[go: up one dir, main page]

JPS6255537A - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
JPS6255537A
JPS6255537A JP19510385A JP19510385A JPS6255537A JP S6255537 A JPS6255537 A JP S6255537A JP 19510385 A JP19510385 A JP 19510385A JP 19510385 A JP19510385 A JP 19510385A JP S6255537 A JPS6255537 A JP S6255537A
Authority
JP
Japan
Prior art keywords
magnetic
disc
amorphous
soft magnetic
soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19510385A
Other languages
Japanese (ja)
Inventor
Ichiro Yamashita
一郎 山下
Hiroyuki Hase
裕之 長谷
Shinya Tokuono
徳尾野 信哉
Masayuki Wakamiya
若宮 正行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19510385A priority Critical patent/JPS6255537A/en
Publication of JPS6255537A publication Critical patent/JPS6255537A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To obtain a stable output against positional deviation due to a heat cycle and an impact, by building up a member contacting a soft magnetic body and an amorphous magnetic alloy disc using non-magnetic material. CONSTITUTION:A pressure sensor is provided with a spacer 3 made up of a non-magnetic disc between a soft magnetic body 1 and an amorphous magnetic alloy disc 2. The soft magnetic body 1, the amorphous magnetic alloy disc 2 and the non-magnetic disc 3 are covered with a cylindrical non-magnetic body 8 on the side thereof to keep a magnetic circuit from leaking a magnetic flux. Then, when an oil pressure is applied at an oil pressure introduction port, it is applied to the amorphous magnetic alloy disc 2 through a through-hole 6 to be forced down with a groove of the soft magnetic body 1. This generates a stress in the disc 2 to reduce the magnetic permeability of the disc 2 with a magnetostrictive effect by the resulting internal stress, a change which is detected with a coil 10 in the form of inductance to measure the oil pressure. Here, the magnetic circuit is separated by a magnetic container 9 and the non- magnetic body 8 and thus, there is no leakage of magnetic flux, thereby enabling highly accurate detection of oil pressure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は非晶質磁性合金の磁歪効果を用いた圧力センサ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a pressure sensor using the magnetostrictive effect of an amorphous magnetic alloy.

従来の技術 近年、非晶質磁性合金の磁歪効果を用いた圧力センサが
提案されている。例えば特願昭58−195239号、
同58−195240号等がある。
BACKGROUND OF THE INVENTION In recent years, pressure sensors using the magnetostrictive effect of amorphous magnetic alloys have been proposed. For example, Japanese Patent Application No. 58-195239,
No. 58-195240, etc.

第S図は前者の実施例を示している。FIG. S shows the former embodiment.

31は円環状の溝が設けられた円柱状の軟磁性体で、3
2は磁歪を有する非晶質磁性合金円板、33は前記軟磁
性体の溝部に巻装されたコイル、34は一端を溝部底部
に接し他端が軟磁性体開口部面と同一面になる非磁性リ
ング、36はこれらを収納する容器、36は非晶質磁性
合金に圧力を伝達する透孔3了を有した蓋部である。油
圧が油圧導入口38に加わると透孔37を通して圧力が
非晶質磁性合金円板32に加わり、これを軟磁性溝部に
おいて押し下げ非晶質磁性合金円板内に応力が発生する
。この内部応力の発生で磁歪効果により非晶質磁性合金
の透磁率が減少する。
31 is a cylindrical soft magnetic body provided with an annular groove;
2 is an amorphous magnetic alloy disk having magnetostriction, 33 is a coil wound around the groove of the soft magnetic material, and 34 has one end in contact with the bottom of the groove and the other end flush with the opening surface of the soft magnetic material. The non-magnetic ring, 36 is a container for storing these, and 36 is a lid having a through hole 3 for transmitting pressure to the amorphous magnetic alloy. When hydraulic pressure is applied to the hydraulic pressure inlet 38, pressure is applied to the amorphous magnetic alloy disk 32 through the through hole 37, pushing it down in the soft magnetic groove and generating stress within the amorphous magnetic alloy disk. Due to the generation of this internal stress, the magnetic permeability of the amorphous magnetic alloy decreases due to the magnetostrictive effect.

この変化をコイル33を用いてインダクタンスの形で検
出し油圧を測定する様になっている。
This change is detected in the form of inductance using a coil 33 to measure the oil pressure.

発明が解決しようとする問題点 ため、容器に磁性を有する鉄系のものを使用する必要が
有り、またこのことにより低価格化が計られている。し
かし精度の低い測定においてはこの様な構成でも問題は
なかったが、センサの高精度化が計られるにつれて磁束
の漏れが問題となってきている。例えば第6図は従来の
センサの−30゜°C〜80″Cのヒートサイクル試験
でのインダクタンス値変化を示したもので、熱膨張係数
の僅かな差により軟磁性体及び非晶質磁性合金円板と容
器の位置関係の変化が生じ、容器に漏れる磁束状態が変
化しインダクタンス値が不安定になっている。
Because of the problem that the invention attempts to solve, it is necessary to use a magnetic iron-based container, and this also helps to reduce the cost. However, although such a configuration poses no problem in low-precision measurements, leakage of magnetic flux has become a problem as sensors become more precise. For example, Figure 6 shows the change in inductance value of a conventional sensor during a heat cycle test from -30°C to 80''C. The positional relationship between the disk and the container changes, the state of the magnetic flux leaking into the container changes, and the inductance value becomes unstable.

また同じく落下にたいしても軟磁性体及び非晶質磁性合
金円板と容器の位置関係が変わるためインダクタンス値
が不安定になる。第7図は約1mの高さからセンサを落
下させた場合の落下回数とインダクタンス値の関係を示
しだ衝撃試験の結果で、やはりインダクタンス値が不安
定になっている。
Similarly, when the container is dropped, the inductance value becomes unstable because the positional relationship between the soft magnetic material and the amorphous magnetic alloy disc and the container changes. FIG. 7 shows the relationship between the number of drops and the inductance value when the sensor is dropped from a height of about 1 m. The results of the impact test show that the inductance value is also unstable.

問題点を解決するだめの手段 磁気回路のシールドを完全にするため、軟磁性体及び非
晶質磁性合金円板に接する部材を非磁性材料を用いて構
成する。
Means for Solving the Problem In order to completely shield the magnetic circuit, the members in contact with the soft magnetic material and the amorphous magnetic alloy disk are constructed using non-magnetic materials.

作   用 軟磁性体及び非晶質磁性合金円板に接する部材を、非磁
性材料を用いて構成する事により磁気回路のシールドが
完全になり、軟磁性体及び非晶質磁性合金円板と磁性を
有する容器との位置関係が変化してもインダクタンス値
が安定になる。これによりヒートサイクル試験及び容器
の落下環の衝撃に対しセンサ出力が安定となり高精度な
測定が可能となる。
By configuring the members in contact with the soft magnetic material and the amorphous magnetic alloy disc using non-magnetic materials, the magnetic circuit can be completely shielded, and the magnetic circuit can be completely shielded. The inductance value remains stable even if the positional relationship with the container changes. As a result, the sensor output becomes stable during heat cycle tests and the impact of the falling ring of the container, making it possible to perform highly accurate measurements.

実施例 第1図は本特許の一実施例の断面図である。1は円環状
の溝が設けられた円柱状の軟磁性体で、2は磁歪を有す
る非晶質磁性合金円板、3は軟磁性体1と非晶質磁性合
金円板20間に置かれた非磁性円板からなるスペーサで
軟磁性体溝部に対応する部分に細長い溝を有している。
Embodiment FIG. 1 is a sectional view of an embodiment of this patent. 1 is a cylindrical soft magnetic material provided with an annular groove, 2 is an amorphous magnetic alloy disk having magnetostriction, and 3 is placed between the soft magnetic material 1 and the amorphous magnetic alloy disk 20. The spacer is made of a non-magnetic disk and has an elongated groove in a portion corresponding to the soft magnetic groove.

これら三つは一つの閉磁路を構成している。4は油圧を
伝達する透孔6を持ち油を阻止する。リング5を配置し
た非磁性蓋部で、7は軟磁性体底部に配置された非磁性
金属底板である。8は軟磁性体1と非晶質磁性合金円板
2と非磁性円板3の側面を覆う様に設けられた円筒状非
磁性体で、先述の磁気回路の磁束の漏れが無い様に配置
されている。9は容器で、蓋部4及び非磁性金属底板7
と共に先述の磁気回路を収納保持している。10は軟磁
性体溝部の中に設けられたコイルで先述の磁気回路のイ
ンダクタンスの測定にもちいられている。11は検出回
路である。
These three constitute one closed magnetic path. 4 has a through hole 6 that transmits hydraulic pressure and prevents oil from entering. It is a non-magnetic lid part on which a ring 5 is arranged, and 7 is a non-magnetic metal bottom plate arranged on the soft magnetic bottom part. 8 is a cylindrical non-magnetic material provided to cover the sides of the soft magnetic material 1, the amorphous magnetic alloy disk 2, and the non-magnetic disk 3, and is arranged so that there is no leakage of the magnetic flux of the magnetic circuit mentioned above. has been done. 9 is a container, which includes a lid portion 4 and a non-magnetic metal bottom plate 7;
It also houses and holds the aforementioned magnetic circuit. Reference numeral 10 denotes a coil provided in the soft magnetic groove, which is used to measure the inductance of the magnetic circuit described above. 11 is a detection circuit.

油圧が油圧導入口11より加わると油圧は透孔6を通し
て圧力が非晶質磁性合金に加わり、非晶質磁性合金を軟
磁性体溝部で下方に押し下げる。
When hydraulic pressure is applied from the hydraulic pressure inlet 11, pressure is applied to the amorphous magnetic alloy through the through hole 6, and the amorphous magnetic alloy is pushed down by the soft magnetic groove.

これによシ非晶質磁性合金円板内に応力が発生し、この
内部応力で磁歪効果により非晶質磁性合金の透磁率が減
少する。この変化をコイル9を用いてインダクタンスの
形で検出し油圧を測定する様になっている。以上の検出
原理から分かるように、このセンサは油圧をインダクタ
ンス値の変化の形で検出しており、そのため磁束の漏れ
があると測定の精度が悪くなる。
This generates stress within the amorphous magnetic alloy disc, and this internal stress reduces the magnetic permeability of the amorphous magnetic alloy due to the magnetostrictive effect. This change is detected in the form of inductance using a coil 9 to measure the oil pressure. As can be seen from the above detection principle, this sensor detects oil pressure in the form of a change in inductance value, and therefore, if there is a leakage of magnetic flux, the measurement accuracy will deteriorate.

第2図は第1図の実施例における磁気回路の周辺を一部
断面で示した分解斜視図で、磁気回路は磁性を有する容
器9と非磁性体8で完全に分離されており、従って磁束
の漏れが全く無くインダクタンス値が安定になり、よっ
て油圧検出が高精度で行えることがわかる。
FIG. 2 is an exploded perspective view showing a part of the periphery of the magnetic circuit in the embodiment shown in FIG. It can be seen that there is no leakage at all and the inductance value is stable, which means that oil pressure can be detected with high accuracy.

第3図は従来の技術で記述したのと同じ条件でのヒート
サイクル試験の結果を示したものである。
FIG. 3 shows the results of a heat cycle test under the same conditions as described in the prior art.

−30°C〜80″Cのヒートサイクルにだいしインダ
クタンス値変化が極めて小さくなっていることが分かる
。その変化の大きさは、インダクタンス値にだいし0.
1%と高精度の油圧測定を行う場合においても問題にな
らないほど小さいものである。
It can be seen that the change in inductance value becomes extremely small during the heat cycle from -30°C to 80''C.The magnitude of the change is approximately 0.0% compared to the inductance value.
1%, which is so small that it does not pose a problem even when performing high-precision oil pressure measurements.

これは熱膨張係数の僅かな差による軟磁性体1及び非晶
質磁性合金円板2と容器9の位置関係の変化が生じても
、容器に漏れる磁束がほとんど無いため磁束の状態が変
化しないためで、その結果インダクタンス値が極めて安
定になっている。
This is because even if the positional relationship between the soft magnetic material 1 and the amorphous magnetic alloy disc 2 and the container 9 changes due to a slight difference in coefficient of thermal expansion, there is almost no magnetic flux leaking into the container, so the state of the magnetic flux does not change. As a result, the inductance value is extremely stable.

第4図は同じ〈従来の技術で記述したのと同じ条件での
、約1mの高さからセンサを落下させた場合の落下回数
とインダクタンス値の関係を示した衝撃試験の結果でこ
の場合もインダクタンス値変化が極めて小さくなってい
ることが分かる。その変化の大きさは、インダクタンス
値にだいし0.2%で、この場合も高精度の油圧測定を
行う場合において問題にならない程度である。
Figure 4 shows the results of an impact test showing the relationship between the number of drops and the inductance value when the sensor was dropped from a height of about 1 m under the same conditions as described in the conventional technology. It can be seen that the change in inductance value is extremely small. The magnitude of the change is approximately 0.2% of the inductance value, which is also not a problem when performing high-precision oil pressure measurement.

以上述べたことはスペーサ3に軟磁性体溝部に対応する
部分に細長い溝が無い場合に計いても有効である。すな
わち、耐圧を高めるため例えばステンレスの円板をスペ
ーサに用いる場合がある力ζこの場合でも磁気回路の構
造は全く同一であり本発明の構造をとることにより磁束
の漏れを無くすることができる。
The above description is effective even when the spacer 3 does not have an elongated groove in the portion corresponding to the soft magnetic groove. That is, in order to increase the withstand voltage, for example, a stainless steel disk may be used as a spacer. Even in this case, the structure of the magnetic circuit is exactly the same, and by adopting the structure of the present invention, leakage of magnetic flux can be eliminated.

発明の効果 本発明によれば、非晶質磁性合金円板を含む磁気回路の
シールドが完全になり、ヒートサイクルや衝撃による位
置ずれに対しても安定な出力が得られる圧力センサを実
現できる。
Effects of the Invention According to the present invention, the shielding of the magnetic circuit including the amorphous magnetic alloy disk becomes perfect, and a pressure sensor can be realized that can provide a stable output even against positional displacement due to heat cycles and impacts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の圧力センサの断面図、第2
図は第1図実施例における磁気回路の周辺を描いた分解
斜視図、第3図、第4図は各々ヒートサイクル及び衝撃
に対する同実施例の出力変化を示すグラフ、第6図は従
来の技術のセンサの断面図、第6図、第7図は各々ヒー
トサイクル及び衝撃に対する第6図従来例の出力変化を
示すグラフである。 1・・・・・・軟磁性体、2・・・・・・磁歪を有する
非晶質磁性合金円板、3・・・・・・非磁性円板、4・
・・・・・蓋部、5・・・・・・Qリング、6・・・・
・・透孔、7・・・・・・非磁性金属底板、8・・・・
・・円筒状非磁性体、9・・・・・・容器、1o・・・
・・・コイル、11・・・・・・検出回路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 0      /      234.5ヒートブイ7
ル凹歓(@少 第4図 衝撃@数(回ジ 第6図 第5図
FIG. 1 is a sectional view of a pressure sensor according to an embodiment of the present invention, and FIG.
The figure is an exploded perspective view depicting the periphery of the magnetic circuit in the embodiment shown in Fig. 1, Figs. 3 and 4 are graphs showing the output changes of the same embodiment in response to heat cycles and impacts, respectively, and Fig. 6 is the conventional technology. 6 and 7 are graphs showing the output changes of the conventional example shown in FIG. 6 with respect to heat cycles and impact, respectively. 1...Soft magnetic material, 2...Amorphous magnetic alloy disk having magnetostriction, 3...Nonmagnetic disk, 4.
...Lid, 5...Q ring, 6...
...Through hole, 7...Nonmagnetic metal bottom plate, 8...
...Cylindrical non-magnetic material, 9...Container, 1o...
...Coil, 11...Detection circuit. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 0 / 234.5 Heat Buoy 7
Le depression huan (@small figure 4 shock @ number (time figure 6 figure 5

Claims (2)

【特許請求の範囲】[Claims] (1) 円環状の溝が設けられた円柱状の軟磁性体と、
前記軟磁性体の溝部を有する面に接した非磁性円板と、
前記軟磁性体と逆の側面で前記非磁性円板に接する単数
又は複数の磁歪を有する非晶質磁合金円板と、前記軟磁
性体溝部に巻装されたコイルと、前記軟磁性体、非磁性
円板、非晶質磁性合金円板の側面を覆って配置された非
磁性円筒と、前記軟磁性体底部に接触する非磁性金属底
板と、これらを保持する容器と、前記非晶質磁性合金に
接し圧力伝達媒質の流出を防ぐ手段と、前記軟磁性体溝
部に対応し前記非晶質磁性合金円板に圧力を伝達する手
段を有する非磁性蓋部とを備えたことを特徴とする圧力
センサ。
(1) A cylindrical soft magnetic body provided with an annular groove,
a non-magnetic disc in contact with a surface of the soft magnetic material having a groove;
an amorphous magnetic alloy disk having one or more magnetostrictions that is in contact with the non-magnetic disk on a side opposite to the soft magnetic material; a coil wound in the soft magnetic material groove; and the soft magnetic material; a non-magnetic disk, a non-magnetic cylinder disposed to cover the side surface of the amorphous magnetic alloy disk, a non-magnetic metal bottom plate in contact with the bottom of the soft magnetic material, a container holding these, and the amorphous magnetic alloy disk. It is characterized by comprising a means for contacting the magnetic alloy to prevent the pressure transmission medium from flowing out, and a non-magnetic lid portion corresponding to the soft magnetic groove and having means for transmitting pressure to the amorphous magnetic alloy disc. pressure sensor.
(2) 非磁性円板が前記軟磁性体溝部に対応する部分
に細長い溝を有する事を特徴とする特許請求の範囲第1
項記載の圧力センサ。
(2) Claim 1, wherein the non-magnetic disk has an elongated groove in a portion corresponding to the soft magnetic groove.
Pressure sensor described in section.
JP19510385A 1985-09-04 1985-09-04 Pressure sensor Pending JPS6255537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19510385A JPS6255537A (en) 1985-09-04 1985-09-04 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19510385A JPS6255537A (en) 1985-09-04 1985-09-04 Pressure sensor

Publications (1)

Publication Number Publication Date
JPS6255537A true JPS6255537A (en) 1987-03-11

Family

ID=16335569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19510385A Pending JPS6255537A (en) 1985-09-04 1985-09-04 Pressure sensor

Country Status (1)

Country Link
JP (1) JPS6255537A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112985680A (en) * 2021-03-19 2021-06-18 绍兴和为贵机械科技有限公司 Pressure non-disassembly detection device of hydraulic rubber oil pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112985680A (en) * 2021-03-19 2021-06-18 绍兴和为贵机械科技有限公司 Pressure non-disassembly detection device of hydraulic rubber oil pipe
CN112985680B (en) * 2021-03-19 2022-07-12 广州天河胶管制品有限公司 Pressure non-disassembly detection device of hydraulic rubber oil pipe

Similar Documents

Publication Publication Date Title
JPS6022287B2 (en) pressure sensor
JPS63503159A (en) Hydraulic cylinder with a piston and a magnetic device for determining the position of the piston
US4696192A (en) Fluid pressure sensor
JPS6255537A (en) Pressure sensor
US7178399B2 (en) Housing for magnetofluidic accelerometer
US7219552B2 (en) Scalable high sensitivity magnetostrictive pressure sensor
JPS60260900A (en) Monitor device for temperature in vessel
JPS63109341A (en) Pressure switch
JPH0261530A (en) Dynamic quantity sensor
JP2000114615A (en) Magnetostriction detection type force sensor
JPS6285833A (en) Pressure sensor
JPS6141936A (en) Torque sensor
JPS62175636A (en) Pressure sensor
JPS62162936A (en) Pressure sensor
JPS62211532A (en) Pressure sensor
JP2641741B2 (en) Mechanical quantity sensor
SU1281991A1 (en) Transducer for ultrasonic checking
SU1021950A1 (en) Vibration converter
JPS58808Y2 (en) electromagnetic flowmeter detector
JPS62191731A (en) Pressure sensor
RU2123189C1 (en) Independent storage pickup for measuring of acceleration peak values
JPS62175635A (en) Pressure sensor
JPH0769243B2 (en) Pressure sensor
JPS63308530A (en) Pressure sensor
JPH0750008B2 (en) Pressure sensor