[go: up one dir, main page]

JPS6248062A - Memory cell - Google Patents

Memory cell

Info

Publication number
JPS6248062A
JPS6248062A JP60188818A JP18881885A JPS6248062A JP S6248062 A JPS6248062 A JP S6248062A JP 60188818 A JP60188818 A JP 60188818A JP 18881885 A JP18881885 A JP 18881885A JP S6248062 A JPS6248062 A JP S6248062A
Authority
JP
Japan
Prior art keywords
film
capacitor
memory cell
electrode
electrode film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60188818A
Other languages
Japanese (ja)
Inventor
Hideharu Nakajima
中嶋 英晴
Shintaro Kurihara
栗原 真太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP60188818A priority Critical patent/JPS6248062A/en
Publication of JPS6248062A publication Critical patent/JPS6248062A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To increase the electrostatic capacity of a memory cell by adding a capacitor which extends perpendicularly to the peripheral edge of the capacitor extended on a flat surface. CONSTITUTION:An insulating film 11 for forming the height of a side wall 13 is formed on an electrode film 10, the films 10 and 11 are formed, a side wall 13 made of a polycrystalline silicon is formed on the peripheral edge, and one electrode of a capacitor 16 is formed of the film 10 and the wall 13. Thus, the electrostatic capacity can be increased without increasing the occupying area of the capacitor by the wall 13 extended perpendicularly.

Description

【発明の詳細な説明】 本発明メモリセルを以下の項目に従って説明する。[Detailed description of the invention] The memory cell of the present invention will be explained according to the following items.

A、産業上の利用分野 B1発明の概要 C2従来技術[第3図] B1発明が解決しようとする問題点 E8問題点を解決するための手段 F、実施例[第1図、第2図] a、製造方法[第1図] b、構成[第1図、第2図] C6作用 G1発明の効果 (A、産業上の利用分野) 本発明は新規なメモリセル、特に、1つのコンデンサと
1つのトランジスタとからなるメモリセルに関するもの
である。
A. Industrial field of application B1 Overview of the invention C2 Prior art [Figure 3] B1 Problems to be solved by the invention E8 Means for solving the problems F. Examples [Figures 1 and 2] a. Manufacturing method [Fig. 1] b. Structure [Fig. 1, Fig. 2] C6 Effect G1 Effect of the invention (A. Field of industrial application) The present invention provides a novel memory cell, particularly a single capacitor and The present invention relates to a memory cell consisting of one transistor.

(B、発明の概要) 本発明は、1つのコンデンサと1つのトランジスタとか
らなるメモリセルにおいて、占有面積を大きくすること
なくコンデンサの静電容量を大きくするため、コンデン
サを略平面上に延在する部分と、その部分の周縁から垂
直に延びるように形成した部分とにより構成するように
したものであり、略平面」二に延在するコンデンサ部分
の周縁に垂直に延びるコンデンサ部分を付加したのでセ
ルの占有面積を増やすことなくコンデンサの静電容量を
大きくすることができる。
(B. Summary of the Invention) In a memory cell consisting of one capacitor and one transistor, the present invention extends the capacitor substantially on a plane in order to increase the capacitance of the capacitor without increasing the occupied area. The capacitor part is formed by adding a capacitor part that extends perpendicularly to the periphery of the capacitor part that extends substantially in a plane. The capacitance of the capacitor can be increased without increasing the area occupied by the cell.

(C,従来技術)[第3図〕 ダイナミックRAMにおいてメモリセルの占有面積を小
さくし、記憶容量を大きくすることが要請されている。
(C, Prior Art) [Figure 3] In a dynamic RAM, it is required to reduce the area occupied by the memory cell and increase the storage capacity.

そして、メモリセルの占有面積を小さくするためにはコ
ンデンサを小さくする必要があるが、その場合静電容量
が情報の蓄積、即ち電荷の蓄積に必要な大きさを有して
いなければならない、即ち、メモリセルのコンデンサは
占有面積を小さくしつつ静電容量を大きくする必要性が
ある。
In order to reduce the area occupied by a memory cell, it is necessary to make the capacitor smaller, but in this case, the capacitance must have a size necessary for storing information, that is, storing charge. , it is necessary to increase the capacitance of a memory cell capacitor while reducing its occupied area.

ところで、占有面積が小さくても比較的大きな静電容量
が得られるコンデンサとして半導体基板に形成すること
ができるものにはトレンチキャパシターとスタックドキ
ャパシターがある。トレンチキャパシターは半導体基板
表面にトレンチを形成し、該トレンチ表面に誘電体を成
す酸化膜を形成し、更にトレンチ内に一方の電極を成す
導電体を形成してなるものであり、半導体基板自身がコ
ンデンサの他方の電極を成す、しかしながら、コンデン
サの形成に良好なトレンチはRIE技術との関係を形成
が難しい。
By the way, trench capacitors and stacked capacitors are capacitors that can be formed on semiconductor substrates and can provide a relatively large capacitance even if they occupy a small area. Trench capacitors are made by forming a trench on the surface of a semiconductor substrate, forming an oxide film as a dielectric on the surface of the trench, and further forming a conductor as one electrode within the trench. However, the trench forming the other electrode of the capacitor, which is good for forming the capacitor, is difficult to form in relation to the RIE technique.

従って、スタックドキャパシターがD−RAMの情報蓄
積用のコンデンサとして用いられている。第3図はスタ
ックドキャパシターをコンデンサとして用いたメモリセ
ルの従来例の−を示すものである。
Therefore, stacked capacitors are used as capacitors for storing information in D-RAMs. FIG. 3 shows a conventional example of a memory cell using a stacked capacitor as a capacitor.

同図において、&はシリコン単結晶からなる半導体基板
、bは選択酸化により形成されたフィールド酸化膜、C
はゲート酸化膜、dはゲート電極、d′は別のメモリセ
ルのゲート電極、eはドレイン、fはソース、gは層間
絶縁用酸化膜、hは多結晶シリコンからなる電極膜で、
層間絶縁用酸化膜gのコンタクトホールiを通してソー
スfに接続されている。jは電極膜りの表面に形成され
た誘電膜で、多結晶シリコンからなる電極膜りの表面部
を加熱酸化することにより形成される。
In the figure, & is a semiconductor substrate made of silicon single crystal, b is a field oxide film formed by selective oxidation, and C is a semiconductor substrate made of silicon single crystal.
is a gate oxide film, d is a gate electrode, d' is a gate electrode of another memory cell, e is a drain, f is a source, g is an oxide film for interlayer insulation, h is an electrode film made of polycrystalline silicon,
It is connected to the source f through a contact hole i in an oxide film g for interlayer insulation. j is a dielectric film formed on the surface of the electrode film, and is formed by heating and oxidizing the surface portion of the electrode film made of polycrystalline silicon.

kは多結晶シリコンからなる電極膜にで、それの誘電膜
jを介して電極膜りと対向する部分が情報蓄積用のコン
デンサとなる。tは層間絶縁用の酸化膜、mは該酸化膜
tに形成されたコンタクトホールnを通してドレインe
に接続されたアルミニウム電極であり、該電極mがRA
Mのビットラインを成す。
K is an electrode film made of polycrystalline silicon, and the portion thereof facing the electrode film with a dielectric film j in between serves as a capacitor for storing information. t is an oxide film for interlayer insulation, m is a drain e through a contact hole n formed in the oxide film t.
is an aluminum electrode connected to RA, and the electrode m is connected to RA
M bit lines are formed.

尚、ゲート電極d(d′)がRAMのワードラインを成
し、そして、電極膜にのコンデンサを成す部分と反対側
の部分がアースラインを成す。
Note that the gate electrode d (d') forms a word line of the RAM, and the part of the electrode film on the opposite side to the part forming the capacitor forms an earth line.

(D、発明が解決しようとする問題点)第3図に示すよ
うなメモリセルにおいては、コンデンサが多少の凹凸は
あるも略平面上に通商するように形成された電極膜り、
誘電膜j及び電極lりkからなる。
(D. Problem to be Solved by the Invention) In a memory cell as shown in FIG.
It consists of a dielectric film j and an electrode lk.

そして、多結晶シリコンからなる電極膜りの表面を加熱
酸化することにより形成された誘電膜jを成すシリコン
酸化膜は単結晶シリコンを加熱酸化することにより形成
されたシリコン酸化膜に比較して電界強度が弱く3分の
1程度である。従って、充分な電界強度を得るにはその
誘電膜jを成すシリコン酸化膜の膜厚を相当に厚くすな
ければならない、そして、その膜厚を厚くすると当然の
ことながらコンデンサの単位占有面積当りの静電容量が
小さくなり、十分な大きさの静電容量を得るにはコンデ
ンサの占有面積を大きくせざるを得ない。
The silicon oxide film forming the dielectric film j, which is formed by heating and oxidizing the surface of the electrode film made of polycrystalline silicon, has a higher electric field resistance than the silicon oxide film formed by heating and oxidizing single crystal silicon. The strength is weak, about one third. Therefore, in order to obtain sufficient electric field strength, the thickness of the silicon oxide film that forms the dielectric film j must be made considerably thicker, and as the film thickness becomes thicker, the amount per unit area occupied by the capacitor naturally increases. The capacitance becomes smaller, and in order to obtain a sufficiently large capacitance, the area occupied by the capacitor must be increased.

そこで、誘電膜として多結晶シリコンを加熱酸化するこ
とにより形成したシリコン酸化膜に代えて別の絶縁膜、
例えば500人のタンタルオキサイド膜(熱酸化膜10
0人の絶縁膜)を設けたりする必要がある。
Therefore, instead of the silicon oxide film formed by heating and oxidizing polycrystalline silicon as a dielectric film, another insulating film,
For example, 500 tantalum oxide films (thermal oxide films 10
It is necessary to provide an insulating film for 0 people.

本発明は上記問題点を解決すべく為されたもので、メモ
リセルの占有面積を小さくしつつコンデンサの静電容量
を大きくすることを目的とするものである。
The present invention has been made to solve the above-mentioned problems, and its object is to increase the capacitance of a capacitor while reducing the area occupied by a memory cell.

(E、問題点を解決するための手段) 本発明メモリセルは、上記問題点を解決するため、平面
上に延在するコンデンサ部分の周縁に垂直に延びるコン
デンサを付加してなることを特徴とするものである。
(E. Means for Solving Problems) In order to solve the above problems, the memory cell of the present invention is characterized in that a capacitor extending perpendicularly to the periphery of a capacitor portion extending on a plane is added. It is something to do.

従って、本発明メモリセルによれば、平面方向における
占有面積を大きくすることなく静電容量を大きくするこ
とができる。
Therefore, according to the memory cell of the present invention, the capacitance can be increased without increasing the occupied area in the planar direction.

(F、実施例)[第1図、第2図] 以下に、本発明メモリセルを添附図面に示した実施例に
従って詳細に説明する。
(F. Embodiment) [FIGS. 1 and 2] The memory cell of the present invention will be described in detail below according to the embodiment shown in the accompanying drawings.

(a、製造方法)[第1図] 第1図(A)乃至(E)は本発明メモリセルの実施の一
例の製造方法を工程順に示す断面図である。
(a. Manufacturing method) [FIG. 1] FIGS. 1(A) to (E) are cross-sectional views showing, in order of steps, a manufacturing method of an embodiment of the memory cell of the present invention.

(A)シリコン半導体基板1表面部に選択酸化法により
フィールド絶縁膜2を形成し、半導体基板1のセル形成
領域にMOSFET3を形成する。4はそのゲート絶縁
膜、5は多結晶シリコンからなるゲート電極、5′は上
記MOSFET3の隣りのMOSFETのゲート電極、
6はドレイン、7はソース、8は層間絶縁膜、9は該層
間絶縁膜8に形成されたコンタクトホールで、ソース7
上に形成されている。
(A) A field insulating film 2 is formed on the surface of a silicon semiconductor substrate 1 by selective oxidation, and a MOSFET 3 is formed in a cell formation region of the semiconductor substrate 1. 4 is its gate insulating film, 5 is a gate electrode made of polycrystalline silicon, 5' is the gate electrode of the MOSFET next to the MOSFET 3,
6 is a drain, 7 is a source, 8 is an interlayer insulating film, 9 is a contact hole formed in the interlayer insulating film 8, and the source 7
formed on top.

上記MOSFET3を通常のシリコンゲートMOSFE
T形成技術により形成し、更に、層間絶縁膜8を形成し
、該絶縁膜8にコンタクトホール9を形成した後は、ソ
ース7に接続される多結晶シリコンからなる電極膜10
を形成する。ところで1本実施例において電極膜(膜厚
3000人)10め表面にはシリコン酸化物(SiO2
)からなる絶縁膜(膜厚5000人)11が設けられて
いる。具体的には、電極膜10を成す多結晶シリコンを
CVD法により形成した後絶縁膜11を為すシリコン酸
化物(Si02)を例えばスピンオングラス(SOG)
法により形成し、その後、その絶縁膜11及び電極膜1
0をフォトエツチングにより選択的に除去してソース7
及びその周辺部上にのみ絶縁膜11及び電極膜lOを残
存させる。第1図(A)は絶縁膜11及び電極膜1oに
対するフォトエツチングの終了後の状態を示す。
The above MOSFET3 is a normal silicon gate MOSFET.
After forming an interlayer insulating film 8 using a T-forming technique and forming a contact hole 9 in the insulating film 8, an electrode film 10 made of polycrystalline silicon connected to the source 7 is formed.
form. By the way, in this example, silicon oxide (SiO2
) is provided with an insulating film 11 (film thickness: 5000 mm). Specifically, polycrystalline silicon forming the electrode film 10 is formed by a CVD method, and then silicon oxide (Si02) forming the insulating film 11 is formed using spin-on glass (SOG), for example.
After that, the insulating film 11 and electrode film 1 are formed by
0 is selectively removed by photoetching to form the source 7.
The insulating film 11 and the electrode film 1O are left only on the periphery thereof. FIG. 1(A) shows the state after the photoetching of the insulating film 11 and the electrode film 1o is completed.

(B)次に、同図(B)に示すようにサイドウオール形
成用の多結晶シリコン膜(3000人)12を形成する
。この多結晶シリコン膜12のステップカバレージの良
い成長方法により形成する。
(B) Next, as shown in Figure (B), a polycrystalline silicon film (3000 layers) 12 for forming sidewalls is formed. This polycrystalline silicon film 12 is formed by a growth method that provides good step coverage.

(C)次いで、多結晶シリコン膜12に対してRIE等
の異方性エツチング処理を施すことにより前記絶縁膜1
1及び電極膜lOの側面にのみ多結晶シリコン膜12が
サイドウオールとして残存するようにする。13はその
多結晶シリコン膜12の残存部、即ち、サイドウオール
である。
(C) Next, the polycrystalline silicon film 12 is subjected to an anisotropic etching process such as RIE, thereby etching the insulating film 1.
The polycrystalline silicon film 12 is made to remain as a sidewall only on the side surfaces of the electrode film 1 and the electrode film IO. Reference numeral 13 indicates a remaining portion of the polycrystalline silicon film 12, that is, a sidewall.

その後、電極膜IO上の絶縁膜11をエッチオフする。After that, the insulating film 11 on the electrode film IO is etched off.

このようにして電極膜lOの周縁にそこから上方へ垂直
方向に延びるサイドウオール13が形成される。そして
、電極膜10及びサイドウオール13が情報蓄積用コン
デンサの一方の電極となる。第1図(C)は絶縁膜11
除去後の状態を示す。
In this way, a sidewall 13 is formed at the periphery of the electrode film 1O, extending vertically upward therefrom. Then, the electrode film 10 and the sidewall 13 become one electrode of the information storage capacitor. FIG. 1(C) shows the insulating film 11.
Shows the state after removal.

(D)次に、コンデンサの誘電膜14を形成する− 8
jE誘電膜14はCVDによるシリコン酸化物(Si0
2)あるいはシリコンの加熱酸化によるシリコン酸化物
(S i O2)あるいはシリコン酸化物(Si02)
・ナイトライド(SiN)・シリコン酸化物(Si02
)の三重層により形成される。
(D) Next, form the dielectric film 14 of the capacitor - 8
The jE dielectric film 14 is made of silicon oxide (Si0
2) Or silicon oxide (S i O2) or silicon oxide (Si02) by thermal oxidation of silicon
・Nitride (SiN) ・Silicon oxide (Si02
) is formed by a triple layer of

次いで、誘電膜14上にコンデンサのもう一方の電極を
成す電極膜10を形成する。該電極膜10は多結晶シリ
コンのCVDにより形成する。これにより、電極膜15
、誘電膜14及び電極膜lO・サイドウオール13から
なるコンデンサ16が形成される。該コンデンサ16は
略一平面上に延びる略平板状部16aと、該平板状部1
6aの周縁から垂直に上方に延びる垂直部16bとから
なる。そして、略平板状部16aは多結晶シリコンから
なる電極膜10[第1図(A)に示した工程で形成され
る]と、誘電膜14のその電極膜10と対応する部分と
、電極膜15の電極膜10と対応する部分と、からなる
。また、垂直部16bは多結晶シリコンからなるサイド
ウオール13と、AA電膜14のそのサイドウオール1
3と対応する部分と、電極膜15のサイドウオール13
と対応する部分と、からなる。
Next, an electrode film 10 forming the other electrode of the capacitor is formed on the dielectric film 14. The electrode film 10 is formed by CVD of polycrystalline silicon. As a result, the electrode film 15
, a capacitor 16 consisting of a dielectric film 14 and an electrode film lO/sidewall 13 is formed. The capacitor 16 includes a substantially flat portion 16a extending on approximately one plane, and the flat portion 1.
6a, and a vertical portion 16b extending perpendicularly upward from the peripheral edge of 6a. The approximately flat plate-shaped portion 16a includes an electrode film 10 made of polycrystalline silicon [formed in the process shown in FIG. 1(A)], a portion of the dielectric film 14 corresponding to the electrode film 10, and an electrode film 15 electrode films 10 and corresponding portions. Further, the vertical portion 16b includes the sidewall 13 made of polycrystalline silicon and the sidewall 1 of the AA electric film 14.
3 and the side wall 13 of the electrode film 15
and a corresponding part.

第1図CI))は電極膜13形成後の状態を示す。FIG. 1 CI)) shows the state after the electrode film 13 is formed.

(E)次いで、電極膜15に対して選択的にエツチング
することにより電極膜15の不要部分を除去する。尚、
電極膜15は接地される。
(E) Next, unnecessary portions of the electrode film 15 are removed by selectively etching the electrode film 15. still,
The electrode film 15 is grounded.

次いで、電極膜15の形成後層間絶縁膜17を形成し、
該絶縁膜17のドレイン6と対応する位置にコンタクト
ホール18を形成し、その後、アルミニウムからなる配
線膜19を形成する。該配線膜19はコンタクトホール
18を通してドレイン6と接続されたビットラインであ
る。該配線膜19はMOSFET3を介してコンデンサ
16に接続されている。
Next, after forming the electrode film 15, an interlayer insulating film 17 is formed,
A contact hole 18 is formed in the insulating film 17 at a position corresponding to the drain 6, and then a wiring film 19 made of aluminum is formed. The wiring film 19 is a bit line connected to the drain 6 through the contact hole 18. The wiring film 19 is connected to the capacitor 16 via the MOSFET 3.

このようにしてMOSFET3とトランジスタ16とか
らなるメモリセルが製造される。
In this way, a memory cell consisting of MOSFET 3 and transistor 16 is manufactured.

第2図1主メモリセル形成後[第1図(E)の工程終了
後〕における平面図である。尚、同図において格子状部
分はコンタクト部分である。
FIG. 2 is a plan view after forming the main memory cell [after the step shown in FIG. 1(E)]. Note that the grid-like portions in the figure are contact portions.

(b、構成)[第1図、第2図] 図示したメモリセルは、ビットラインを成す配線膜19
がコンタクトホール18を介してMOSFET3のドレ
イン6に接続されている。そして、ソース7はコンデン
サ16の略平板状の電極膜10とコンタクトホール9を
介して電気的に接続されている。該電極膜10の周縁に
はそれと略垂直方向に上方に延びるところの多結晶シリ
コンからなるサイドウオール13が一体に形成されてお
り、電極膜lO及びサイドウオール13の表面には誘電
膜14を介して電極膜15が形成されている。しかして
、電極膜lO及び絶縁膜13と、電極膜15の誘電膜1
4を介して電極膜10及び誘電膜13と対向する部分と
、によって情報蓄積用のコンデンサ16が形成される。
(b, Configuration) [Figures 1 and 2] The illustrated memory cell has a wiring film 19 forming a bit line.
is connected to the drain 6 of the MOSFET 3 via a contact hole 18. The source 7 is electrically connected to the substantially flat electrode film 10 of the capacitor 16 via the contact hole 9. A side wall 13 made of polycrystalline silicon is integrally formed on the periphery of the electrode film 10 and extends upward in a direction substantially perpendicular to the electrode film 10. A dielectric film 14 is interposed between the electrode film 10 and the surface of the side wall 13. An electrode film 15 is formed thereon. Therefore, the electrode film lO, the insulating film 13, and the dielectric film 1 of the electrode film 15
A capacitor 16 for storing information is formed by the electrode film 10 and the portion facing the dielectric film 13 via the capacitor 4 .

依って、1つのMOSFET3とそれに直列に接続され
たコンデンサ16とからなるメモリセルが構成される6
ソシテ、MOSFET3のゲート電極5.5′がメモリ
セルのワードラインをなす。
Therefore, a memory cell consisting of one MOSFET 3 and a capacitor 16 connected in series with it is configured 6.
The gate electrode 5.5' of MOSFET 3 forms the word line of the memory cell.

(c、作用) 上述したメモリセルによれば、第3図に示した従来例に
おける電極膜りに相当する電極膜10の上にサイドウオ
ール13の高さをかせぐための絶縁膜11を設けること
とし、電極膜10及び絶縁膜11の形成後その周縁に多
結晶シリコンからなるサイドウオール13を形成し、そ
の電極膜10とサイドウオール13とをもってコンデン
サ16の一方の電極としたので、垂直に延びるサイドウ
オール13によってコンデンサの占有面積を大きくする
ことなく静゛屯容量を大きくすることができる。従って
、メモリセルの占有面積を大きくすることなくコンデン
サの静電容量を大きくすることができる。これは、視点
を変えてみれば、必要な静電容量を確保するに要するコ
ンデンサあるいはメモリセルの占有面積を狭くすること
ができることを意味する。そして、サイドウオール13
により静電容量を増す量を変えるにはサイドウオール1
3の高さを変えれば良い(これはとりもなおさず電極膜
10上に形成する絶縁膜11(第1図(A)参照]の厚
さを変えれば良い)、そして、サイドウオール13によ
り静電容量を項す量を背えてもコンデンサ16の占有面
積は全く変わらない。
(c. Effect) According to the above-described memory cell, an insulating film 11 for increasing the height of the sidewall 13 is provided on the electrode film 10 corresponding to the electrode film in the conventional example shown in FIG. After forming the electrode film 10 and the insulating film 11, a side wall 13 made of polycrystalline silicon was formed on the periphery of the electrode film 10 and the insulating film 11, and the electrode film 10 and the side wall 13 were used as one electrode of the capacitor 16, so that the capacitor 16 extends vertically. The sidewall 13 allows the static capacitance to be increased without increasing the area occupied by the capacitor. Therefore, the capacitance of the capacitor can be increased without increasing the area occupied by the memory cell. From a different perspective, this means that the area occupied by the capacitor or memory cell required to secure the necessary capacitance can be reduced. And sidewall 13
To change the amount of capacitance increased by sidewall 1
3 (this can be done by changing the thickness of the insulating film 11 (see FIG. 1 (A)) formed on the electrode film 10), and the side wall 13 can be The area occupied by the capacitor 16 does not change at all even if the capacitance is reduced.

(G、発明の効果) 以上に述べたところから明らかなように、本発明メモリ
セルは、コンデンサが、略二次元面上に延在する部分と
、該部分の周辺に上記二次元面に対して垂直に形成され
た部分とから成ることを特徴とするものである。
(G. Effects of the Invention) As is clear from the above description, the memory cell of the present invention has a capacitor in a portion extending on a substantially two-dimensional surface, and a capacitor in the periphery of the portion with respect to the two-dimensional surface. It is characterized by consisting of vertically formed parts.

従って、本発明メモリセルによれば、情報蓄積用コンデ
ンサの平面方向における占有面積を大きくすることなく
静電容量を大きくすることができる。
Therefore, according to the memory cell of the present invention, the capacitance can be increased without increasing the area occupied by the information storage capacitor in the planar direction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明メモリセルの実施の一例を説
明するためのもので、第1図(A)乃至(E)はメモリ
セルの製造方法を工程順に示す断面図、特に同図(E)
は完成した状態を示し、第2図は完成したメモリセルの
平面図、第3図はメモリセルの従来例の−を示す断面図
である。 符号の説明 31・トランジスタ、 16壷・・コンデンサ、 16a・・・略二次元面上に延在する部分、16b・・
・垂直に形成された部分 3(A) 第1図 3−1−ランソ又り 3   (D) 第1図 3−・・Lランシ゛又り 15−・コン千゛し寸 5!i′ :P 命 Q 第2図 イ課二Jミイη11 を 含ミ 支 煎 狛 配 第3図
1 and 2 are for explaining an example of implementation of the memory cell of the present invention, and FIGS. 1(A) to 1(E) are cross-sectional views showing the method of manufacturing the memory cell in the order of steps, especially the same figure. (E)
2 shows a completed state, FIG. 2 is a plan view of the completed memory cell, and FIG. 3 is a cross-sectional view of a conventional example of the memory cell. Explanation of symbols 31: Transistor, 16: Capacitor, 16a: Portion extending on a substantially two-dimensional surface, 16b:
・Vertically formed portion 3 (A) Fig. 1 3-1 - Ransho matari 3 (D) Fig. 1 3 - L lanshi matari 15 - Contour length 5! i' : P Life Q Figure 2 A Division 2 J Mii η11 Contains Mi Seikan Koma Arrangement Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)1つのコンデンサと1つのトランジスタからなる
メモリセルにおいて、 上記コンデンサが、略二次元面上に延在する部分と、該
部分の周辺に上記二次元面に対して垂直に形成された部
分と、 から成ることを特徴とするメモリセル
(1) In a memory cell consisting of one capacitor and one transistor, a portion in which the capacitor extends approximately on a two-dimensional surface, and a portion formed around the portion perpendicular to the two-dimensional surface A memory cell characterized by comprising: and
JP60188818A 1985-08-28 1985-08-28 Memory cell Pending JPS6248062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60188818A JPS6248062A (en) 1985-08-28 1985-08-28 Memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60188818A JPS6248062A (en) 1985-08-28 1985-08-28 Memory cell

Publications (1)

Publication Number Publication Date
JPS6248062A true JPS6248062A (en) 1987-03-02

Family

ID=16230352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60188818A Pending JPS6248062A (en) 1985-08-28 1985-08-28 Memory cell

Country Status (1)

Country Link
JP (1) JPS6248062A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318152A (en) * 1987-06-19 1988-12-27 Fujitsu Ltd Dynamic random access memory
JPH01257365A (en) * 1988-04-07 1989-10-13 Fujitsu Ltd Semiconductor integrated circuit device
JPH0258374A (en) * 1988-08-24 1990-02-27 Hitachi Ltd Semiconductor integrated circuit device
US4974040A (en) * 1987-06-17 1990-11-27 Fujitsu Limited Dynamic random access memory device and method of producing same
US4977102A (en) * 1987-11-17 1990-12-11 Fujitsu Limited Method of producing layer structure of a memory cell for a dynamic random access memory device
JPH03135670A (en) * 1989-10-20 1991-06-10 Kubota Corp Data base system containing intelligent retrieving method
JPH03180065A (en) * 1989-12-08 1991-08-06 Mitsubishi Electric Corp Semiconductor device
JPH03180062A (en) * 1989-12-08 1991-08-06 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH03214767A (en) * 1990-01-19 1991-09-19 Nec Corp Manufacture of semiconductor device
JPH03232271A (en) * 1989-11-30 1991-10-16 Hyundai Electron Ind Co Ltd Semiconductor element with cylindrical type laminated capacitor and manufacture
JPH03263370A (en) * 1990-02-16 1991-11-22 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
US5071783A (en) * 1987-06-17 1991-12-10 Fujitsu Limited Method of producing a dynamic random access memory device
JPH03296263A (en) * 1990-04-16 1991-12-26 Nec Corp Semiconductor memory cell and its manufacture
JPH04320370A (en) * 1991-03-23 1992-11-11 Samsung Electron Co Ltd Semiconductor device and manufacture thereof
US5314835A (en) * 1989-06-20 1994-05-24 Sharp Kabushiki Kaisha Semiconductor memory device
JPH06236971A (en) * 1993-02-12 1994-08-23 Nec Corp Semiconductor memory
US5436187A (en) * 1994-02-22 1995-07-25 Nec Corporation Process for fabricating a semiconductor memory device including a capacitor having a cylindrical storage node electrode
JPH07326717A (en) * 1993-12-31 1995-12-12 Hyundai Electron Ind Co Ltd Semiconductor memory device and manufacturing method
US5650647A (en) * 1987-06-17 1997-07-22 Fujitsu Limited Dynamic random access memory device and method of producing same
KR100235983B1 (en) * 1991-09-11 1999-12-15 김영환 Multilayer Capacitor Manufacturing Method
US6028334A (en) * 1995-12-18 2000-02-22 Nec Corporation Semiconductor device and method of manufacturing the same
US6057190A (en) * 1996-06-24 2000-05-02 Nec Corporation Method of manufacturing semiconductor device
US6097053A (en) * 1996-08-22 2000-08-01 Nec Corporation Semiconductor device having a multi-wall cylindrical capacitor
US6340619B1 (en) 1996-12-26 2002-01-22 Lg Semicon Co., Ltd. Capacitor and method of fabricating the same
US6403455B1 (en) 2000-08-31 2002-06-11 Samsung Austin Semiconductor, L.P. Methods of fabricating a memory device
US6407420B1 (en) 1996-12-20 2002-06-18 Hitachi, Ltd. Integrated circuit device having line width determined by side wall spacer provided in openings formed in insulating film for connection conductors
US6576510B2 (en) 1999-06-17 2003-06-10 Hitachi Ltd Method of producing a semiconductor memory device using a self-alignment process
US6689668B1 (en) 2000-08-31 2004-02-10 Samsung Austin Semiconductor, L.P. Methods to improve density and uniformity of hemispherical grain silicon layers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112646A (en) * 1982-12-20 1984-06-29 Fujitsu Ltd semiconductor storage device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112646A (en) * 1982-12-20 1984-06-29 Fujitsu Ltd semiconductor storage device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071783A (en) * 1987-06-17 1991-12-10 Fujitsu Limited Method of producing a dynamic random access memory device
US4974040A (en) * 1987-06-17 1990-11-27 Fujitsu Limited Dynamic random access memory device and method of producing same
US5021357A (en) * 1987-06-17 1991-06-04 Fujitsu Limited Method of making a dram cell with stacked capacitor
US5650647A (en) * 1987-06-17 1997-07-22 Fujitsu Limited Dynamic random access memory device and method of producing same
JPS63318152A (en) * 1987-06-19 1988-12-27 Fujitsu Ltd Dynamic random access memory
US4977102A (en) * 1987-11-17 1990-12-11 Fujitsu Limited Method of producing layer structure of a memory cell for a dynamic random access memory device
JPH01257365A (en) * 1988-04-07 1989-10-13 Fujitsu Ltd Semiconductor integrated circuit device
JPH0258374A (en) * 1988-08-24 1990-02-27 Hitachi Ltd Semiconductor integrated circuit device
US5334869A (en) * 1989-06-20 1994-08-02 Sharp Kabushiki Kaisha Semiconductor memory device
US5314835A (en) * 1989-06-20 1994-05-24 Sharp Kabushiki Kaisha Semiconductor memory device
JPH03135670A (en) * 1989-10-20 1991-06-10 Kubota Corp Data base system containing intelligent retrieving method
JPH03232271A (en) * 1989-11-30 1991-10-16 Hyundai Electron Ind Co Ltd Semiconductor element with cylindrical type laminated capacitor and manufacture
JPH03180062A (en) * 1989-12-08 1991-08-06 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH03180065A (en) * 1989-12-08 1991-08-06 Mitsubishi Electric Corp Semiconductor device
JPH03214767A (en) * 1990-01-19 1991-09-19 Nec Corp Manufacture of semiconductor device
JPH03263370A (en) * 1990-02-16 1991-11-22 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPH03296263A (en) * 1990-04-16 1991-12-26 Nec Corp Semiconductor memory cell and its manufacture
JPH04320370A (en) * 1991-03-23 1992-11-11 Samsung Electron Co Ltd Semiconductor device and manufacture thereof
KR100235983B1 (en) * 1991-09-11 1999-12-15 김영환 Multilayer Capacitor Manufacturing Method
JPH06236971A (en) * 1993-02-12 1994-08-23 Nec Corp Semiconductor memory
JPH0831575B2 (en) * 1993-02-12 1996-03-27 日本電気株式会社 Semiconductor memory device
JPH07326717A (en) * 1993-12-31 1995-12-12 Hyundai Electron Ind Co Ltd Semiconductor memory device and manufacturing method
US5436187A (en) * 1994-02-22 1995-07-25 Nec Corporation Process for fabricating a semiconductor memory device including a capacitor having a cylindrical storage node electrode
US6028334A (en) * 1995-12-18 2000-02-22 Nec Corporation Semiconductor device and method of manufacturing the same
US6057190A (en) * 1996-06-24 2000-05-02 Nec Corporation Method of manufacturing semiconductor device
US6097053A (en) * 1996-08-22 2000-08-01 Nec Corporation Semiconductor device having a multi-wall cylindrical capacitor
US6407420B1 (en) 1996-12-20 2002-06-18 Hitachi, Ltd. Integrated circuit device having line width determined by side wall spacer provided in openings formed in insulating film for connection conductors
US6340619B1 (en) 1996-12-26 2002-01-22 Lg Semicon Co., Ltd. Capacitor and method of fabricating the same
US6576510B2 (en) 1999-06-17 2003-06-10 Hitachi Ltd Method of producing a semiconductor memory device using a self-alignment process
US6661048B2 (en) 1999-06-17 2003-12-09 Hitachi, Ltd. Semiconductor memory device having self-aligned wiring conductor
US6403455B1 (en) 2000-08-31 2002-06-11 Samsung Austin Semiconductor, L.P. Methods of fabricating a memory device
US6689668B1 (en) 2000-08-31 2004-02-10 Samsung Austin Semiconductor, L.P. Methods to improve density and uniformity of hemispherical grain silicon layers

Similar Documents

Publication Publication Date Title
JPS6248062A (en) Memory cell
JPH07169855A (en) Drum capacitor manufacturing method
JPH0744220B2 (en) Method for forming fine contacts for highly integrated devices
US20230422474A1 (en) Memory and forming method thereof
US6406967B1 (en) Method for manufacturing cylindrical storage electrode of semiconductor device
JPH06204432A (en) DRAM manufacturing method
KR950010876B1 (en) Method of manufacturing charge storage electrode in semiconductor memory device
JP2630421B2 (en) Manufacturing method of integrated circuit device
US4897702A (en) Semiconductor memory device and manufacturing method for the same
JP2503621B2 (en) Method for manufacturing semiconductor device
JP3149930B2 (en) Semiconductor device and method of manufacturing the same
JPH0254960A (en) Manufacture of semiconductor device
US6291293B1 (en) Method for fabricating an open can-type stacked capacitor on an uneven surface
JPH01119055A (en) Semiconductor memory device
KR20010050781A (en) Integrated circuit with at least a capacitor and process for producing the same
JPS62213273A (en) Dynamic random access memory
KR960013643B1 (en) Manufacture method of capacitor storage electrode
KR0166038B1 (en) Capacitor Manufacturing Method of Semiconductor Device
JP2943268B2 (en) Semiconductor memory and manufacturing method thereof
JP2890716B2 (en) Semiconductor device manufacturing method
KR970010681B1 (en) Method of manufacturing a storage node
JPS62145864A (en) Memory cell structure for dynamic semiconductor memory and manufacture thereof
KR100236721B1 (en) Capacitor forming method
JPH05275649A (en) Semiconductor storage device
JPH04216666A (en) Semiconductor device and its manufacture