[go: up one dir, main page]

JPS5931071A - field effect transistor - Google Patents

field effect transistor

Info

Publication number
JPS5931071A
JPS5931071A JP57139686A JP13968682A JPS5931071A JP S5931071 A JPS5931071 A JP S5931071A JP 57139686 A JP57139686 A JP 57139686A JP 13968682 A JP13968682 A JP 13968682A JP S5931071 A JPS5931071 A JP S5931071A
Authority
JP
Japan
Prior art keywords
layer
quasi
gaas
electrons
approx
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57139686A
Other languages
Japanese (ja)
Other versions
JPS6255314B2 (en
Inventor
Haruhisa Kinoshita
木下 治久
Seiji Nishi
清次 西
Yoshiaki Sano
佐野 芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP57139686A priority Critical patent/JPS5931071A/en
Publication of JPS5931071A publication Critical patent/JPS5931071A/en
Publication of JPS6255314B2 publication Critical patent/JPS6255314B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/43FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 1D charge carrier gas channels, e.g. quantum wire FETs or transistors having 1D quantum-confined channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bipolar Transistors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enable high speed switching action at a low temperature of approx. 77K by a method wherein the amount of flow of carriers distributed in a quasi one-dimensinal state having high mobility is controlled by an electric field. CONSTITUTION:An N<+>-GaAlAs layer 22, GaAs layer 23, an N<+>-Ga0.7Al0.3As layer 22, and a GaAs layer 24 are successively laminated and formed on an impurity non-doped GaAs layer 21 epitaxially grown on a semi-insulation GaAs substrate, and accordingly an ultra lattice structural part is formed by means of them. The layer 22 is formed to a thickness of approx. 200Angstrom having the electron density of approx. 5X10<17>cm<-3> doped with Si, and the layer 23 is not doped with impurity and has a thickness of 100Angstrom approx. The layer 24 is not doped with impurity and has a thickness of 1,000Angstrom . Pt gate electrodes 25 has Schottky junctions. The expansion in the depth direction formed in the GaAs layers 21, 23, and 24 in a plateau 26 is an electron channel in the quasi onedimensional state. Then, the flow of current is controlled by controlling the bias voltage of the electrodes 25.

Description

【発明の詳細な説明】 この発明は高移動度をもつ準−次元状態に分布するキャ
リアの流量を、電界によって制御する電界効果トランジ
スタに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a field effect transistor in which the flow rate of carriers distributed in a quasi-dimensional state with high mobility is controlled by an electric field.

従来の準−次元状態に分布するキャリアの流量を、電界
によって制御する電界効果型半導体装置の一例を第1図
に示す。第1図において、1は1μm前後の厚さのエピ
タキシャルP −GaAtAs層e、2け200X程度
のP −GaAs層、3は100OX程度のP −Ga
AtAs層、4は絶縁体薄膜層、5はダート電極、6は
n型の反転層である。
FIG. 1 shows an example of a conventional field effect semiconductor device in which the flow rate of carriers distributed in a quasi-dimensional state is controlled by an electric field. In Fig. 1, 1 is an epitaxial P-GaAtAs layer e with a thickness of about 1 μm, 2 is a P-GaAs layer with a thickness of about 200X, and 3 is a P-GaAs layer with a thickness of about 100X.
4 is an AtAs layer, 4 is an insulating thin film layer, 5 is a dart electrode, and 6 is an n-type inversion layer.

ダート電極5に印加された正のバイアス電圧は絶縁体薄
膜4全通してP −GaAs層2を100A程度の深さ
まで反転させ、準−次元状態に分布する電子のチャンネ
ルNIIヲ左右に2個所形成する。
The positive bias voltage applied to the dart electrode 5 inverts the P-GaAs layer 2 to a depth of about 100 A through the entire insulator thin film 4, forming two electron channels NII on the left and right that are distributed in a quasi-dimensional state. do.

一般的KQaAsと絶縁体の接合界面に形成される界面
準位はかなp多いため、第1図の構造では反転層6を形
成するのが容易でないという欠点がある。
Since there are many p interface states formed at the junction interface between general KQaAs and an insulator, the structure shown in FIG. 1 has the disadvantage that it is not easy to form the inversion layer 6.

また、GaAsと絶縁層の接合界面は一般的に原子レベ
ルのサイズで凸凹であり、P −GaAs N 2と絶
縁体薄膜層4の界面に形成された反転層6内の準−次元
電子(反転層6内に蓄積した電子の界面方向の拡がりが
その電子の平均自由行程より短くなる状態である電子)
が流れるとき、この荒れた接合界面で電子が散乱されて
移動度が低下すると云う欠点がある。
Furthermore, the bonding interface between GaAs and the insulating layer is generally uneven in size at the atomic level, and the quasi-dimensional electrons (inverted (Electrons that are in a state where the spread of electrons accumulated in layer 6 in the direction of the interface is shorter than the mean free path of the electrons)
When a flow occurs, electrons are scattered at this rough junction interface, resulting in a decrease in mobility.

この発明は上記従来の欠点を解消するためになされたも
ので、77に程度の低温で高速スイッチング動作が可能
でかつ電子計算機の演算回路に使用すれば、高速演算が
可能となる電界効果トランジスタを提供することを目的
とする。
This invention was made in order to eliminate the above-mentioned drawbacks of the conventional technology, and it uses a field effect transistor that is capable of high-speed switching operation at a low temperature of about 77°C, and that enables high-speed operation when used in an arithmetic circuit of an electronic computer. The purpose is to provide.

以下、この発明の電界効果トランゾスタの実施例につい
て図面に基づき説明する。第2図(a)はその一実施例
の構成を示す斜視図である。この第2図(a)において
、21は半絶縁GaAs基板上にエピタキシャル成長さ
せた約1μmの厚さの不純物無添加GaAs層である。
Embodiments of the field effect transistor of the present invention will be described below with reference to the drawings. FIG. 2(a) is a perspective view showing the configuration of one embodiment. In FIG. 2(a), 21 is an impurity-free GaAs layer with a thickness of about 1 μm epitaxially grown on a semi-insulating GaAs substrate.

このGaAs層21上にはn+−Ga(1,7Ato、
3As層22、 GaAs  層23、 n十 −Ga
o、7Ato、3As 層22、GaAs N 24が
順次積層して形成され、これらによって超格子構造部を
形成している。
On this GaAs layer 21 is n+-Ga (1,7Ato,
3As layer 22, GaAs layer 23, n+-Ga
o, 7Ato, 3As layers 22 and GaAsN 24 are sequentially stacked to form a superlattice structure.

n+−Gao、2At(1,3As層22はSi k添
加した5X10 cm  程度の電子@問をもっ2oo
X程度の厚さに形成され、捷だ、GaAs層23け不純
物無添加で100X程度の厚さを有しておシ、さらにG
aA s層24Fi不純物無添加で約1000Hの厚さ
を有している。25はショットキー接合をナス深す約1
50 OA、 tJullf%2000A(D pt 
(Dy−計電極、26は電子ビーム露光によって製作し
たマスクと遠紫外光線を利用して遠紫外領域に感光作用
をもつPMMAレノストの9細ノf ターンfGaAs
表面に作成し、低エネルギーArイオンビームによって
エツチングすることにより残された約200OAの幅の
約2000Xの深さのほぼ垂直な壁面を持つ台地である
n+-Gao, 2At (1,3As layer 22 is Si k doped with about 5x10 cm of electrons)
The GaAs layer 23 is formed to a thickness of about
The aAs layer 24 does not contain any impurities and has a thickness of about 1000H. 25 is about 1 inch deeper than the Schottky junction.
50 OA, tJullf%2000A(D pt
(Dy-meter electrode, 26 is made of 9 fine f-turn fGaAs made of PMMA Lenost which has a photosensitizing effect in the far ultraviolet region using a mask made by electron beam exposure and deep ultraviolet light.
It is a plateau with approximately vertical walls approximately 200 OA wide and approximately 2000× deep, created on the surface and left by etching with a low-energy Ar ion beam.

この台地26内の不純物無添加のGaAs層21゜23
.24内に形成された深さ方向の広が9が約10OA、
)f″−トを極方向の広がりが約50OAの準−次元状
態にある電子のチャンネルである。
Impurity-free GaAs layer 21°23 within this plateau 26
.. The depth direction spread 9 formed within 24 is approximately 10OA,
) f″-t is a channel of electrons in a quasi-dimensional state with a polar extent of about 50 OA.

第2図(b)は第2図(a)の正面断面図に沿う方向の
エネルギーバンド図である。第2図(a)の状態では7
7 K程度の低温でディプレッションモードのFETの
動作をし、台地26の幅を狭くするか、もしくわn −
Ga(1,7Ato4As/122の電子密度をいくら
か減少させると77に程度の低温でエンハンスメントモ
ードFETの動作をする。
FIG. 2(b) is an energy band diagram in a direction along the front sectional view of FIG. 2(a). In the state shown in Figure 2(a), 7
Either operate the FET in depression mode at a low temperature of about 7 K and narrow the width of the plateau 26.
If the electron density of Ga(1,7Ato4As/122) is reduced somewhat, it will operate as an enhancement mode FET at a low temperature of about 77°C.

これを動作させるには、n Gao、7Ato、aAB
層22のStを高濃度に添加しfr−n −Gao、7
Ato、BAsAs層内2内ナー原子より供給された高
濃度の電子f GaAsのチャンネルの7内に拡散させ
、準−次元状態の電子分布を作り、ショットキー接合を
なすダート電極25に印加されたバイアス電圧によって
チャンネル270幅を広くしたり狭くしたりすることに
よって流れる電流量を制御する。
To make this work, n Gao, 7Ato, aAB
By doping St in layer 22 at a high concentration, fr-n-Gao, 7
Highly concentrated electrons f supplied from inner atoms in the Ato, BAsAs layer 2 are diffused into the channel 7 of GaAs, creating an electron distribution in a quasi-dimensional state, and are applied to the dart electrode 25 forming a Schottky junction. The amount of current flowing is controlled by widening or narrowing the width of the channel 270 using a bias voltage.

このような構造はGaAsとGao、7Ato、3As
の組み合わせを変えても実現でき、−例として、QaA
、s/Ga□、7Ato、3Asの代わシにIno、5
3Gao、47As/ InPそしてGao、47In
o、5aAs/Ato、taIno、52Asなどがあ
る。
Such structures include GaAs, Gao, 7Ato, 3As
It can also be realized by changing the combination of - For example, QaA
, s/Ga□, 7Ato, Ino instead of 3As, 5
3Gao, 47As/InP and Gao, 47In
o, 5aAs/Ato, taIno, 52As, etc.

以上説明したように、第1の実施例では2個のショット
キー接合をなすゲート電価25に挾まれて、準−次元状
態をなす電子のチャンネル27が3層形成されている。
As explained above, in the first embodiment, three layers of electron channels 27 in a quasi-dimensional state are formed between gate voltages 25 forming two Schottky junctions.

準−次元状態の電子はソース・ドレイン間に加えられた
電場によって流動するが、その運動方向が一次元方向し
か許されないため、77にで支配的な電子散乱源である
不純物イオン散乱による散乱確率が減少する。そのため
準−次元状態の電子の移動度は77Kにて、3次元電子
または準2次元電子の移動度よQ大きくなル、第2図(
a) K示したFETの動作速度を従来のGaAs F
ET よりもかなり大きくすることが可能となる。
Electrons in a quasi-dimensional state flow due to the electric field applied between the source and drain, but since the direction of movement is only allowed in one dimension, the scattering probability due to impurity ion scattering, which is the dominant electron scattering source in 77. decreases. Therefore, the mobility of an electron in a quasi-dimensional state is Q larger than that of a three-dimensional electron or a quasi-two-dimensional electron at 77K, as shown in Figure 2 (
a) The operating speed of the FET shown in K is compared to that of the conventional GaAs FET.
It is possible to make it considerably larger than ET.

また、第2図(a)ではチャンネル27を両側から挾む
ようにショットキー接合のf−)電極25を配置してい
るため、準−次元状態の電子分布が半導体内に形成され
、電子は荒れたショットキー接合界面による散乱を受け
ることなく流動できるので高速動作が可能となる。
In addition, in FIG. 2(a), since the Schottky junction f-) electrodes 25 are arranged so as to sandwich the channel 27 from both sides, a quasi-dimensional electron distribution is formed in the semiconductor, and the electrons become rough. High-speed operation is possible because it can flow without being scattered by the Schottky junction interface.

第3図(a)はこの発明の第2の実施例の構成を示す斜
視図であp、第3図(b)は第3図(a)のA−A線の
断面図であり、第3図(e)は第3図(a)のC−C線
の断面図である。この第3図(a)〜第3図(C)にお
いて、21から26までの符号が示す内容は第2図(a
)の同一番号が示す内容と等しい。
FIG. 3(a) is a perspective view showing the configuration of a second embodiment of the present invention, and FIG. 3(b) is a sectional view taken along line A-A in FIG. 3(a). FIG. 3(e) is a sectional view taken along the line CC in FIG. 3(a). In these Figures 3(a) to 3(C), the contents indicated by the symbols 21 to 26 are shown in Figure 2(a).
) is the same as the content indicated by the same number.

28と29は第1の実施例で説明したのと同一のフォト
・リゾグラフィ技術を利用して、QaAs層23の最深
部に達する深さ約200OAからなる窪みを製作し、そ
の窪みの中に埋め込まれた約2000Xの厚さのAuG
e /N iオーミック電極で、28はソース電極、2
9はドレイン電極である。
28 and 29 utilize the same photolithography technique as explained in the first embodiment to fabricate a depression with a depth of about 200 OA reaching the deepest part of the QaAs layer 23, and to fill it in the depression. approximately 2000X thick AuG
e/Ni ohmic electrode, 28 is the source electrode, 2
9 is a drain electrode.

また、30は4個のダート電極25を結合するAuのr
−)電極である。
In addition, 30 is an Au r that connects the four dart electrodes 25.
-) It is an electrode.

この第2の実施例では、準−次元状態の電子の分布をも
つチャンネルが深さ方向に5mあり、層に平行な方向の
台地26が3例ある。したがって合計15個の準−次元
状態にある電子のチャンネルが形成されておQ、ソース
嗜ドレイン間の抵抗値が減少している。G a A、 
s層23の数と台地26の数をさらに増やせば、ソース
・ドレイン間の抵抗が大巾に減少し、実用に充分なソー
ス・ドレイン間抵抗となる。
In this second embodiment, the channel with the distribution of electrons in the quasi-dimensional state is 5 m deep and there are three plateaus 26 in the direction parallel to the layer. Therefore, a total of 15 quasi-dimensional electron channels are formed, and the resistance value between the source and drain is reduced. G a A,
If the number of s-layers 23 and the number of plateaus 26 are further increased, the resistance between the source and drain will be greatly reduced, and the resistance between the source and drain will be sufficient for practical use.

この第2の実施例は第1の実施例と同様にGaAs層 
Ga(1,7At(1,3Aaの組み合わせをIno、
5aGao、nAs/InPそしてGao、47Ino
、5aAs/Ato、4BIno、52As等とするこ
とができる。
This second embodiment uses a GaAs layer like the first embodiment.
Ga(1,7At(1,3Aa combination Ino,
5aGao, nAs/InP and Gao, 47Ino
, 5aAs/Ato, 4BIno, 52As, etc.

以上のように、この発明の電界効果トランジスタによれ
ば、準−次元状態のキャリアの流れる自由電1子密度と
電気伝導度の大きいチャンネルを半導体表面より深い位
置に形成させ、チャンネルと平行に配置された2個のシ
ョットキー接合のり゛−ト電極に印加されたバイアスの
電圧によってケ゛−ト電極間に挾まれたチャンネル内の
キャリアの流れを制御するようにしたので、77に程度
の低温で高速スイッチング動作が可能である。したがっ
て電子計算機の演算回路に使用することにより、高速演
算が可能となる。
As described above, according to the field effect transistor of the present invention, a channel having a high free electron density and high electrical conductivity through which carriers in a quasi-dimensional state flow is formed at a position deeper than the semiconductor surface, and is arranged parallel to the channel. The flow of carriers in the channel sandwiched between the gate electrodes was controlled by the bias voltage applied to the two Schottky junction gate electrodes. High-speed switching operation is possible. Therefore, by using it in an arithmetic circuit of an electronic computer, high-speed calculation becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のV字型溝内に形成された準−次元チャン
ネルMISFETの断面図、第2図(a)はこの発明の
電界効果トランジスタの一実施例の構成を示す斜視図、
第2図(b)は第2図(a)のエネルギーバンド図、第
3図(a)はこの発明の電界効果トランジスタの第2の
実施例の斜視図、第3図Φ)は第3図(a)のB−B線
断面図、第3図(C)Vi第3図(a)のC−C線断面
図である。 21 、23 、24−GaAs層、22−・n”−G
ao、7Ato、3Aa NIJ、  25−? −)
電極、26−・・台地、27・・・チャンネル、28・
・・ソース電極、29・・・ドレイン電極、30・・・
ケ°−ト結合電極。 特許出願人 沖電気工業株式会社 手続補正書 昭和58年5月1−8日 特許庁長官若 杉 和 夫殿 1、事件の表示 昭和57年 特 許 願第 139686  号2、発
明の名称 電界効果トランジスタ 3、補正をする者 事件との関係    特 許  出願人(029)沖電
気工業株式会社 4、代理人 5、補正命令の日付  昭和  年  月  El (
自発)6、補正の対象 明細書の特許請求の範囲および発明の詳細な説明の欄な
らびに図面の一部 7、補正の内容 別紙の通り 7 補正の内容 1)明細書の「2、特許請求の範囲」を別紙の通り訂正
する。 2)明細書4頁7行r Gao、2J f r Gao
、y Jと訂正する。 3)同4頁13行rptJをrPtJ  と訂正する。 4)同5頁1行「この台地」を「27はこの台地」と訂
正する1゜ 5)同5頁12行および13行r n+Gao、7At
o、3As層22の」を削除する。 6)同5頁15行「の7」を「27」と訂正する。 7)同7頁4行rA−A線」をrB−B線」と訂正する
。 8)同8頁16行および17行「流れ」を「流量」と訂
正する。 9)図面第2図(a)を別紙の通り訂正する。 2、特許請求の範囲 電子親和力が相対的に小さいnまたはn半導体層と電子
親和力が相対的に大きい不純物密度が充分少なくかつ自
由電子密度の高い電気伝導度の大きいチャンネルを有す
る第1の層とを少なくとも1庵以上交互に積層して形成
された超格子構造部と、この超格子構造部の界面に垂直
な側面上にこの超格子構造部を挾むように配置されたシ
ョットキー接合の平行な対をなしかつ2個のショットキ
ー障壁ポテンシャルに挾1れて形成される上記第1の層
に蓄秩した電子の界面方向の拡がりがこの電子の平均自
由行程より短くなる準−次元電子の状態となるように距
離が設定されたゲート電極と、このゲート電極を挾むよ
うに上記超格子構造部に形成されたソース電極およびド
レイン電極とよりなり、このソース電極とドレイン電極
の間に電圧を印加することにより上記準−次元電子ガス
をゲート電極面かつ第1の層に治った方向に流し7、ゲ
ート電極に印加されたバイアス電圧でその準−次元電子
のガスの流量を制御することを特徴とする電界効果トラ
ンジスタ。
FIG. 1 is a sectional view of a conventional quasi-dimensional channel MISFET formed in a V-shaped groove, and FIG. 2(a) is a perspective view showing the configuration of an embodiment of a field effect transistor of the present invention.
FIG. 2(b) is the energy band diagram of FIG. 2(a), FIG. 3(a) is a perspective view of the second embodiment of the field effect transistor of the present invention, and FIG. FIG. 3(C) is a sectional view taken along line B-B in FIG. 3(a), and FIG. 3(C) is a sectional view taken along line C-C in FIG. 21, 23, 24-GaAs layer, 22-・n''-G
ao, 7Ato, 3Aa NIJ, 25-? −)
Electrode, 26-...Plateau, 27...Channel, 28-
...Source electrode, 29...Drain electrode, 30...
Kate-coupled electrode. Patent Applicant Oki Electric Industry Co., Ltd. Procedural Amendment May 1-8, 1980 Kazuo Wakasugi, Commissioner of the Patent Office1, Indication of the Case 1981 Patent Application No. 1396862, Title of Invention Field Effect Transistor 3. Relationship with the case of the person making the amendment Patent Applicant (029) Oki Electric Industry Co., Ltd. 4, Agent 5, Date of amendment order Showa Year Month El (
Voluntary) 6. Claims and Detailed Description of the Invention column of the specification to be amended and part of the drawings 7. Contents of the amendment As shown in the attached sheet 7. Contents of the amendment 1) ``2. "Range" is corrected as shown in the attached sheet. 2) Specification page 4 line 7 r Gao, 2J f r Gao
, y J. 3) On page 4, line 13, rptJ is corrected to rPtJ. 4) Correct “this plateau” on page 5, line 1 to “27 is this plateau” 1゜5) Page 5, lines 12 and 13 r n+Gao, 7At
o, 3As layer 22' is deleted. 6) On page 5, line 15, "7" is corrected to "27". 7) On page 7, line 4, correct "rA-A line" to "rB-B line". 8) On page 8, lines 16 and 17, "flow" is corrected to "flow rate." 9) Correct the drawing Figure 2 (a) as shown in the attached sheet. 2. Claims: an n or n semiconductor layer with a relatively low electron affinity; a first layer with a relatively high electron affinity and a channel having a sufficiently low impurity density and high free electron density and high electrical conductivity; A superlattice structure formed by alternately stacking at least one or more layers of and a quasi-dimensional electron state in which the spread of electrons accumulated in the first layer formed between two Schottky barrier potentials in the direction of the interface is shorter than the mean free path of the electrons. The superlattice structure consists of a gate electrode with a distance set so that The quasi-dimensional electron gas is caused to flow in a direction toward the gate electrode surface and the first layer 7, and the flow rate of the quasi-dimensional electron gas is controlled by a bias voltage applied to the gate electrode. Field effect transistor.

Claims (1)

【特許請求の範囲】 電子親和力が相対的に小さいnまたはn1導体層と電子
親和力が相対的に大きいキャリア密度が充分少なくかつ
自由電子密度の高い電気伝導度の大きいチャンネルを有
する第1の層とを少なくとも1層以上交互に積層して形
成された超格子構造部と、この超格子構造部の界面に垂
直な側面上にこの超格子構造部を挾むように配置された
ショットキー接合の平行な対をなしかつ2個のショット
キー障壁ポテンシャルに挾まれて形成される上記第1の
層に蓄積した電子の界面方向の拡がりがこの電子の平均
自由行程より短くなる準−次元電子の状訴となるように
距離が設定されたP−)電極と、このy−ト電極を挾む
よう【上記超格子構造部に形成されたソート電極および
ドレイン電極とよシなシ、このソース電極とドレイン電
極の間に電圧を印加することにより上記準−次元電子ガ
スをP−)電極面かつ第1の層に沿った方向に流し、f
−)電極に印加されたバイアス電圧でその準−次元電子
のガスの流量を制御することを特徴とする電界効果トラ
ンゾスタ。
[Claims] An n or n1 conductor layer with a relatively low electron affinity, a first layer with a relatively high electron affinity and a channel having a sufficiently low carrier density and high free electron density and high electrical conductivity; A superlattice structure formed by laminating at least one or more layers alternately, and a parallel pair of Schottky junctions arranged on sides perpendicular to the interface of this superlattice structure so as to sandwich this superlattice structure. This is a complaint of quasi-dimensional electrons in which the spread of electrons accumulated in the first layer sandwiched between two Schottky barrier potentials in the direction of the interface is shorter than the mean free path of the electrons. The distance between the P-) electrode, which is set at a distance such as By applying a voltage to , the quasi-dimensional electron gas flows in the direction along the P-) electrode surface and the first layer, and f
-) A field effect transistor, characterized in that the flow rate of the quasi-dimensional electron gas is controlled by a bias voltage applied to the electrodes.
JP57139686A 1982-08-13 1982-08-13 field effect transistor Granted JPS5931071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57139686A JPS5931071A (en) 1982-08-13 1982-08-13 field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57139686A JPS5931071A (en) 1982-08-13 1982-08-13 field effect transistor

Publications (2)

Publication Number Publication Date
JPS5931071A true JPS5931071A (en) 1984-02-18
JPS6255314B2 JPS6255314B2 (en) 1987-11-19

Family

ID=15251063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57139686A Granted JPS5931071A (en) 1982-08-13 1982-08-13 field effect transistor

Country Status (1)

Country Link
JP (1) JPS5931071A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4575924A (en) * 1984-07-02 1986-03-18 Texas Instruments Incorporated Process for fabricating quantum-well devices utilizing etch and refill techniques
JPS61239267A (en) * 1985-04-17 1986-10-24 Fuji Xerox Co Ltd Developing device of color copying machine
JPS6230380A (en) * 1985-03-11 1987-02-09 Nippon Telegr & Teleph Corp <Ntt> Field effect transistor
EP0283276A3 (en) * 1987-03-20 1988-11-09 Fujitsu Limited Semiconductor device having heterojunction and method for producing same
EP0262610A3 (en) * 1986-09-29 1989-02-15 Siemens Aktiengesellschaft Two-dimensional electron gas switching device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4575924A (en) * 1984-07-02 1986-03-18 Texas Instruments Incorporated Process for fabricating quantum-well devices utilizing etch and refill techniques
JPS6230380A (en) * 1985-03-11 1987-02-09 Nippon Telegr & Teleph Corp <Ntt> Field effect transistor
JPS61239267A (en) * 1985-04-17 1986-10-24 Fuji Xerox Co Ltd Developing device of color copying machine
EP0262610A3 (en) * 1986-09-29 1989-02-15 Siemens Aktiengesellschaft Two-dimensional electron gas switching device
EP0283276A3 (en) * 1987-03-20 1988-11-09 Fujitsu Limited Semiconductor device having heterojunction and method for producing same

Also Published As

Publication number Publication date
JPS6255314B2 (en) 1987-11-19

Similar Documents

Publication Publication Date Title
US4236166A (en) Vertical field effect transistor
US5640022A (en) Quantum effect device
CA1253632A (en) Heterojunction field effect transistor
EP0033037A2 (en) Heterojunction semiconductor devices
US4704622A (en) Negative transconductance device
JPH024140B2 (en)
JPS59207667A (en) Semiconductor device
JPS5931071A (en) field effect transistor
US5227644A (en) Heterojunction field effect transistor with improve carrier density and mobility
US4636824A (en) Voltage-controlled type semiconductor switching device
US4689646A (en) Depletion mode two-dimensional electron gas field effect transistor and the method for manufacturing the same
JPH0239543A (en) multilayer semiconductor device
JPH0359579B2 (en)
JPS59184573A (en) Field effect transistor
JPS6123364A (en) Field effect transistor
JP3484005B2 (en) Semiconductor device
JPH035059B2 (en)
JPH03155169A (en) Semiconductor device
JPS6230380A (en) Field effect transistor
Cao Design Optimization of AlGaN Channel Fin-HEMTs
JPH05102198A (en) Pseudo-one-dimensional field-effect transistor and its manufacture
JPS6312394B2 (en)
JPS59149063A (en) semiconductor equipment
JPS63205967A (en) Semiconductor device and its manufacturing method
JPS61280674A (en) Semiconductor device