIG. Adsorption isotherm From Figure 3
Absorbs water vapor rapidly at a relative vapor pressure of around 0.08
The amount of change in adsorption amount in the relative vapor pressure range of 0.05 to 0.20
It can be seen that is 0.30 g / g. In addition, ALPO-
No. 18 has a framework density of 14.8T / 1,000Å
3, And the pore size is 3.8 × 3.8Å. As shown in FIG.
From the adsorption isotherms at 25 ° C and 40 ° C
Approximately 60 kJ / m when the differential heat of adsorption is calculated using the Peyron equation
It becomes ol.

【0040】参考例1 図4に、多孔質リン酸アルミニウム系モレキュラーシー
ブのAFI型(フレームワーク密度=17.3T/1,
000Å3、細孔径7.3×7.3Å)ゼオライトであ
るALPO−5の吸着等温線(Colloid Pol
ym Sci 277, p83〜88(1999),
Fig.1(吸着温度30℃)より引用)の吸着等温線
を示す。ALPO−5は相対蒸気圧0.25〜0.40
の範囲で吸着量が急激に上昇し、相対蒸気圧0.05〜
0.3の範囲で吸脱着させることは可能であるが、相対
蒸気圧0.15〜0.30の範囲での吸着量変化は0.
14g/gである。
Reference Example 1 FIG. 4 shows an AFI type porous aluminum phosphate-based molecular sieve (framework density = 17.3T / 1,
000Å 3 , Pore size 7.3 x 7.3Å) Adsorption isotherm (Colloid Pol) of ALPO-5 which is a zeolite
ym Sci 277, p83-88 (1999),
Fig. 1 (quoted from the adsorption temperature of 30 ° C.) is shown. ALPO-5 has a relative vapor pressure of 0.25 to 0.40
The adsorption amount rises sharply in the range of
It is possible to adsorb and desorb in the range of 0.3, but the change in adsorption amount in the range of relative vapor pressure of 0.15 to 0.30 is 0.
It is 14 g / g.

【0041】参考例2 図5にFAU型ゼオライト13X(フレームワーク密度
=12.7T/1,000Å、細孔径7.4×7.4
×7.4Å)の25℃の吸着等温線を示す(出典:蓄熱
・増熱技術(蓄熱・増熱技術編集委員会編)、株式会社
アイピーシー、P342)。FAU構造である13Xはフレ
ームワーク密度が12.7T/1,000Åと小さ
く、かつ細孔径も7.4×7.4×7.4Åと10Åよ
り小さく適しているが、図5に示すように極めて低い相
対蒸気圧域で吸着がおこり本発明で用いる相対蒸気圧域
での吸着量差は小さく、実用に耐えない。相対蒸気圧0.
05は図5では1.19Torr、相対蒸気圧0.20は4.75toor、相
対蒸気圧0.30は7.13Torrとなり、本発明で用いる0.05-
0.20の範囲、図5では1.19-4.75Torrでの吸着量差は約
0.06g/gである。これは13Xの微分吸着熱が全範囲におい
て65kJ/molより大きいため、極めて低相対蒸気圧域で吸
着がおこるためである。セ゛オライト13Xの微分吸着熱を図6
に示す(出典:蓄熱・増熱技術(蓄熱・増熱技術編集委
員会編)、株式会社アイピーシー、P342)。
Reference Example 2 FIG. 5 shows FAU type zeolite 13X (framework density = 12.7T / 1,000Å 3 , pore size 7.4 × 7.4).
Shows the adsorption isotherm at 25 ° C of × 7.4 Å) (Source: Heat storage / heat increasing technology (heat storage / heat increasing technology editorial committee edition), IPC Corporation, P342). 13X, which is a FAU structure, has a small framework density of 12.7T / 1,000Å 3 and a pore size of 7.4 × 7.4 × 7.4Å, which is smaller than 10Å and is suitable, but as shown in FIG. Adsorption occurs in an extremely low relative vapor pressure region, and the difference in the adsorption amount in the relative vapor pressure region used in the present invention is small, which is not practical. Relative vapor pressure 0.
In Fig. 5, 05 is 1.19 Torr, relative vapor pressure 0.20 is 4.75 toor, and relative vapor pressure 0.30 is 7.13 Torr.
In the range of 0.20, 1.15-4.75 Torr in Fig. 5, the difference in adsorption amount is about
It is 0.06 g / g. This is because the 13X differential heat of adsorption is greater than 65 kJ / mol over the entire range, so that adsorption occurs in an extremely low relative vapor pressure region. Figure 6 shows the heat of differential adsorption of Geolite 13X.
(Source: heat storage / heat increase technology (edited by the heat storage / heat increase technology), IPC Corporation, P342).

【0042】[0042]

【発明の効果】本発明で用いる吸着材は、従来のシリカ
ゲルやゼオライトと比較して同じ相対蒸気圧範囲におい
て吸着量がより多く変化するため、ほぼ同じ重量の吸着
材を用いてより多くの除湿効果を発生できる。更に、本
発明の、比較的低い相対蒸気圧の範囲で大きな吸脱着量
変化を示す吸着材を利用した吸着ヒートポンプまたは除
湿空調装置は、吸着材の吸脱着による水分吸着量の差が
大きく、低温度で吸着材の再生(脱着)が可能になるた
め、従来に比べて低温の熱源を利用して、効率よく吸着
ヒートポンプまたは除湿空調装置を駆動することができ
る。すなわち、本発明の吸着材によれば、100℃以下
の比較的低温の熱源で駆動する吸着ヒートポンプおよび
除湿空調装置を提供できる。
The adsorbent used in the present invention has a larger amount of adsorption in the same relative vapor pressure range as compared with conventional silica gel or zeolite. The effect can be generated. Furthermore, the adsorption heat pump or dehumidifying air conditioner using an adsorbent that exhibits a large change in adsorption / desorption amount in a relatively low relative vapor pressure range of the present invention has a large difference in the amount of adsorbed water due to adsorption / desorption of the adsorbent. Since it is possible to regenerate (desorb) the adsorbent at a temperature, it is possible to efficiently drive the adsorption heat pump or the dehumidifying air conditioner by using a heat source having a temperature lower than that in the past. That is, according to the adsorbent of the present invention, it is possible to provide an adsorption heat pump and a dehumidifying air conditioner that are driven by a heat source of a relatively low temperature of 100 ° C. or lower.

【図面の簡単な説明】[Brief description of drawings]

【図1】吸着ヒートポンプの概念図である。FIG. 1 is a conceptual diagram of an adsorption heat pump.

【図2】ALPO−34の25℃及び40℃の水蒸気吸
着等温線である。
FIG. 2 is a water vapor adsorption isotherm of ALPO-34 at 25 ° C. and 40 ° C.

【図3】ALPO−18の25℃及び40℃の水蒸気吸
着等温線である。
FIG. 3 shows water vapor adsorption isotherms of ALPO-18 at 25 ° C. and 40 ° C.

【図4】ALPO−5の水蒸気吸着等温線である。FIG. 4 is a water vapor adsorption isotherm of ALPO-5.

【図5】ゼオライト13Xの水蒸気吸着等温線である。FIG. 5 is a water vapor adsorption isotherm of zeolite 13X.

【図6】ゼオライト13Xの微分吸着熱図である。FIG. 6 is a differential adsorption heat diagram of zeolite 13X.

【符号の説明】[Explanation of symbols]

1 吸着塔 2 吸着塔 3 吸着質配管 4 蒸発器 5 凝縮器 11 熱媒配管 111冷却水入口 112冷却水出口 113温水入口 114温水出口 115切り替えバルブ 116切り替えバルブ 21 熱媒配管 211冷却水入口 212冷却水出口 213温水入口 214温水出口 215切り替えバルブ 216切り替えバルブ 30 吸着質配管 31 制御バルブ 32 制御バルブ 33 制御バルブ 34 制御バルブ 300室内機 301ポンプ 41 冷水配管(入口) 42 冷水配管(出口) 51 冷却水配管(入口) 52 冷却水配管(出口) 1 adsorption tower 2 adsorption tower 3 Adsorbate piping 4 evaporator 5 condenser 11 Heat medium piping 111 Cooling water inlet 112 cooling water outlet 113 hot water inlet 114 hot water outlet 115 switching valve 116 switching valve 21 Heat medium piping 211 Cooling water inlet 212 Cooling water outlet 213 Hot water inlet 214 Hot water outlet 215 switching valve 216 switching valve 30 Adsorbate piping 31 Control valve 32 control valve 33 Control valve 34 Control valve 300 indoor units 301 pump 41 Cold water piping (inlet) 42 Cold water piping (outlet) 51 Cooling water piping (inlet) 52 Cooling water piping (outlet)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 20/34 B01J 20/34 G B60H 1/32 621 B60H 1/32 621J 3/00 3/00 A (72)発明者 武脇 隆彦 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社内 (72)発明者 宅見 英昭 三重県四日市市東邦町1番地 三菱化学株 式会社内 (72)発明者 山崎 正典 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社内 (72)発明者 渡辺 展 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社内 Fターム(参考) 3L093 NN04 PP14 PP15 4D012 BA02 CB16 CD04 CG01 CG05 CG10 CK01 4D052 AA08 CD01 DA08 GB14 HA03 4G066 AA61B BA23 BA36 BA38 CA43 DA03 GA04 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B01J 20/34 B01J 20/34 G B60H 1/32 621 B60H 1/32 621J 3/00 3/00 A ( 72) Inventor Takahiko Takewaki 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa Mitsubishi Kagaku Co., Ltd. (72) Inventor Hideaki Tamiya 1 Toho-cho, Yokkaichi-shi, Mie Mitsubishi Chemical Co., Ltd. (72) Inventor Masanori Yamazaki Chuo 8-3-1, Ami-cho, Inashiki-gun, Ibaraki Mitsubishi Chemical Co., Ltd. (72) Inventor Watanabe Exhibition 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa Mitsubishi Chemical Co., Ltd. F-term (reference) 3L093 NN04 PP14 PP15 4D012 BA02 CB16 CD04 CG01 CG05 CG10 CK01 4D052 AA08 CD01 DA08 GB14 HA03 4G066 AA61B BA23 BA36 BA38 CA43 DA03 GA04

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 吸着質と、吸着質を吸脱着する吸着材を
備えた吸脱着部と、該吸脱着部に連結された吸着質の蒸
発を行う蒸発部と、該吸脱着部に連結された吸着質の凝
縮を行う凝縮部とを備えた吸着ヒートポンプにおいて、
該吸着材が A)フレームワーク密度が10.0T/1,000Å3
以上16.0T/1,000Å3以下、 B)細孔径が3Å以上10Å以下、かつ C)微分吸着熱が40kJ/mol以上65kJ/mol以下、であ
るゼオライトであることを特徴とする吸着ヒートポン
プ。
1. An adsorbate, an adsorbent / desorber having an adsorbent for adsorbing and desorbing the adsorbate, an evaporator for evaporating the adsorbate connected to the adsorbent / desorber, and an adsorbent / desorber connected to the adsorbent / desorber. In an adsorption heat pump equipped with a condensing unit that condenses the adsorbate,
The adsorbent has A) framework density of 10.0 T / 1,000Å 3
Above 16.0 T / 1,000 Å 3 or less, B) A zeolite having an pore diameter of 3 Å or more and 10 Å or less, and C) a differential heat of adsorption of 40 kJ / mol or more and 65 kJ / mol or less.
【請求項2】 該吸着材が、相対蒸気圧0.05以上
0.30以下の範囲に、相対蒸気圧が0.15変化した
ときに水の吸着量変化が0.18g/g以上である相対
蒸気圧域を有する吸着材である請求項1記載の吸着ヒー
トポンプ。
2. The adsorbent has a water vapor adsorption amount change of 0.18 g / g or more when the relative vapor pressure changes by 0.15 within a range of relative vapor pressure of 0.05 or more and 0.30 or less. The adsorption heat pump according to claim 1, which is an adsorbent having a relative vapor pressure range.
【請求項3】 吸着材が、相対蒸気圧0.05での吸着
量が0.05g/g以下である請求項1又は2に記載の
吸着ヒートポンプ。
3. The adsorption heat pump according to claim 1, wherein the adsorbent has an adsorption amount of 0.05 g / g or less at a relative vapor pressure of 0.05.
【請求項4】 該ゼオライトが、骨格構造にアルミニウ
ムとリンを含むゼオライトであることを特徴とする請求
項1〜3のいずれか1項に記載の吸着ヒートポンプ。
4. The adsorption heat pump according to claim 1, wherein the zeolite is a zeolite containing aluminum and phosphorus in its skeletal structure.
【請求項5】 該ゼオライトがアルミノフォスフェート
である請求項1〜4のいずれか1項に記載の吸着ヒート
ポンプ。
5. The adsorption heat pump according to claim 1, wherein the zeolite is aluminophosphate.
【請求項6】 請求項1〜5のいずれか1項に記載の吸
着ヒートポンプを車両室内の空調に使用することを特徴
とする車両用空調装置。
6. An air conditioning system for a vehicle, wherein the adsorption heat pump according to claim 1 is used for air conditioning of a vehicle interior.
【請求項7】 吸着材により水分が吸着される処理空気
の経路と、加熱源によって加熱された後、前記水分吸着
後の吸着材中の水分を脱着して再生する再生空気の経路
とを有する除湿空調装置において、該吸着材が A)フレームワーク密度が10.0T/1,000Å3
以上16.0T/1,000Å3以下、 B)細孔径が3Å以上10Å以下、かつ C)微分吸着熱が40kJ/mol以上65kJ/mol以下である
ゼオライトであることを特徴とする除湿空調装置。
7. A path for treated air in which water is adsorbed by the adsorbent, and a path for regenerated air that is heated by a heating source and then desorbs and regenerates the water in the adsorbent after adsorbing the water. In the dehumidifying air conditioner, the adsorbent has A) a framework density of 10.0 T / 1,000Å 3
Above 16.0 T / 1,000 Å 3 or less, B) Zeolite having a pore size of 3 Å or more and 10 Å or less, and C) differential adsorption heat of 40 kJ / mol or more and 65 kJ / mol or less.
【請求項8】 該吸着材が、相対蒸気圧0.05以上
0.30以下の範囲に、相対蒸気圧が0.15変化した
ときに水の吸着量変化が0.18g/g以上である相対
蒸気圧域を有する吸着材である請求項7記載の除湿空調
装置。
8. The adsorbent has a change in the adsorption amount of water of 0.18 g / g or more when the relative vapor pressure changes by 0.15 within a range of the relative vapor pressure of 0.05 or more and 0.30 or less. The dehumidifying air conditioner according to claim 7, which is an adsorbent having a relative vapor pressure range.
【請求項9】 吸着材が、相対蒸気圧0.05での吸着
量が0.05g/g以下である請求項7又は8記載の除
湿空調装置。
9. The dehumidifying air conditioner according to claim 7, wherein the adsorbent has an adsorption amount of 0.05 g / g or less at a relative vapor pressure of 0.05.
【請求項10】 該ゼオライトが骨格構造にアルミニウ
ムとリンを含むゼオライトであることを特徴とする請求
項7〜9項のいずれか1項に記載の除湿空調装置。
10. The dehumidifying air-conditioning device according to claim 7, wherein the zeolite is a zeolite containing aluminum and phosphorus in its skeletal structure.
【請求項11】 該ゼオライトがアルミノフォスフェー
トである請求項7〜10のいずれか1項に記載の除湿空
調装置。
11. The dehumidifying air conditioner according to claim 7, wherein the zeolite is aluminophosphate.
JP2001309856A 2001-10-05 2001-10-05 Adsorption heat pump, vehicle air conditioner, dehumidifying air conditioner, and method of using adsorbent Expired - Fee Related JP4669914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001309856A JP4669914B2 (en) 2001-10-05 2001-10-05 Adsorption heat pump, vehicle air conditioner, dehumidifying air conditioner, and method of using adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001309856A JP4669914B2 (en) 2001-10-05 2001-10-05 Adsorption heat pump, vehicle air conditioner, dehumidifying air conditioner, and method of using adsorbent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008136006A Division JP4710023B2 (en) 2008-05-23 2008-05-23 Adsorption heat pump, vehicle air conditioner, dehumidifying air conditioner, and method of using adsorbent

Publications (3)

Publication Number Publication Date
JP2003114067A true JP2003114067A (en) 2003-04-18
JP2003114067A5 JP2003114067A5 (en) 2005-06-16
JP4669914B2 JP4669914B2 (en) 2011-04-13

Family

ID=19128935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001309856A Expired - Fee Related JP4669914B2 (en) 2001-10-05 2001-10-05 Adsorption heat pump, vehicle air conditioner, dehumidifying air conditioner, and method of using adsorbent

Country Status (1)

Country Link
JP (1) JP4669914B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090458A1 (en) * 2003-04-01 2004-10-21 Mitsubishi Chemical Corporation Adsorbent for adsorption heat pump, adsorbent for moisture regulating conditioner, adsorption heat pump and moisture regulating conditioner
WO2004113227A1 (en) * 2003-06-20 2004-12-29 Mitsubishi Chemical Corporation Zeolite, method for production thereof, adsorbent comprising said zeolite, heat utilization system, adsorption heat pump, heating and cooling storage system and humidity controlling air-conditioning apparatus
WO2005011859A1 (en) * 2003-07-30 2005-02-10 Tosoh Corporation Adsorbing agent comprising zeolite for heat pump and method for preparation thereof and use thereof
JP2006083234A (en) * 2004-09-14 2006-03-30 Mitsubishi Chemicals Corp Aluminophosphates aqueous dispersions, aluminophosphates aqueous dispersions for producing adsorbent elements, aluminophosphates-supporting adsorbent elements and methods for producing the same
JP2006111871A (en) * 2004-09-14 2006-04-27 Mitsubishi Chemicals Corp Aluminophosphates aqueous dispersions, aluminophosphates aqueous dispersions for producing adsorbent elements, aluminophosphates-supporting adsorbent elements and methods for producing the same
JP2008518835A (en) * 2004-11-05 2008-06-05 フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ Automotive air conditioner with absorption heat pump
WO2008120733A1 (en) * 2007-03-30 2008-10-09 Toyota Jidosha Kabushiki Kaisha Dehumidification/humidification device for vehicle
JP2008254618A (en) * 2007-04-06 2008-10-23 Mitsubishi Chemicals Corp Dehumidifying / humidifying device for vehicles
JP2011093734A (en) * 2009-10-28 2011-05-12 Mitsubishi Chemicals Corp Zeolite, and adsorption element, adsorbent module, adsorption heat pump, and desiccant rotor using the same
WO2013061728A1 (en) 2011-10-26 2013-05-02 三菱樹脂株式会社 Steam-adsorbing material for adsorption heat pump, method for manufacturing same, and adsorption heat pump using same
WO2014021262A1 (en) * 2012-08-03 2014-02-06 株式会社村田製作所 Electronic apparatus
CN103587373A (en) * 2012-08-16 2014-02-19 福特环球技术公司 Motor vehicle climate control system
JP2014111258A (en) * 2003-12-24 2014-06-19 Chevron Usa Inc Mixed matrix membrane with small pore molecular sieve, method for manufacturing the membrane, and method for using the membrane
CN104676945A (en) * 2015-02-13 2015-06-03 福建工程学院 Vehicle exhaust afterheat utilization-based adsorption air conditioning device
CN103889551B (en) * 2011-10-26 2016-11-30 三菱树脂株式会社 Adsorption heat pump water vapor adsorption material, its manufacture method and use the adsorption heat pump of this water vapor adsorption material
US9752805B2 (en) 2010-08-05 2017-09-05 Fujitsu Limited Adsorption heat pump
JP2017170344A (en) * 2016-03-24 2017-09-28 パナホーム株式会社 Humidity control material and humidity control system
JP7517397B2 (en) 2015-08-13 2024-07-17 東ソー株式会社 Method for producing AEI zeolite

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949289A (en) * 1982-08-16 1984-03-21 モビル・オイル・コ−ポレ−シヨン Improved catalytic decomposition
JPS6262164A (en) * 1985-09-12 1987-03-18 カネボウ株式会社 Adsorption type heat pump
JPS62191411A (en) * 1985-12-20 1987-08-21 ユニオン・カ−バイド・コ−ポレ−シヨン Crystalline gallophosphate and manufacture
JPH0658644A (en) * 1992-08-05 1994-03-04 Fuji Shirishia Kagaku Kk Heat exchanging metallic pipe and adsorption type heat pump
JPH06180159A (en) * 1992-12-09 1994-06-28 Tokyo Gas Co Ltd Adsorption freezer
JPH07501043A (en) * 1992-06-30 1995-02-02 シェブロン リサーチ アンド テクノロジー カンパニー Zeolite production using low silica/alumina zeolite as aluminum source
JPH09178292A (en) * 1995-10-26 1997-07-11 Toyota Central Res & Dev Lab Inc Adsorption heat pump
JPH09227249A (en) * 1996-02-28 1997-09-02 Toyota Central Res & Dev Lab Inc High density porous body and method for producing the same
JPH11114410A (en) * 1997-10-17 1999-04-27 Toyota Central Res & Dev Lab Inc Vapor absorption / release material
JPH11165064A (en) * 1997-12-04 1999-06-22 Ebara Corp Dehumidifying air conditioner
JPH11223411A (en) * 1998-02-03 1999-08-17 Toyota Central Res & Dev Lab Inc Adsorption heat pump
JPH11223417A (en) * 1998-02-04 1999-08-17 Sumitomo Metal Ind Ltd Method of recovering low-temperature exhaust heat generated from iron making process
JP2000140625A (en) * 1998-09-07 2000-05-23 Denso Corp Adsorbent and air conditioner for vehicle using the adsorbent
JP2001239156A (en) * 2000-03-01 2001-09-04 Yamaguchi Technology Licensing Organization Ltd Adsorbent for heat pump and heat pump using the same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949289A (en) * 1982-08-16 1984-03-21 モビル・オイル・コ−ポレ−シヨン Improved catalytic decomposition
JPS6262164A (en) * 1985-09-12 1987-03-18 カネボウ株式会社 Adsorption type heat pump
JPS62191411A (en) * 1985-12-20 1987-08-21 ユニオン・カ−バイド・コ−ポレ−シヨン Crystalline gallophosphate and manufacture
JPH07501043A (en) * 1992-06-30 1995-02-02 シェブロン リサーチ アンド テクノロジー カンパニー Zeolite production using low silica/alumina zeolite as aluminum source
JPH0658644A (en) * 1992-08-05 1994-03-04 Fuji Shirishia Kagaku Kk Heat exchanging metallic pipe and adsorption type heat pump
JPH06180159A (en) * 1992-12-09 1994-06-28 Tokyo Gas Co Ltd Adsorption freezer
JPH09178292A (en) * 1995-10-26 1997-07-11 Toyota Central Res & Dev Lab Inc Adsorption heat pump
JPH09227249A (en) * 1996-02-28 1997-09-02 Toyota Central Res & Dev Lab Inc High density porous body and method for producing the same
JPH11114410A (en) * 1997-10-17 1999-04-27 Toyota Central Res & Dev Lab Inc Vapor absorption / release material
JPH11165064A (en) * 1997-12-04 1999-06-22 Ebara Corp Dehumidifying air conditioner
JPH11223411A (en) * 1998-02-03 1999-08-17 Toyota Central Res & Dev Lab Inc Adsorption heat pump
JPH11223417A (en) * 1998-02-04 1999-08-17 Sumitomo Metal Ind Ltd Method of recovering low-temperature exhaust heat generated from iron making process
JP2000140625A (en) * 1998-09-07 2000-05-23 Denso Corp Adsorbent and air conditioner for vehicle using the adsorbent
JP2001239156A (en) * 2000-03-01 2001-09-04 Yamaguchi Technology Licensing Organization Ltd Adsorbent for heat pump and heat pump using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SRIDHAR KOMARNENI, "HIGH PERFORMANCE NANOCOMPOSITE DESICCATION MATERIALS TOPICAL REPORT (MARCH 1990-JUNE 1992)", JPN4007011674, July 1992 (1992-07-01), US, pages 18 - 20, ISSN: 0000865883 *
W.M.MEIDER, "ATLAS OF ZEOLITE STRUCTURE OF TYPES", vol. 4th edition, JPN4007011675, 1996, GB, pages 104, ISSN: 0000865884 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7422993B2 (en) 2003-04-01 2008-09-09 Mitsubishi Chemical Corporation Adsorbent for adsorption heat pump, adsorbent for humidity-control air conditioner, adsorption heat pump and humidity-control air conditioner
WO2004090458A1 (en) * 2003-04-01 2004-10-21 Mitsubishi Chemical Corporation Adsorbent for adsorption heat pump, adsorbent for moisture regulating conditioner, adsorption heat pump and moisture regulating conditioner
US7527777B2 (en) 2003-06-20 2009-05-05 Mitsubishi Chemical Corporation Zeolite, process for producing the same, adsorbent comprising the zeolite, heat utilization system, adsorption heat pump, cold/heat storage system, and air-conditioning apparatus for humidity regulation
WO2004113227A1 (en) * 2003-06-20 2004-12-29 Mitsubishi Chemical Corporation Zeolite, method for production thereof, adsorbent comprising said zeolite, heat utilization system, adsorption heat pump, heating and cooling storage system and humidity controlling air-conditioning apparatus
WO2005011859A1 (en) * 2003-07-30 2005-02-10 Tosoh Corporation Adsorbing agent comprising zeolite for heat pump and method for preparation thereof and use thereof
JP2014111258A (en) * 2003-12-24 2014-06-19 Chevron Usa Inc Mixed matrix membrane with small pore molecular sieve, method for manufacturing the membrane, and method for using the membrane
JP2006083234A (en) * 2004-09-14 2006-03-30 Mitsubishi Chemicals Corp Aluminophosphates aqueous dispersions, aluminophosphates aqueous dispersions for producing adsorbent elements, aluminophosphates-supporting adsorbent elements and methods for producing the same
JP2006111871A (en) * 2004-09-14 2006-04-27 Mitsubishi Chemicals Corp Aluminophosphates aqueous dispersions, aluminophosphates aqueous dispersions for producing adsorbent elements, aluminophosphates-supporting adsorbent elements and methods for producing the same
JP2008518835A (en) * 2004-11-05 2008-06-05 フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ Automotive air conditioner with absorption heat pump
JP2008247305A (en) * 2007-03-30 2008-10-16 Mitsubishi Chemicals Corp Dehumidifying / humidifying device for vehicles
US20100107673A1 (en) * 2007-03-30 2010-05-06 Toyota Jidosha Kabushiki Kaisha Dehumidification/humidification device for vehicle
WO2008120733A1 (en) * 2007-03-30 2008-10-09 Toyota Jidosha Kabushiki Kaisha Dehumidification/humidification device for vehicle
US8769978B2 (en) 2007-03-30 2014-07-08 Toyota Jidosha Kabushiki Kaisha Dehumidification/humidification device for vehicle
WO2008126705A1 (en) * 2007-04-06 2008-10-23 Toyota Jidosha Kabushiki Kaisha Dehumidifier/humidifier for vehicle
JP2008254618A (en) * 2007-04-06 2008-10-23 Mitsubishi Chemicals Corp Dehumidifying / humidifying device for vehicles
US20100107656A1 (en) * 2007-04-06 2010-05-06 Toyota Jidosha Kabushiki Kaisha Dehumidifier/humidifier for vehicle
JP2011093734A (en) * 2009-10-28 2011-05-12 Mitsubishi Chemicals Corp Zeolite, and adsorption element, adsorbent module, adsorption heat pump, and desiccant rotor using the same
US9752805B2 (en) 2010-08-05 2017-09-05 Fujitsu Limited Adsorption heat pump
CN103889551A (en) * 2011-10-26 2014-06-25 三菱树脂株式会社 Steam-adsorbing material for adsorption heat pump, method for manufacturing same, and adsorption heat pump using same
WO2013061728A1 (en) 2011-10-26 2013-05-02 三菱樹脂株式会社 Steam-adsorbing material for adsorption heat pump, method for manufacturing same, and adsorption heat pump using same
US9387457B2 (en) 2011-10-26 2016-07-12 Mitsubishi Plastics, Inc. Water vapor adsorbent for adsorption heat pump, method for producing water vapor adsorbent, and adsorption heat pump including water vapor adsorbent
CN103889551B (en) * 2011-10-26 2016-11-30 三菱树脂株式会社 Adsorption heat pump water vapor adsorption material, its manufacture method and use the adsorption heat pump of this water vapor adsorption material
WO2014021262A1 (en) * 2012-08-03 2014-02-06 株式会社村田製作所 Electronic apparatus
JPWO2014021262A1 (en) * 2012-08-03 2016-07-21 株式会社村田製作所 Electronics
CN103587373A (en) * 2012-08-16 2014-02-19 福特环球技术公司 Motor vehicle climate control system
CN103587373B (en) * 2012-08-16 2017-09-19 福特环球技术公司 Vehicle climate control system and the method for vehicle car atmosphere control system
CN104676945A (en) * 2015-02-13 2015-06-03 福建工程学院 Vehicle exhaust afterheat utilization-based adsorption air conditioning device
JP7517397B2 (en) 2015-08-13 2024-07-17 東ソー株式会社 Method for producing AEI zeolite
JP2017170344A (en) * 2016-03-24 2017-09-28 パナホーム株式会社 Humidity control material and humidity control system

Also Published As

Publication number Publication date
JP4669914B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
CN100523655C (en) Adsorption heat pump, use of adsorbent for adsorption heat pump, use method of adsorbent for adsorption heat pump, and vehicle air conditioner
US7422993B2 (en) Adsorbent for adsorption heat pump, adsorbent for humidity-control air conditioner, adsorption heat pump and humidity-control air conditioner
JP4669914B2 (en) Adsorption heat pump, vehicle air conditioner, dehumidifying air conditioner, and method of using adsorbent
Freni et al. Characterization of zeolite-based coatings for adsorption heat pumps
JP2004294048A (en) Humidity control device
JP4896110B2 (en) Zeolite and adsorbent
JP2016121871A (en) Heat management with titano-alumino-phosphate
JP4542738B2 (en) Adsorption heat pump, adsorption material for adsorption heat pump, and air conditioner for vehicle
JP2004136269A (en) Adsorbent for adsorption heat pump, adsorbent for humidity control air conditioning, adsorption heat pump and humidity control air conditioner
CN100416182C (en) Adsorption heat pump and use of adsorbent as adsorbent for adsorption heat pump
JP5187827B2 (en) Adsorption heat pump system using low-temperature waste heat
JP4710023B2 (en) Adsorption heat pump, vehicle air conditioner, dehumidifying air conditioner, and method of using adsorbent
JP4654580B2 (en) Operation method of adsorption heat pump
JP4249437B2 (en) Adsorption heat pump, adsorption heat pump operation method, and vehicle air conditioner using adsorption heat pump
JP4112298B2 (en) Adsorption heat pump
JP4661772B2 (en) Humidity conditioning air-conditioning adsorbent, humidity conditioning air conditioner and operation method thereof
JP4654582B2 (en) Adsorption heat pump operation method, adsorption heat pump, humidity control air conditioner operation method, and humidity control air conditioner
JP2008267802A (en) Adsorption heat pump, vehicle air conditioner, adsorption heat pump operation method, adsorption heat pump adsorbent, and use of adsorbent
US20240115990A1 (en) Low Dew Point Air Dehumidification System
US20180135895A1 (en) Adsorption type cooling apparatus using nanoporous aluminophosphate and operation method thereof
JP2007181795A (en) Aluminophosphate zeolite adsorbent having a one-dimensional pore structure and use thereof
Palomba et al. Experimental proof of a thermal system for cooling and storage applications employing cacl2/silica gel composite adsorbent
Inagaki et al. Kakiuchi et al.
JPH09152222A (en) Chemical heat pump

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080715

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

R150 Certificate of patent or registration of utility model

Ref document number: 4669914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees