JPS6247470A - Formation of thermally sprayed coating on inside surface of cylinder - Google Patents
Formation of thermally sprayed coating on inside surface of cylinderInfo
- Publication number
- JPS6247470A JPS6247470A JP60184309A JP18430985A JPS6247470A JP S6247470 A JPS6247470 A JP S6247470A JP 60184309 A JP60184309 A JP 60184309A JP 18430985 A JP18430985 A JP 18430985A JP S6247470 A JPS6247470 A JP S6247470A
- Authority
- JP
- Japan
- Prior art keywords
- cylinder
- inside surface
- thermally sprayed
- cooling
- spraying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は円筒内面に合金または、セラミックスを溶射被
覆する方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for thermally spraying an alloy or ceramic on the inner surface of a cylinder.
一般ニ、合金やセラミックスを溶射被覆する時被浴射材
の組織変化や熱歪環を防ぐ目的で、被溶射材に空気また
は不活性ガスを吹き付けて冷却をしながら溶射を行なう
。Generally, when coating alloys or ceramics by thermal spraying, spraying is carried out while cooling the material by blowing air or inert gas onto it in order to prevent changes in the structure of the material and thermal distortion rings.
最近、化学プラント用配管、ガスタービン用燃焼筒、ジ
ェットエンジン用燃焼筒等の円筒体内面に合金やセラミ
ックスの溶射被覆が要求されるようになってきた。Recently, there has been a demand for thermal spray coating of alloys or ceramics on the inner surfaces of cylindrical bodies such as pipes for chemical plants, combustion tubes for gas turbines, and combustion tubes for jet engines.
特に、ガスタービン用燃焼筒やジェットエンジン用燃焼
筒は超高温度で使用されるため、高温耐久性に優れた良
好な溶射被被覆層が要求される。In particular, since combustion tubes for gas turbines and combustion tubes for jet engines are used at extremely high temperatures, a good thermal spray coating layer with excellent high-temperature durability is required.
このような円筒体の内面に溶射被覆を行なう時の従来方
法は、円筒体の外表面に空気または不活性ガスを吹き付
けて冷却しながら円筒内面を溶射被覆していた。しかし
この冷却方法は外表面からの冷却のため、冷却効率が悪
く円筒体を十分に冷却が出来ない。また円筒体の外表面
からの冷却構造のため、円筒体の内側に未溶着粒子が存
在し、溶射被覆層に巻き込まれ、良好な溶射被覆層が得
られない。本発明は、これら欠点を克服した円筒内面の
溶射被覆方法である。The conventional method for spray coating the inner surface of such a cylindrical body is to spray air or an inert gas onto the outer surface of the cylindrical body to cool it while spraying the inner surface of the cylindrical body. However, since this cooling method involves cooling from the outer surface, the cooling efficiency is poor and the cylindrical body cannot be cooled sufficiently. Furthermore, due to the cooling structure from the outer surface of the cylinder, unwelded particles exist inside the cylinder and get caught up in the thermal spray coating layer, making it impossible to obtain a good thermal spray coating layer. The present invention is a thermal spray coating method for the inner surface of a cylinder that overcomes these drawbacks.
本発明は、上記従来技術の欠点を克服した円筒内面の溶
射被覆方法を提供するものであシ、円筒体内面で直接溶
射被覆層を冷却する構造であシ、円筒体を十分に冷却す
ることが出来る。しかも未溶着粒子を吹き飛して除去す
るため、未溶着粒子の巻き込みのない緻密で密着性が良
好な溶射被覆層を形成する円筒内面の溶射被覆方法を提
供することを目的とする。The present invention provides a thermal spray coating method for the inner surface of a cylinder that overcomes the drawbacks of the prior art, and has a structure in which the thermal spray coating layer is directly cooled on the inner surface of the cylinder, so that the cylinder can be sufficiently cooled. I can do it. In addition, since the unwelded particles are blown away and removed, it is an object of the present invention to provide a thermal spray coating method for the inner surface of a cylinder, which forms a dense thermal spray coating layer with good adhesion without entrainment of unwelded particles.
本発明は、円筒内面の溶射被覆方法に関するものでらり
、円筒内面に合金またはセラミックスを溶射被覆する方
法において、円筒内面に溶射ガフ及び冷却用ノズルを配
置し、ノズルから空気または不活性ガスを吹き付けて冷
却しながら溶射する、円筒内面の溶射被覆方法である。The present invention relates to a thermal spray coating method for the inner surface of a cylinder, and in this method, a thermal spray gaff and a cooling nozzle are arranged on the inner surface of the cylinder, and air or inert gas is supplied from the nozzle. This is a thermal spray coating method for the inner surface of a cylinder, in which thermal spraying is performed while cooling.
すなわち、この方法は、円筒内面で直接溶射被覆層に空
気または不活性ガスを吹き付けて冷却する構造であり、
円筒体を効率良く、十分に冷却することが出来る。In other words, this method has a structure in which air or inert gas is sprayed directly onto the thermally sprayed coating layer on the inner surface of the cylinder to cool it.
The cylindrical body can be efficiently and sufficiently cooled.
また、空気または不活性ガスを吹き付けるために未溶着
粒子を吹き飛して除去することが出来、未溶着粒子の巻
き込みのない緻密でぞ活性の良好な溶射被覆層を形成す
る円筒内面の溶射被覆方法である。この時の冷却ノズル
は、溶射方向に対して45度から315度方向に取−り
付けると良い。なぜなら45弦または315度よシ溶射
方向に近ずけると溶射炎に悪影響をおよほして、均一な
溶射被覆層を得がたくする。また効率良く冷却するため
には複数本の冷却ノズルを用いると良い。In addition, by blowing air or inert gas, unwelded particles can be blown off and removed, forming a thermally sprayed coating layer on the inner surface of the cylinder that is dense and highly active without entrainment of unwelded particles. It's a method. The cooling nozzle at this time is preferably installed at an angle of 45 degrees to 315 degrees with respect to the thermal spraying direction. This is because if the angle is 45 degrees or 315 degrees, it will adversely affect the spray flame and make it difficult to obtain a uniform spray coating layer. Further, in order to cool efficiently, it is preferable to use a plurality of cooling nozzles.
以下、本発明の円筒の内面溶射抜機方法を図面を用いて
詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention using a cylindrical inner surface spraying machine will be described in detail below with reference to the drawings.
第1図に本発明の円筒の内面溶射被覆方法に用いる装置
の概略図である。円筒体1の内面に溶射方向が垂直にな
るように溶射ガフ2を向け、円筒内面と溶射ガンとの距
離を6層mtsから150龍とする。FIG. 1 is a schematic diagram of an apparatus used in the thermal spray coating method for the inner surface of a cylinder according to the present invention. The spraying gaff 2 is directed so that the spraying direction is perpendicular to the inner surface of the cylindrical body 1, and the distance between the inner surface of the cylinder and the spraying gun is set from 6 layers mts to 150 mts.
冷却用ノズル3,4は溶射方向に対して90度方向と1
80度方向に取フ角け、円筒内面とノズルとの距離を1
0mmから50龍にする。この冷却ノズルから空気また
はヘリウムガス、アルゴンカス窒素ガス等の不活性ガス
を吹き付は円筒内面よシ冷却する。また未溶着粒子を吹
き飛して溶射被覆層への未溶着粒子の巻き込みを防止す
る。円筒体1は回転体5によシ回転しながら前後する。The cooling nozzles 3 and 4 are oriented at 90 degrees with respect to the thermal spraying direction.
Angled in the 80 degree direction, the distance between the inner surface of the cylinder and the nozzle is 1
From 0mm to 50 dragons. Air, helium gas, argon gas, nitrogen gas, or other inert gas is blown from this cooling nozzle to cool the inner surface of the cylinder. In addition, unwelded particles are blown away to prevent unwelded particles from becoming entangled in the thermally sprayed coating layer. The cylindrical body 1 moves back and forth while being rotated by the rotating body 5.
以下において本発明の実施例を掲げて本発明をざらに詳
細に説明する。EXAMPLES The present invention will be described in detail below with reference to Examples.
内径が400Mm、長さ1000朋、厚ざ1.2朋のス
テンレス(JIS規格5US304)円筒体の内面に溶
射方向が垂直になるように溶射ガ/を向け、円筒内面と
溶射ガンとの距離を951にした。冷却ノズルハ溶射方
向に対して90v方向と180度方向に取り付は円筒内
面とノズルの距離を15朋とした。この冷却ノズルから
空気を4 kg /myg2の圧力で円筒内面に吹き付
けて冷却を行なった。Aim the spray gun so that the spray direction is perpendicular to the inner surface of a stainless steel (JIS standard 5 US304) cylinder with an inner diameter of 400 mm, a length of 1000 mm, and a thickness of 1.2 mm, and adjust the distance between the inner surface of the cylinder and the spray gun. I set it to 951. The cooling nozzle was installed in the 90v direction and the 180 degree direction with respect to the thermal spraying direction, so that the distance between the inner surface of the cylinder and the nozzle was 15 mm. Air was blown onto the inner surface of the cylinder from this cooling nozzle at a pressure of 4 kg/myg2 for cooling.
溶射はプラズマ溶射法により、プラズマ電圧を36v1
プラズマ電流を80OAの条件でNi−240o−16
0r−13AAi−0,6Y合金を円筒内面に0.1間
厚さに溶射被覆し、次にZr02−5y2o、をQ、2
mm厚さに溶射被覆を行なった。円筒体は、毎秒420
朋のスピードで回転しながら、毎秒2朋のスピードで前
後した。Thermal spraying is done using the plasma spraying method, with a plasma voltage of 36v1.
Ni-240o-16 with plasma current of 80OA
0r-13AAi-0,6Y alloy was thermally sprayed on the inner surface of the cylinder to a thickness of 0.1 mm, and then Zr02-5y2o was coated with Q, 2
Thermal spray coating was carried out to a thickness of mm. The cylinder has a speed of 420 per second
It spun back and forth at a speed of 2 mph per second while rotating at a speed of 1 mil.
このような条件で円筒内面を溶射被覆した時、円筒体の
温度は最高で75℃であり十分に冷却された0
作製した円筒内面の溶射被覆層の特性評価として円筒体
から1インチ径の円板形態衝撃試験片と幅25絹、長1
20朋の曲げ試験片を作り試験を行なった。熱衝撃試験
は1000℃に加熱した炉中と室温とで急り0熱、急冷
のくりかえし試験を150回行なっても溶射被覆層にク
ラックやはく離は見られず高温耐久性に優れたものであ
った。曲げ試験は20朋几で行なった。その結果曲面に
細かいクラックは見られるが、ば<1iItは無く密着
性に優れたものであった。When the inner surface of the cylinder was thermally sprayed under these conditions, the temperature of the cylinder reached a maximum of 75°C, indicating that it had been sufficiently cooled. Plate form impact test piece and width 25 silk, length 1
A 20 mm bending test piece was prepared and tested. Thermal shock tests were repeated 150 times in a furnace heated to 1000°C and then at room temperature. No cracks or peeling were observed in the thermally sprayed coating layer, indicating that it has excellent high-temperature durability. Ta. The bending test was conducted for 20 hours. As a result, fine cracks were observed on the curved surface, but there was no <1iIt and the adhesion was excellent.
以上に詳述したとうり、本発明の円筒内面の溶射被覆方
法で作製しfc溶射被、1層は高温耐久性、密着性に優
れており、この方法(1円筒内面の溶射被覆方法として
非常に有効である。As detailed above, the first layer of FC thermal sprayed coating produced by the thermal spray coating method for the inner surface of a cylinder according to the present invention has excellent high-temperature durability and adhesion. It is effective for
第1図は本発明の円筒内面の溶射被覆方法の実施例を示
す図面でろる。
1・・・円筒体
2・・・溶射ガン
3・・・冷却ノズル
4・・冷却ノズル
5・・・回転体
代理人 弁理士 則 近 憲 佑
同 竹花喜久男
第 1 図FIG. 1 is a drawing showing an embodiment of the thermal spray coating method for the inner surface of a cylinder according to the present invention. 1...Cylindrical body 2...Thermal spray gun 3...Cooling nozzle 4...Cooling nozzle 5...Rotating body Representative Patent attorney Yudo Noriyoshi Chika Kikuo Takehana Figure 1
Claims (2)
記円筒内に溶射ガンを配置し、かつ前記円筒内に冷却ガ
ス吹付け用ノズルを配置し、円筒内面より冷却すること
を特徴とする円筒内面の溶射被覆形成方法。(1) A method for forming a thermal spray coating on the inner surface of a cylinder, characterized in that a thermal spray gun is disposed within the cylinder, and a cooling gas spraying nozzle is disposed within the cylinder to cool the cylinder from the inner surface. Method of forming thermal spray coating on inner surface.
置で行なうことを特徴とする特許請求の範囲第1項記載
の円筒内面の溶射被覆形成方法。(2) The method for forming a thermal spray coating on the inner surface of a cylinder according to claim 1, wherein the cooling gas is sprayed at a position different from the thermal spraying position.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60184309A JPS6247470A (en) | 1985-08-23 | 1985-08-23 | Formation of thermally sprayed coating on inside surface of cylinder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60184309A JPS6247470A (en) | 1985-08-23 | 1985-08-23 | Formation of thermally sprayed coating on inside surface of cylinder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6247470A true JPS6247470A (en) | 1987-03-02 |
Family
ID=16151081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60184309A Pending JPS6247470A (en) | 1985-08-23 | 1985-08-23 | Formation of thermally sprayed coating on inside surface of cylinder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6247470A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05214505A (en) * | 1992-02-05 | 1993-08-24 | Nippon Steel Corp | Formation of spray deposit |
JPH06278077A (en) * | 1993-03-31 | 1994-10-04 | Ngk Insulators Ltd | Chuck device and chucking method |
US5648123A (en) * | 1992-04-02 | 1997-07-15 | Hoechst Aktiengesellschaft | Process for producing a strong bond between copper layers and ceramic |
FR2756756A1 (en) * | 1996-12-09 | 1998-06-12 | Inst Polytechnique De Sevenans | METHOD AND DEVICE FOR MAKING A COATING ON A SUBSTRATE |
JP2000087211A (en) * | 1998-09-17 | 2000-03-28 | Dai Ichi High Frequency Co Ltd | High frequency remelting treatment method and device |
EP1350862A1 (en) * | 2002-04-04 | 2003-10-08 | Sulzer Metco AG | Process and apparatus for thermally coating a surface |
JP2007217748A (en) * | 2006-02-16 | 2007-08-30 | Taiheiyo Cement Corp | Method for depositing spray deposit film on machinable ceramic substrate |
WO2011010400A1 (en) * | 2009-07-22 | 2011-01-27 | 日鉄ハード株式会社 | Molten metal-resistant member and process for producing molten metal-resistant member |
EP2019151A3 (en) * | 2007-07-27 | 2011-05-25 | Nissan Motor Co., Ltd. | Thermally Sprayed Film Forming Method and Device |
-
1985
- 1985-08-23 JP JP60184309A patent/JPS6247470A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05214505A (en) * | 1992-02-05 | 1993-08-24 | Nippon Steel Corp | Formation of spray deposit |
US5648123A (en) * | 1992-04-02 | 1997-07-15 | Hoechst Aktiengesellschaft | Process for producing a strong bond between copper layers and ceramic |
JP2944215B2 (en) * | 1992-04-02 | 1999-08-30 | ヘキスト・アクチェンゲゼルシャフト | How to create a strong bond between a copper layer and a ceramic |
JPH06278077A (en) * | 1993-03-31 | 1994-10-04 | Ngk Insulators Ltd | Chuck device and chucking method |
FR2756756A1 (en) * | 1996-12-09 | 1998-06-12 | Inst Polytechnique De Sevenans | METHOD AND DEVICE FOR MAKING A COATING ON A SUBSTRATE |
WO1998026104A1 (en) * | 1996-12-09 | 1998-06-18 | Institut Polytechnique De Sevenans | Method and device for producing a coating on a substrate |
JP2000087211A (en) * | 1998-09-17 | 2000-03-28 | Dai Ichi High Frequency Co Ltd | High frequency remelting treatment method and device |
EP1350862A1 (en) * | 2002-04-04 | 2003-10-08 | Sulzer Metco AG | Process and apparatus for thermally coating a surface |
JP2007217748A (en) * | 2006-02-16 | 2007-08-30 | Taiheiyo Cement Corp | Method for depositing spray deposit film on machinable ceramic substrate |
EP2019151A3 (en) * | 2007-07-27 | 2011-05-25 | Nissan Motor Co., Ltd. | Thermally Sprayed Film Forming Method and Device |
WO2011010400A1 (en) * | 2009-07-22 | 2011-01-27 | 日鉄ハード株式会社 | Molten metal-resistant member and process for producing molten metal-resistant member |
JP5647608B2 (en) * | 2009-07-22 | 2015-01-07 | 日鉄住金ハード株式会社 | Melt-resistant metal member and method for producing molten metal member |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5391404A (en) | Plasma sprayed mullite coatings on silicon-base ceramics | |
JP4162785B2 (en) | Method for applying thermal spray coating and blades of a gas turbine engine formed by this method | |
US8802199B2 (en) | Method for microstructure control of ceramic thermal spray coating | |
JPS6247470A (en) | Formation of thermally sprayed coating on inside surface of cylinder | |
CA2391772A1 (en) | Method for thermal barrier coating and a liner made using said method | |
JPH11229109A (en) | Heat resistant top coat and coating system | |
JPS5887273A (en) | Parts having ceramic coated layer and their production | |
US4839239A (en) | Metallic coating on an inorganic substrate | |
JP2000087205A (en) | Production and use of thermal spraying mask with thermosetting epoxy coating film | |
CN109536868A (en) | The method of the inner hole supersonic flame spraying metal-cermic coating of oil transportation flow splitter | |
JPH1046314A (en) | Production of external corrosion resistant tube | |
US5466907A (en) | Process for coating the internal surfaces of hollow bodies | |
CN104213066B (en) | The method controlling the oxidizable coating of atmosphere plasma spraying under air open environment | |
EP0621348B1 (en) | Fixture and method for cooling tubular substrate during thermal spraying | |
US6083330A (en) | Process for forming a coating on a substrate using a stepped heat treatment | |
CN116348629A (en) | Construction method of thermal barrier coating and heat-resistant component | |
JP2002323473A (en) | Method of manufacturing gas sensor element and flame spraying apparatus | |
JP2007500792A (en) | Shield ceramic spray coating | |
JPH01147051A (en) | Method and apparatus for flame spraying inner surface of thin-walled cylindrical body | |
WO2001011094A1 (en) | Recovery of precious metal | |
US5932169A (en) | Removal of slag and/or steel build-up from lances | |
JPS60194058A (en) | Thermal spraying method | |
JPH06287737A (en) | Thermally spraying equipment | |
CN110423972A (en) | A kind of high density runs through type vertical crack thermal barrier coating and its fast preparation method | |
JPS61206604A (en) | Manufacture of ceramic pipe |