[go: up one dir, main page]

JPS6245707B2 - - Google Patents

Info

Publication number
JPS6245707B2
JPS6245707B2 JP57202151A JP20215182A JPS6245707B2 JP S6245707 B2 JPS6245707 B2 JP S6245707B2 JP 57202151 A JP57202151 A JP 57202151A JP 20215182 A JP20215182 A JP 20215182A JP S6245707 B2 JPS6245707 B2 JP S6245707B2
Authority
JP
Japan
Prior art keywords
potential
electrode
base region
radiation
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57202151A
Other languages
Japanese (ja)
Other versions
JPS5992560A (en
Inventor
Tatsu Toryabe
Takahiro Okabe
Tooru Nakamura
Minoru Nagata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57202151A priority Critical patent/JPS5992560A/en
Publication of JPS5992560A publication Critical patent/JPS5992560A/en
Publication of JPS6245707B2 publication Critical patent/JPS6245707B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Bipolar Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は集積注入型論理回路(IIL………
Integrated Injection Logic)を構成する半導体
集積回路装置に係わり、とくにγ線、電子線など
の電離性放射線照射に対して特性劣化を少なくす
るための手段を有するものに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an integrated injection logic circuit (IIL).
The present invention relates to a semiconductor integrated circuit device constituting an integrated injection logic (Injection Logic), and particularly to one having means for reducing characteristic deterioration due to irradiation with ionizing radiation such as gamma rays and electron beams.

〔従来技術〕[Prior art]

バイポーラ型半導体集積回路装置、とくに第1
図に示すようなIIL(Integrated Injection
Logic)素子において、電離性放射線100が照
射された場合、酸化膜1中に正電荷50、界面7
にアクセプタ型の表面準位が形成される。このた
め、表面再結合速度が増加して、n型層2をコレ
クタ、p型層3をベース、n+型層4をエミツタ
とするnpnトランジスタもしくはn型層2をベー
スとする横方向pnpトランジスタなどの各トラン
ジスタの電流利得βが低電流部で著しく低下す
る。第2図は横方向pnpトランジスタの電流利得
βの特性変化の例を示すもので、200は照射
前、300は照射後を示す。このような電流利得
βの低下のため、従来の構造では照射量が
103Rad以下でも回路動作不良を起こした。
Bipolar semiconductor integrated circuit devices, especially the first
IIL (Integrated Injection) as shown in the figure
Logic) element, when irradiated with ionizing radiation 100, positive charges 50 are generated in the oxide film 1, and an interface 7
Acceptor type surface states are formed in Therefore, the surface recombination speed increases, and an npn transistor with the n-type layer 2 as the collector, the p-type layer 3 as the base, and the n + type layer 4 as the emitter or a lateral pnp transistor with the n-type layer 2 as the base The current gain β of each transistor decreases significantly in the low current section. FIG. 2 shows an example of the characteristic change of the current gain β of a lateral pnp transistor, with 200 showing before irradiation and 300 after irradiation. Due to this reduction in current gain β, the irradiation amount is reduced in the conventional structure.
Even below 10 3 Rad, circuit malfunction occurred.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、かかる従来の欠点を改良し、
放照線耐量の大きいバイポーラ型半導体集積回路
装置を提供することにある。
The purpose of the present invention is to improve such conventional drawbacks,
An object of the present invention is to provide a bipolar semiconductor integrated circuit device having a large radiation resistance.

〔発明の概要〕[Summary of the invention]

低電流部での電流利得の低下は表面再結合速度
が大きく、注入された少数キヤリヤ成分が表面に
達したとき、再結合してベース電流成分を増大さ
せることに起因している。したがつて、本発明で
は半導体装置のシリコン層上部の酸化膜の上に電
極を形成し、前記シリコン層の表面に多数キヤリ
ヤ蓄積層ができるだけの電圧この電極に印加する
構成とした。これにより表面部に少数キヤリヤが
到達しにくい構造となり再結合電流成分を減少さ
せることができ、等価的にベース電流成分を小さ
くできる。これにより電流利得の低下を防止する
ことができる。
The decrease in current gain in the low current section is due to the high surface recombination rate, and when the injected minority carrier components reach the surface, they recombine and increase the base current component. Therefore, in the present invention, an electrode is formed on the oxide film on the silicon layer of the semiconductor device, and a voltage sufficient to form a multi-carrier accumulation layer on the surface of the silicon layer is applied to this electrode. This creates a structure in which minority carriers are less likely to reach the surface portion, making it possible to reduce the recombination current component and equivalently reduce the base current component. This can prevent a decrease in current gain.

〔実施例〕〔Example〕

第3図において、n型エピタキシヤル層2の上
の酸化膜1の上にAI電極8が、p型層3の上の
酸化膜11の上にAl電極9が、それぞれ形成さ
れているのが本実施例の特徴である。形成方法
は、Al蒸着、エツチングなど通常の集積回路の
形成手段を用いて容易に構成される。n型層2の
上の酸化膜1の上のAl電極8には電子蓄積層1
2が出来る程度にする。実際には+5ボルト以上
が好ましい。また正の電圧を印加p型層3の上の
酸化膜11の上のAI電極9には正孔蓄積層13
が出来る程度に負の電圧(−5〜−10V)を印加
しておく。実際には−5ボルト以下が好ましい。
In FIG. 3, an AI electrode 8 is formed on the oxide film 1 on the n-type epitaxial layer 2, and an Al electrode 9 is formed on the oxide film 11 on the p-type layer 3. This is a feature of this embodiment. The structure can be easily formed using ordinary integrated circuit forming methods such as Al vapor deposition and etching. An electron storage layer 1 is provided on the Al electrode 8 on the oxide film 1 on the n-type layer 2.
Make sure you can do 2. Actually, +5 volts or more is preferable. In addition, a positive voltage is applied to the hole accumulation layer 13 on the AI electrode 9 on the oxide film 11 on the p-type layer 3.
Apply a negative voltage (-5 to -10V) to the extent that this is possible. In reality, -5 volts or less is preferable.

p型層3とn型層2が順方向にバイアスされた
場合の少数キヤリアとして正孔はn型層へ、電子
はp型層へ注入されるが、酸化膜1の直下のシリ
コン表面部へは電子蓄積層12の存在のため逆電
界がかかり到達する少数キヤリヤは指数関数的に
抑制される。その結果、第4図に示したように、
電流利得βは照射前のコレクタ電流Ic依存性曲
線200に比べて、照射後は300の程度であ
り、低抵電流部でもほとんど低下しない。実施例
では酸化膜1と11の厚さを50nm以上に選び、
105Rad以上の放射線耐量を得た。
When the p-type layer 3 and the n-type layer 2 are biased in the forward direction, holes are injected into the n-type layer and electrons are injected into the p-type layer as minority carriers, but they are injected into the silicon surface directly under the oxide film 1. Due to the presence of the electron storage layer 12, a reverse electric field is applied and the arriving minority carriers are suppressed exponentially. As a result, as shown in Figure 4,
The current gain β is about 300 after irradiation compared to the collector current I c dependence curve 200 before irradiation, and hardly decreases even in the low resistance current section. In the example, the thickness of oxide films 1 and 11 was selected to be 50 nm or more,
A radiation tolerance of 10 5 Rad or more was obtained.

本発明の第2の実施例を第5図に示す。表面再
結合電流の影響を特に受ける横型pnpトランジス
タのベース層となるn型層2の上方にのみAI電
極8を形成したものである。これにより、放射線
耐量を大幅に増加させることができる。
A second embodiment of the invention is shown in FIG. The AI electrode 8 is formed only above the n-type layer 2, which serves as the base layer of the lateral pnp transistor, which is particularly affected by surface recombination current. This allows the radiation tolerance to be significantly increased.

本発明の第3の実施例を第6図に示す。縦型
npnトランジスタのベース層となるp型層3の上
方にのみAl電極9を形成したものである。これ
によつても、放射線耐量を大幅に増加させること
ができる。
A third embodiment of the invention is shown in FIG. vertical
An Al electrode 9 is formed only above the p-type layer 3 which becomes the base layer of the npn transistor. This also allows the radiation tolerance to be increased significantly.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明によれば、電離放射線
照射によつて生じた表面準位に対し、少数キヤリ
ヤを表面部に到達させないようにして表面再結合
電流成分を抑制して、結果として耐放射線特性を
改善したものである。
As described above, according to the present invention, the surface recombination current component is suppressed by preventing minority carriers from reaching the surface of the surface states generated by ionizing radiation irradiation, and as a result, radiation resistance is achieved. It has improved characteristics.

このような構造にすることにより、表面部に生
じやすいプロセス上の汚染などに対しても強くな
り、耐放射線だけでなく製造歩留の向上にも役立
つ。従つて本発明は工業上有用な利益をもたらす
ものと考える。
By adopting such a structure, it becomes resistant to process-related contamination that tends to occur on the surface, and is useful not only for radiation resistance but also for improving manufacturing yield. Therefore, it is believed that the present invention provides useful industrial benefits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のIIL素子の断面図、第2図は従
来のIIL素子のβ−Ic特性曲線、第3図は本発明
の第1の実施例IIL素子の断面図、第4図は本発
明の第1の実施例のβ−Ic特性曲線、第5図は
本発明の第2の実施例のIIL素子の断面図、第6
図は本発明の第3の実施例のIIL素子の断面図で
ある。 1……酸化膜、2……n型エピタキシヤル層、
3……p型層、4……n+型層、6……電極、7
……表面準位、8……Al電極、9……Al電極、
11……酸化膜、50……正電荷、100……電
離性放射線、200……照射前初期特性曲線、3
00……照射後特性曲線、β……電流利得、Ic
……コレクタ電流。
Figure 1 is a cross-sectional view of a conventional IIL element, Figure 2 is a β-I c characteristic curve of a conventional IIL element, Figure 3 is a cross-sectional view of an IIL element according to the first embodiment of the present invention, and Figure 4 is a cross-sectional view of a conventional IIL element. The β-I c characteristic curve of the first embodiment of the present invention, FIG. 5 is a cross-sectional view of the IIL element of the second embodiment of the present invention, and FIG.
The figure is a sectional view of an IIL element according to a third embodiment of the present invention. 1... Oxide film, 2... N-type epitaxial layer,
3...p type layer, 4...n + type layer, 6... electrode, 7
...Surface level, 8...Al electrode, 9...Al electrode,
11... Oxide film, 50... Positive charge, 100... Ionizing radiation, 200... Initial characteristic curve before irradiation, 3
00... Characteristic curve after irradiation, β... Current gain, I c
...Collector current.

Claims (1)

【特許請求の範囲】 1 半導体基板の表面領域に設けられた横方向
pnpトランジスタと、該横方向pnpトランジスタ
のベース領域と共通となり、接地電位とされるコ
レクタ領域、該横方向pnpトランジスタのコレク
タ領域と共通となるベース領域、及び該ベース領
域内に形成されるエミツタ領域から成るnpnトラ
ンジスタと、該pnpトランジスタのエミツタ領域
を電流注入部とするために該エミツタ領域に接続
され、正の第1の電位とされる第1の電極とを備
えた集積注入型論理回路において、該横方向pnp
トランジスタのベース領域上に絶縁膜を介して設
けられ、正の第2の電位とされる第2の電極、も
しくは該npnトランジスタのベース領域上に絶縁
膜を介して設けられ、負の第3の電位とされる第
3の電極のうち少なくとも一方を有することを特
徴とする耐放射線半導体集積回路装置。 2 前記第2の電位を+5ボルト以上とする特許
請求の範囲第1項に記載の耐放射線半導体集積回
路装置。 3 前記第3の電位を−5ボルト以下とする特許
請求の範囲第1項に記載の耐放射線半導体集積回
路装置。
[Claims] 1. Lateral direction provided in the surface area of the semiconductor substrate
A pnp transistor, a collector region that is common to the base region of the lateral pnp transistor and has a ground potential, a base region that is common to the collector region of the lateral pnp transistor, and an emitter region formed in the base region In an integrated injection logic circuit, the integrated injection logic circuit includes an npn transistor consisting of , the lateral pnp
A second electrode is provided on the base region of the transistor with an insulating film interposed therebetween and has a positive second potential, or a second electrode is provided on the base region of the npn transistor with an insulating film interposed therebetween and has a negative third potential. A radiation-resistant semiconductor integrated circuit device comprising at least one of the third electrodes set to a potential. 2. The radiation-resistant semiconductor integrated circuit device according to claim 1, wherein the second potential is +5 volts or more. 3. The radiation-resistant semiconductor integrated circuit device according to claim 1, wherein the third potential is -5 volts or less.
JP57202151A 1982-11-19 1982-11-19 Semiconductor integrated circuit device resistant to radiation Granted JPS5992560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57202151A JPS5992560A (en) 1982-11-19 1982-11-19 Semiconductor integrated circuit device resistant to radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57202151A JPS5992560A (en) 1982-11-19 1982-11-19 Semiconductor integrated circuit device resistant to radiation

Publications (2)

Publication Number Publication Date
JPS5992560A JPS5992560A (en) 1984-05-28
JPS6245707B2 true JPS6245707B2 (en) 1987-09-28

Family

ID=16452804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57202151A Granted JPS5992560A (en) 1982-11-19 1982-11-19 Semiconductor integrated circuit device resistant to radiation

Country Status (1)

Country Link
JP (1) JPS5992560A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110692A (en) * 2011-01-24 2011-06-29 中国电子科技集团公司第五十八研究所 Isolation structure of anti-radiation EEPROM (electrically erasable programmable read-only memory) array

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253479A (en) * 1985-05-02 1986-11-11 Nippon Telegr & Teleph Corp <Ntt> Selection of semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501677A (en) * 1973-05-07 1975-01-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501677A (en) * 1973-05-07 1975-01-09

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110692A (en) * 2011-01-24 2011-06-29 中国电子科技集团公司第五十八研究所 Isolation structure of anti-radiation EEPROM (electrically erasable programmable read-only memory) array

Also Published As

Publication number Publication date
JPS5992560A (en) 1984-05-28

Similar Documents

Publication Publication Date Title
US5289019A (en) Insulated gate bipolar transistor
JPS63127572A (en) Conductivity modulation type MOSFET
JP3413021B2 (en) Semiconductor device
US4841350A (en) Static induction photothyristor having a non-homogeneously doped gate
US4998155A (en) Radiation-hardened semiconductor device with surface layer
US3646411A (en) Surface barrier junction diode
US5243216A (en) Phototransistor
JPS6245707B2 (en)
US4682198A (en) Gate turn-off thyristor with integral capacitive anode
JPS6124832B2 (en)
JP2746883B2 (en) Photoelectric conversion device
US3688164A (en) Multi-layer-type switch device
JPH0313757B2 (en)
JP3216315B2 (en) Insulated gate bipolar transistor
US4459606A (en) Integrated injection logic semiconductor devices
US4720735A (en) Phototransistor having a non-homogeneously base region
JP2928417B2 (en) Method for manufacturing semiconductor device
JP2637173B2 (en) Semiconductor device
JPS60240156A (en) Radiation resisting semiconductor integrated circuit device
JPH0618280B2 (en) Schottky barrier semiconductor device
JPS621261B2 (en)
JPH0587974B2 (en)
KR810000963B1 (en) Semiconductor device
JPS58171853A (en) Radiation resistant semiconductor integrated circuit device
JPS636878A (en) Heterojunction compound bipolar transistor