JPS6255314B2 - - Google Patents
Info
- Publication number
- JPS6255314B2 JPS6255314B2 JP57139686A JP13968682A JPS6255314B2 JP S6255314 B2 JPS6255314 B2 JP S6255314B2 JP 57139686 A JP57139686 A JP 57139686A JP 13968682 A JP13968682 A JP 13968682A JP S6255314 B2 JPS6255314 B2 JP S6255314B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- gate electrode
- quasi
- gaas
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005669 field effect Effects 0.000 claims description 8
- 239000004065 semiconductor Substances 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 3
- 239000003574 free electron Substances 0.000 claims description 2
- 239000006251 one-dimensional electron gas Substances 0.000 claims 2
- 230000004888 barrier function Effects 0.000 claims 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 22
- 239000012212 insulator Substances 0.000 description 4
- 239000000969 carrier Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000001803 electron scattering Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000004969 ion scattering spectroscopy Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/43—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 1D charge carrier gas channels, e.g. quantum wire FETs or transistors having 1D quantum-confined channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Junction Field-Effect Transistors (AREA)
- Bipolar Transistors (AREA)
Description
【発明の詳細な説明】
この発明は高移動度をもつ準一次元状態に分布
するキヤリアの流量を、電界によつて制御する電
界効果トランジスタに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a field effect transistor in which the flow rate of carriers distributed in a quasi-one-dimensional state with high mobility is controlled by an electric field.
従来の準一次元状態に分布するキヤリアの流量
を、電界によつて制御する電界効果型半導体装置
の一例を第1図に示す。第1図において、1は1
μm前後の厚さのエピタキシヤルP―GaAlAs
層、2は200Å程度のP―GaAs層、3は1000Å程
度のP―GaAlAs層、4は絶縁体薄膜層、5はゲ
ート電極、6はn型の反転層である。 FIG. 1 shows an example of a conventional field effect semiconductor device in which the flow rate of carriers distributed in a quasi-one-dimensional state is controlled by an electric field. In Figure 1, 1 is 1
Epitaxial P-GaAlAs with a thickness around μm
The layers 2 are a P-GaAs layer of about 200 Å, 3 a P-GaAlAs layer of about 1000 Å, 4 an insulator thin film layer, 5 a gate electrode, and 6 an n-type inversion layer.
ゲート電極5に印加された正のバイアス電圧は
絶縁体薄膜4を通してP―GaAs層2を100A程度
の深さまで反転させ、準一次元状態に分布する電
子のチヤンネル層を左右に2個所形成する。 The positive bias voltage applied to the gate electrode 5 inverts the P--GaAs layer 2 to a depth of about 100 A through the insulator thin film 4, forming two channel layers on the left and right for electrons distributed in a quasi-one-dimensional state.
一般的にGaAsと絶縁体の接合界面に形成され
る界面準位はかなり多いため、第1図の構造では
反転層6を形成するのが容易でないという欠点が
ある。 Generally, there are quite a lot of interface states formed at the junction interface between GaAs and an insulator, so the structure shown in FIG. 1 has a drawback in that it is not easy to form the inversion layer 6.
また、GaAsと絶縁層の接合界面は一般的に原
子レベルのサイズで凸凹であり、P―GaAs層2
と絶縁体薄膜層4の界面に形成された反転層6内
の準一次元電子(反転層6内に蓄積した電子の界
面方向の拡がりがその電子の平均自由行程より短
くなる状態である電子)が流れるとき、この荒れ
た接合界面で電子が散乱されて移動度が低下する
と云う欠点がある。 In addition, the bonding interface between GaAs and the insulating layer is generally uneven at the atomic level, and the P-GaAs layer 2
quasi-one-dimensional electrons in the inversion layer 6 formed at the interface of the insulator thin film layer 4 When a flow occurs, electrons are scattered at this rough junction interface, resulting in a decrease in mobility.
この発明は上記従来の欠点を解消するためにな
されたもので、77K程度の低温で高速スイツチン
グ動作が可能でかつ電子計算機の演算回路に使用
すれば、高速演算が可能となる電界効果トランジ
スタを提供することを目的とする。 This invention was made in order to eliminate the above-mentioned conventional drawbacks, and provides a field effect transistor that is capable of high-speed switching operation at a low temperature of about 77K and that enables high-speed operation when used in an arithmetic circuit of an electronic computer. The purpose is to
以下、この発明の電界効果トランジスタの実施
例について図面に基づき説明する。第2図aはそ
の一実施例の構成を示す斜視図である。この第2
図aにおいて、21は半絶縁GaAs基板上にエピ
タキシヤル成長させた約1μmの厚さの不純物無
添加GaAs層である。このGaAs層21上にはn+
−Ga0.7Al0.3As層22、GaAs層23、n+−
Ga0.7Al0.3As層22、GaAs層24が順次積層し
て形成され、これらによつて超格子構造部を形成
している。 Embodiments of the field effect transistor of the present invention will be described below with reference to the drawings. FIG. 2a is a perspective view showing the structure of one embodiment. This second
In Figure a, 21 is an impurity-free GaAs layer with a thickness of about 1 μm epitaxially grown on a semi-insulating GaAs substrate. On this GaAs layer 21, n +
−Ga 0 . 7 Al 0 . 3 As layer 22, GaAs layer 23, n + −
A Ga 0 .7 Al 0 .3 As layer 22 and a GaAs layer 24 are formed by laminating one after another, forming a superlattice structure.
n+−Ga0.7Al0.3As層22はSiを添加した5×
1017cm-3程度の電子密度をもつ200Å程度の厚さ
に形成され、また、GaAs層23は不純物無添加
で100Å程度の厚さを有しており、さらにGaAs層
24は不純物無添加で約1000Åの厚さを有してい
る。25はシヨツトキー接合をなす深さ約1500
Å、横幅2000ÅのPtのゲート電極、26は電子ビ
ーム露光によつて製作したマスクと遠紫外光線を
利用して遠紫外領域に感光作用をもつPMMAレ
ジストの微細パターンをGaAs表面に作成し、低
エネルギーArイオンビームによつてエツチング
することにより残された約2000Åの幅の約2000Å
の深さのほぼ垂直な壁面を持つ台地である。 The n + −Ga 0 . 7 Al 0 . 3 As layer 22 is a 5× layer with Si added.
The GaAs layer 23 is formed to a thickness of about 200 Å with an electron density of about 10 17 cm -3 , and the GaAs layer 23 is about 100 Å thick without any impurities added. It has a thickness of approximately 1000 Å. 25 is a Schottky junction with a depth of about 1500
26 is a Pt gate electrode with a width of 2000 Å, and a fine pattern of PMMA resist that is sensitive to the deep ultraviolet region is created on the GaAs surface using a mask made by electron beam exposure and deep ultraviolet light. Approximately 2000 Å width of approximately 2000 Å left by etching with energetic Ar ion beam
It is a plateau with almost vertical walls at a depth of .
27はこの台地26内の不純物無添加のGaAs
層21,23,24内に形成された深さ方向の広
がりが約100Å、ゲート電極方向の広がりが約500
Åの準一次元状態にある電子のチヤンネルであ
る。 27 is the impurity-free GaAs in this plateau 26
Formed in the layers 21, 23, and 24, the extent in the depth direction is approximately 100 Å, and the extent in the direction of the gate electrode is approximately 500 Å.
It is a channel of electrons in a quasi-one-dimensional state of Å.
第2図bは第2図aの正面断面図に沿う方向の
エネルギーバンド図である。第2図aの状態では
77K程度の低温でデイプレツシヨンモードのFET
の動作をし、台地26の幅を狭くするか、もしく
わn+−Ga0.7Al0.3As層22の電子密度をいくらか
減少させると77K程度の低温でエンハンスメント
モードFETの動作をする。 FIG. 2b is an energy band diagram in a direction along the front sectional view of FIG. 2a. In the state shown in Figure 2 a
FET in depression mode at low temperature of about 77K
If the width of the plateau 26 is narrowed or the electron density of the n + -Ga 0.7 Al 0.3 As layer 22 is somewhat reduced, an enhancement mode FET can be operated at a low temperature of about 77K. .
これを動作させるには、Siを高濃度に添加した
n+−Ga0.7Al0.3As層22内のドナー原子より供給
された高濃度の電子をGaAsのチヤンネル27内
に拡散させ、準一次元状態の電子分布を作り、シ
ヨツトキー接合をなすゲート電極25に印加され
たバイアス電圧によつてチヤンネル27の幅を広
くしたり狭くしたりすることによつて流れる電流
量を制御する。 To make this work, a high concentration of Si was added.
Highly concentrated electrons supplied from donor atoms in the n + −Ga 0 . 7 Al 0 . 3 As layer 22 are diffused into the GaAs channel 27 to create a quasi-one-dimensional electron distribution and form a Schottky junction. The amount of current flowing is controlled by widening or narrowing the width of the channel 27 according to the bias voltage applied to the gate electrode 25.
このような構造はGaAsとGa0.7Al0.3Asの組み
合わせを変えても実現でき、一例として、
GaAs/Ga0.7Al0.3Asの代わりにIn0.53Ga0.47As/
InPそしてGa0.47In0.53As/Al0.48In0.52Asなどが
ある。 Such a structure can be realized by changing the combination of GaAs and Ga 0.7 Al 0.3 As, for example ,
In 0.53 Ga 0.47 As/instead of GaAs / Ga 0.7 Al 0.3 As
Examples include InP and Ga 0.47 In 0.53 As/ Al 0.48 In 0.52 As .
以上説明したように、第1の実施例では2個の
シヨツトキー接合をなすゲート電極25に挾まれ
て、準一次元状態をなす電子のチヤンネル27が
3層形成されている。準一次元状態の電子はソー
ス・ドレイン間に加えられた電場によつて流動す
るが、その運動方向が一次元方向しか許されない
ため、77Kで支配的な電子散乱源である不純物イ
オン散乱による散乱確率が減少する。そのため準
一次元状態の電子の移動度は77Kにて、3次元電
子または準2次元電子の移動度より大きくなり、
第2図aに示したFETの動作速度を従来のGaAs
FETよりもかなり大きくすることが可能とな
る。 As explained above, in the first embodiment, three layers of electron channels 27 in a quasi-one-dimensional state are formed between two gate electrodes 25 forming a Schottky junction. Electrons in a quasi-one-dimensional state flow due to the electric field applied between the source and drain, but their movement direction is only allowed in one-dimensional direction, so they are scattered by impurity ion scattering, which is the dominant electron scattering source at 77K. Probability decreases. Therefore, the mobility of an electron in a quasi-one-dimensional state becomes larger than that of a three-dimensional electron or a quasi-two-dimensional electron at 77K.
The operating speed of the FET shown in Figure 2a is compared to that of conventional GaAs.
It is possible to make it considerably larger than FET.
また、第2図aではチヤンネル27を両側から
挾むようにシヨツトキー接合のゲート電極25を
配置しているため、準一次元状態の電子分布が半
導体内に形成され、電子は荒れたシヨツトキー接
合界面による散乱を受けることなく流動できるの
で高速動作が可能となる。 In addition, in FIG. 2a, since the gate electrode 25 of the Schottky junction is arranged so as to sandwich the channel 27 from both sides, a quasi-one-dimensional electron distribution is formed in the semiconductor, and electrons are scattered by the rough Schottky junction interface. High-speed operation is possible because it can flow without being affected.
第3図aはこの発明の第2の実施例の構成を示
す斜視図であり、第3図bは第3図aのB―B線
の断面図であり、第3図cは第3図aのC―C線
の断面図である。この第3図a〜第3図cにおい
て、21から26までの符号が示す内容は第2図
aの同一番号が示す内容と等しい。 FIG. 3a is a perspective view showing the configuration of a second embodiment of the present invention, FIG. 3b is a cross-sectional view taken along line BB in FIG. 3a, and FIG. FIG. 3 is a sectional view taken along line CC of FIG. In FIGS. 3a to 3c, the contents indicated by numerals 21 to 26 are the same as the contents indicated by the same numbers in FIG. 2a.
28と29は第1の実施例で説明したのと同一
のフオト・リゾグラフイ技術を利用して、GaAs
層23の最深部に達する深さ約2000Åからなる窪
みを製作し、その窪みの中に埋め込まれた約2000
Åの厚さのAuGe/Niオーミツク電極で、28は
ソース電極、29はドレイン電極である。また、
30は4個のゲート電極25を結合するAuのゲ
ート電極である。 28 and 29 are made of GaAs using the same photolithography technique as explained in the first embodiment.
A depression with a depth of about 2000 Å reaching the deepest part of layer 23 was made, and about 2000 Å was buried in the depression.
28 is a source electrode and 29 is a drain electrode. Also,
Reference numeral 30 denotes an Au gate electrode that connects the four gate electrodes 25.
この第2の実施例では、準一次元状態の電子の
分布をもつチヤンネルが深さ方向に5層あり、層
に平行な方向の台地26が3例ある。したがつて
合計15個の準一次元状態にある電子のチヤンネル
が形成されており、ソース・ドレイン間の抵抗値
が減少している。GaAs層23の数と台地26の
数をさらに増やせば、ソース・ドレイン間の抵抗
が大巾に減少し、実用に充分なソース・ドレイン
間抵抗となる。 In this second embodiment, there are five layers in the depth direction of channels having quasi-one-dimensional electron distribution, and three examples of plateaus 26 in the direction parallel to the layers. Therefore, a total of 15 channels of electrons in a quasi-one-dimensional state are formed, and the resistance value between the source and drain decreases. If the number of GaAs layers 23 and the number of plateaus 26 are further increased, the resistance between the source and drain will be greatly reduced, and the resistance between the source and drain will be sufficient for practical use.
この第2の実施例は第1の実施例と同様に
GaAs/Ga0.7Al0.3Asの組み合わせを
In0.53Ga0.47As/InPそしてGa0.47In0.53As/
Al0.48In0.52As等とすることができる。 This second embodiment is similar to the first embodiment.
The combination of GaAs/ Ga 0.7 Al 0.3 As
In 0. 53 Ga 0. 47 As/InP and Ga 0. 47 In 0. 53 As/
It can be Al0.48In0.52As , etc.
以上のように、この発明の電界効果トランジス
タによれば、準一次元状態のキヤリアの流れる自
由電子密度と電気伝導度の大きいチヤンネルを半
導体表面より深い位置に形成させ、チヤンネルと
平行に配置された2個のシヨツトキー接合のゲー
ト電極に印加されたバイアスの電圧によつてゲー
ト電極間に挾まれたチヤンネル内のキヤリアの流
量を制御するようにしたので、77K程度の低温で
高速スイツチング動作が可能である。したがつて
電子計算機の演算回路に使用することにより、高
速演算が可能となる。 As described above, according to the field effect transistor of the present invention, a channel with high free electron density and high electrical conductivity through which carriers in a quasi-one-dimensional state flow is formed at a position deeper than the semiconductor surface, and the channel is arranged parallel to the channel. Since the flow rate of the carrier in the channel sandwiched between the gate electrodes is controlled by the bias voltage applied to the gate electrodes of the two Schottky junctions, high-speed switching operation is possible at a low temperature of about 77K. be. Therefore, by using it in an arithmetic circuit of an electronic computer, high-speed calculation becomes possible.
第1図は従来のV字型溝内に形成された準一次
元チヤンネルMISFETの断面図、第2図aはこ
の発明の電界効果トランジスタの一実施例の構成
を示す斜視図、第2図bは第2図aのエネルギー
バンド図、第3図aはこの発明の電界効果トラン
ジスタの第2の実施例の斜視図、第3図bは第3
図aのB―B線断面図、第3図cは第3図aのC
―C線断面図である。
21,23,24……GaAs層、22……n+−
Ga0.7Al0.3As層、25……ゲート電極、26……
台地、27……チヤンネル、28……ソース電
極、29……ドレイン電極、30……ゲート結合
電極。
FIG. 1 is a sectional view of a conventional quasi-one-dimensional channel MISFET formed in a V-shaped groove, FIG. 2a is a perspective view showing the structure of an embodiment of a field effect transistor of the present invention, and FIG. 2b is the energy band diagram of FIG. 2a, FIG. 3a is a perspective view of the second embodiment of the field effect transistor of the present invention, and FIG.
BB line sectional view in Figure a, Figure 3 c is C in Figure 3 a
-C line sectional view. 21, 23, 24...GaAs layer, 22...n + -
Ga0.7Al0.3As layer , 25 ... gate electrode, 26 ...
Plateau, 27... Channel, 28... Source electrode, 29... Drain electrode, 30... Gate coupling electrode.
Claims (1)
導体層と電子親和力が相対的に大きい不純物密度
が充分少なくかつ自由電子密度の高い電気伝導度
の大きいチヤンネルを有する第1の層とを少なく
とも1層以上交互に積層して形成された超格子構
造部と、この超格子構造部の界面に垂直な側面上
にこの超格子構造部を挾むように配置されたシヨ
ツトキー接合の平行な対をなしかつ2個のシヨツ
トキー障壁ポテンシヤルに挾まれて形成される上
記第1の層に蓄積した電子の界面方向の拡がりが
この電子の平均自由行程より短くなる準一次元電
子の状態となるように距離が設定されたゲート電
極と、このゲート電極を挾むように上記超格子構
造部に形成されたソース電極およびドレイン電極
とよりなり、このソース電極とドレイン電極の間
に電圧を印加することにより上記準一次元電子ガ
スをゲート電極面かつ第1の層に沿つた方向に流
し、ゲート電極に印加されたバイアス電圧でその
準一次元電子のガスの流量を制御することを特徴
とする電界効果トランジスタ。1 At least one layer consisting of an n or n + semiconductor layer with a relatively low electron affinity and a first layer with a sufficiently low impurity density and a high free electron density and a high electrical conductivity channel with a relatively high electron affinity. There are two parallel pairs of superlattice structures formed by stacking the above layers alternately and Schottky junctions arranged on the side surface perpendicular to the interface of this superlattice structure so as to sandwich this superlattice structure. The distance was set so that the electrons accumulated in the first layer sandwiched between the Schottky barrier potentials of It consists of a gate electrode, and a source electrode and a drain electrode formed in the superlattice structure so as to sandwich the gate electrode, and by applying a voltage between the source electrode and the drain electrode, the quasi-one-dimensional electron gas is generated. A field-effect transistor characterized in that the flow rate of quasi-one-dimensional electron gas is controlled by a bias voltage applied to the gate electrode and flowing in the direction along the gate electrode surface and the first layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57139686A JPS5931071A (en) | 1982-08-13 | 1982-08-13 | field effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57139686A JPS5931071A (en) | 1982-08-13 | 1982-08-13 | field effect transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5931071A JPS5931071A (en) | 1984-02-18 |
JPS6255314B2 true JPS6255314B2 (en) | 1987-11-19 |
Family
ID=15251063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57139686A Granted JPS5931071A (en) | 1982-08-13 | 1982-08-13 | field effect transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5931071A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4575924A (en) * | 1984-07-02 | 1986-03-18 | Texas Instruments Incorporated | Process for fabricating quantum-well devices utilizing etch and refill techniques |
JPS6230380A (en) * | 1985-03-11 | 1987-02-09 | Nippon Telegr & Teleph Corp <Ntt> | Field effect transistor |
JPS61239267A (en) * | 1985-04-17 | 1986-10-24 | Fuji Xerox Co Ltd | Developing device of color copying machine |
JPS63102374A (en) * | 1986-09-29 | 1988-05-07 | シーメンス、アクチエンゲゼルシヤフト | Field effect transistor |
JPS63232374A (en) * | 1987-03-20 | 1988-09-28 | Fujitsu Ltd | semiconductor equipment |
-
1982
- 1982-08-13 JP JP57139686A patent/JPS5931071A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5931071A (en) | 1984-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2773487B2 (en) | Tunnel transistor | |
JP3194941B2 (en) | Semiconductor device | |
WO1981000174A1 (en) | Vertical field effect transistor | |
JPS6342864B2 (en) | ||
CA1253632A (en) | Heterojunction field effect transistor | |
JPH0258773B2 (en) | ||
JPS6255314B2 (en) | ||
US4636824A (en) | Voltage-controlled type semiconductor switching device | |
JP2868780B2 (en) | Double heterojunction / inverted base transistor | |
EP0136108B1 (en) | Heterojunction semiconductor device | |
JPS61147577A (en) | Complementary semiconductor device | |
US4689646A (en) | Depletion mode two-dimensional electron gas field effect transistor and the method for manufacturing the same | |
JP3301888B2 (en) | Field effect type semiconductor device | |
JPH0359579B2 (en) | ||
JPH07307462A (en) | Semiconductor device and manufacturing method thereof | |
JP3075769B2 (en) | Electrostatic induction transistor and method of manufacturing the same | |
JPH0654784B2 (en) | Semiconductor device | |
JP2681819B2 (en) | Electron and photoelectric devices utilizing the characteristics of light holes | |
JP3484005B2 (en) | Semiconductor device | |
JPS60263471A (en) | Semiconductur device | |
JP2665048B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2675925B2 (en) | MOS FET | |
JP2671553B2 (en) | Field effect semiconductor device | |
JPS6281063A (en) | superlattice electronic device | |
JPH05102198A (en) | Pseudo-one-dimensional field-effect transistor and its manufacture |