JPS61253479A - Selection of semiconductor device - Google Patents
Selection of semiconductor deviceInfo
- Publication number
- JPS61253479A JPS61253479A JP9525985A JP9525985A JPS61253479A JP S61253479 A JPS61253479 A JP S61253479A JP 9525985 A JP9525985 A JP 9525985A JP 9525985 A JP9525985 A JP 9525985A JP S61253479 A JPS61253479 A JP S61253479A
- Authority
- JP
- Japan
- Prior art keywords
- amplification factor
- current amplification
- current
- changes
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 25
- 230000003321 amplification Effects 0.000 claims abstract description 28
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 28
- 230000005855 radiation Effects 0.000 claims abstract description 16
- 230000006866 deterioration Effects 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 11
- 238000005259 measurement Methods 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052710 silicon Inorganic materials 0.000 abstract description 3
- 239000010703 silicon Substances 0.000 abstract description 3
- 238000009826 distribution Methods 0.000 description 9
- 238000012216 screening Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000002950 deficient Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Landscapes
- Testing Of Individual Semiconductor Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要〕
シリコン(Si)バイポーラトランジスタ等で構成され
ている半導体装置は、放射線環境下で使用した際に大き
な放射線劣化を生じるものがあるが、低線量照射を行っ
た際の半導体装置内のSiバイポーラトランジスタの微
小電流領域での電流増幅率の変化または電流増幅率の変
化シ;基づく半導体装置の特性規格の変化に二基づいて
、このような放射線劣化を生じるおそれがある半導体装
置を予め選別除去することができるよう(二する。[Detailed Description of the Invention] [Summary] Semiconductor devices composed of silicon (Si) bipolar transistors and the like may suffer significant radiation deterioration when used in a radiation environment. Changes in the current amplification factor or changes in the current amplification factor in the minute current region of the Si bipolar transistor in the semiconductor device when In order to be able to select and remove certain semiconductor devices in advance (2).
〔産業上の利用分野」
本発明は半導体装置tその良否によって選別する方法に
係り、特直二Siバイポーラトランジスタ等で構成され
ている半導体装置を放射線環境のもとで使用した際C二
、大きな放射線劣化が生じるおそれがある半導体装置を
予め選別除去するための半導体装置の選別方法に関する
ものである。[Industrial Application Field] The present invention relates to a method for sorting semiconductor devices according to their quality. The present invention relates to a semiconductor device sorting method for preliminarily selecting and removing semiconductor devices that are likely to undergo radiation deterioration.
従来この種の放射線損傷劣化に対するスクリーニング法
は、製造ロット差に着目しており、ある特定のロットか
ら”サンプルを抜取り、実際の使用環境C:相当する線
量を照射し、劣化の少ないロットを実用に供していた。Conventionally, this type of screening method for radiation damage and deterioration focuses on differences in production lots, and samples are taken from a specific lot, irradiated with a dose corresponding to the actual use environment C, and the lot with less deterioration is selected for practical use. It was served to
また、この際の電気的特性測定の条件は、トランジスタ
の規格値すなわち量産用測定条件であるいは、この規格
値に近いバイアス条件であった。Further, the conditions for measuring the electrical characteristics at this time were transistor standard values, ie, mass production measurement conditions, or bias conditions close to the standard values.
このように、従来は、コレクタ電流の中電流領域での測
定判定条件をもとC:、ロット毎の抜取り試験を行なっ
てきた。As described above, conventionally, a sampling test has been conducted for each lot based on the measurement judgment conditions in the medium current region of the collector current.
このため、必要な放射線耐量を得るため(二は、十分な
余裕が必要であり、製造に投入したロットに対する。放
射線耐量を満たす良品の収率が非常に小さいという欠点
があった。また、ロット抜取り試験のために、実際に放
射線環境下で使用した場合(二、特性変動の大きい半導
体装置が混入するという欠点があった。For this reason, in order to obtain the necessary radiation resistance (secondly, a sufficient margin is required for the lot input into manufacturing). When actually used in a radiation environment for sampling tests (2) there was a drawback that semiconductor devices with large characteristic fluctuations were mixed in.
本発明は、これらの欠点を解決しスクリーニング(二よ
る損傷発生を最小限(;とどめるため、低線量照射での
特性変化C二よって選別するようにしたものである。In order to solve these drawbacks and minimize the occurrence of damage due to screening, the present invention performs selection based on characteristic changes C2 caused by low-dose irradiation.
本発明は、小電流領域の電流増幅率が大電流領域のそれ
より低線量照射で変化が大きいこと:二基づくものであ
る。すなわち、放射線照射前後の電流増幅率のコレクタ
電流依存性は第1図C二示すように、電流増幅率の初期
値(二対する変化は実動作に近いコレクタ電流の大きい
領域より、小さい領域で著しい。これは、電流増幅率の
変化原因がペース領域の表面損傷発生によるペース電流
の増大に起因しており、この影響が小電流領域でより大
きく生ずるためである。The present invention is based on the fact that the current amplification factor in the small current region changes more with low dose irradiation than in the large current region. In other words, the dependence of the current amplification factor on the collector current before and after radiation irradiation is as shown in Figure 1C2. This is because the cause of the change in current amplification factor is an increase in pace current due to the occurrence of surface damage in the pace region, and this effect is greater in the small current region.
ここで、実動作条件C二近い大電流領域での電流増幅率
の変化率と小電流、大電流それぞれの電流増幅率の変化
率との相関を、実験データで定量的に示す。表1は、そ
れぞれの相関係数が線量増大と共C:変化する様子を2
品種のトランジスタについて示すものである。相関の基
準とした10’ rat(Si)では大電流の電流増幅
率同志の相関係数が当然ながら1となり小電流のそれよ
り大きくなるが、10′から1Q’ rad (Si
)では逆に小電流の方が大電流より相関係数が大きい。Here, the correlation between the rate of change in the current amplification factor in a large current region close to actual operating condition C2 and the rate of change in the current amplification factor for small currents and large currents will be quantitatively shown using experimental data. Table 1 shows how each correlation coefficient changes with increasing dose.
This shows the types of transistors. With 10' rad (Si) as the standard for correlation, the correlation coefficient between current amplification factors for large currents is naturally 1, which is larger than that for small currents, but from 10' to 1Q' rad (Si
), conversely, the correlation coefficient is larger for small currents than for large currents.
このことから、高線量・大電流の電流増幅率の変化率の
推定(;は、小電流のそれが推定精度が高いと言える。From this, it can be said that the estimation accuracy of the rate of change of the current amplification factor for high doses and large currents (; is higher for small currents).
表1 電流増幅率(Alx)の変化率の相関数〔実施例
〕
以下に本発明のスクリーニング法を実施例(:基づいて
詳細に説明する。Table 1 Correlation number of rate of change in current amplification factor (Alx) [Example] The screening method of the present invention will be described in detail below based on Example (: Example).
第2図C二本発明方法の実施例である。線量とし’C1
0” rad(Sり照射の小電流(100,4A) −
電流増幅率の変化率と線量1Q’ rad(Si)照射
の大電流(1077!A)・電流増幅率の変化率の分布
を示す。半導体部品の特性とその変化率は、一般的C:
正規分布を示し、分布の広がりは分散(σ)で表せる。FIG. 2C is an embodiment of the method of the present invention. Dose 'C1
0” rad (Small current for S irradiation (100,4A) -
The distribution of the rate of change in the current amplification factor and the rate of change in the large current (1077!A) and current amplification factor for irradiation with a dose of 1Q' rad (Si) is shown. The characteristics of semiconductor components and their rate of change are generally C:
It shows a normal distribution, and the spread of the distribution can be expressed as the variance (σ).
ここでは、具体例として第2図6=示すように試料の母
集団(85個)から1Q’ rad (Si )照射ノ
場合1ニーiff以上の分布上限側の14個の試料を不
良試料として選別除去する。次いで本スクリーニング法
が有効か否かC二ついて評価するため、選別除去した試
料も含めた全試料に二ついて高線量照射を行い、選別で
除いた試料が高線量照射CXいて10以上の分布上限側
にどの程度含まれるかを評価した。その結果、10“r
at(Si)では12個の試料が1σ以上となり、大多
数の試料シニスクリーニング効果が認められた。Here, as a specific example, as shown in Fig. 2, 14 samples on the upper limit side of the distribution with 1 knee iff or more in the case of 1Q' rad (Si) irradiation are selected as defective samples from the population of samples (85 samples). Remove. Next, in order to evaluate whether this screening method is effective or not, high-dose irradiation was performed on all samples, including those that were screened out, and the samples that were screened out were high-dose irradiated and the upper limit of the distribution was 10 or more. We evaluated the extent to which it was included in the side. As a result, 10 “r
For at(Si), 12 samples had a value of 1σ or more, and the sini-cleaning effect was observed in the majority of samples.
ここで、半導体装置が機能を損なうとは、特性規格を割
ることをいい、この例では10”rad(Si)以上の
照射で電流増幅率の規格最小値4oを割っている。なお
機能を損うか否かの試験は、例えば多数す試料1;つい
て高線量照射を行ってナンプリングして、得られた試料
について特性測定をすることによって行うことができる
。Here, the loss of function of a semiconductor device means that the characteristic standard is broken, and in this example, the minimum value of the current amplification factor of the standard, 4o, is broken by irradiation of 10" rad (Si) or more. A test to determine whether or not this is the case can be carried out, for example, by subjecting a large number of samples to high-dose irradiation, numbering them, and measuring the characteristics of the obtained samples.
以上述べたスクリーニング法をトランジスタ2品種に適
用し評価した結果t’fi2に示T、表2より高線量に
おいてもスクリーニング効果が認められ、80%以上の
不良試料が本スクリーニング法で選別することができる
。The screening method described above was applied to two types of transistors and evaluated. As shown in t'fi2, the screening effect was recognized even at high doses as shown in Table 2, and more than 80% of defective samples could be selected by this screening method. can.
表21本選別方法の適用例
これらの結果より、半導体装置が機能を損なう1/10
00の線量でその特性劣化の予測が可能であることが分
る。Table 21 Example of application of this selection method From these results, it is found that semiconductor devices with impaired functionality are 1/10
It can be seen that it is possible to predict the characteristic deterioration at a dose of 0.00.
なお、推定を行う際の線量は、測定系の測定精度(この
例では電流増幅率が約0.1)以上の屍化が生ずる線量
とする必要がある。さらに、推定線量による特性劣化は
、トランジスタの最高保存温間(例えば175℃)Cよ
る約1日程度の熱処理を行うことで、十分初期値近くま
で回復し、また回復させずシニ使用する場合でも、実用
上全く問題とならない。Note that the dose for estimation needs to be a dose that causes cadaverization to be greater than the measurement accuracy of the measurement system (in this example, the current amplification factor is approximately 0.1). Furthermore, characteristic deterioration due to estimated dose can be fully recovered to near its initial value by heat treatment at the maximum storage temperature of the transistor (e.g. 175℃) for about one day, and even when used for a long time without recovery. , there is no problem at all in practice.
また評価はその半導体装置内のSiバイポーラトランジ
スタの微小電流領域での電流増幅率の変化自体によって
行う代りに、半導体装置内のSiバイポーラトランジス
タの微小電流領域での電流増幅率の変化で定まる、その
半導体装置の特性規格の変化を測定すること(:よって
行ってもよい。Furthermore, instead of evaluating the change itself in the current amplification factor in the minute current region of the Si bipolar transistor in the semiconductor device, the evaluation is performed based on the change in the current amplification factor in the minute current region of the Si bipolar transistor in the semiconductor device. Measuring changes in the characteristic specifications of a semiconductor device.
以上、実施例に基づいて具体的に説明したように、本発
明方法は電流増幅率の変化に着目しその分布の分布上限
試料を選別するものであり、対象とするSiバイポーラ
トランジスタの耐放射線対策の有無に関わらず、かっロ
ット選別(;も応用できるとともに、Siバイポーラト
ランジスタを含む半導体装置に適用できる。As explained above in detail based on the examples, the method of the present invention focuses on the change in current amplification factor and selects the sample with the upper limit of the distribution, and measures the radiation resistance of the target Si bipolar transistor. Regardless of the presence or absence of the method, lot sorting (;) can also be applied, and it can also be applied to semiconductor devices including Si bipolar transistors.
第1図は放射線照射前、後における電流増幅率のコレク
タ電流依存性を表わすグラフ、
第2図は放射線照射後の電流増幅率の変化率分布で、低
線量照射における小電流の電流増幅率の選別で除去され
た試料が高線量照射における大電流の電流増幅率の分布
において占める分布位置を示すグラフである。
特許出願人 日本電信電話株式会社
代理人 弁理士 玉蟲久五部(外2名)1饗ヒ 流 )
1室 中M 車Figure 1 is a graph showing the collector current dependence of the current amplification factor before and after radiation irradiation, and Figure 2 is the change rate distribution of the current amplification factor after radiation irradiation, showing the current amplification factor of small current during low-dose irradiation. It is a graph showing the distribution position occupied by the sample removed by screening in the distribution of current amplification factor of large current in high dose irradiation. Patent applicant Nippon Telegraph and Telephone Corporation agent Patent attorney Gobe Tamamushi (2 others) 1st grade)
Room 1 Medium M Car
Claims (1)
ンジスタを用いて構成されている半導体装置に対して、 その半導体装置が機能を損なう線量より十分小さく測定
系の測定精度以上の特性規格の変化を生じる線量の放射
線を照射し、 その照射前後の当該半導体装置内のバイポーラトランジ
スタの微小電流領域での電流増幅率の変化または電流増
幅率の変化で定まる該半導体装置の特性規格の変化を測
定する ことによつて放射線劣化に対して当該半導体装置を選別
することを特徴とする半導体装置の選別方法。[Claims] For a Si bipolar transistor or a semiconductor device configured using a Si bipolar transistor, the semiconductor device causes a change in the characteristic specifications that is sufficiently smaller than the dose that impairs the function and is greater than or equal to the measurement accuracy of the measurement system. By irradiating a dose of radiation and measuring the change in the current amplification factor in the microcurrent region of the bipolar transistor in the semiconductor device before and after the irradiation, or the change in the characteristic specification of the semiconductor device determined by the change in the current amplification factor. Therefore, a method for sorting semiconductor devices, characterized in that the semiconductor devices are screened for radiation deterioration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9525985A JPS61253479A (en) | 1985-05-02 | 1985-05-02 | Selection of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9525985A JPS61253479A (en) | 1985-05-02 | 1985-05-02 | Selection of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61253479A true JPS61253479A (en) | 1986-11-11 |
Family
ID=14132767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9525985A Pending JPS61253479A (en) | 1985-05-02 | 1985-05-02 | Selection of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61253479A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5992560A (en) * | 1982-11-19 | 1984-05-28 | Agency Of Ind Science & Technol | Semiconductor integrated circuit device resistant to radiation |
JPS6017956A (en) * | 1983-07-11 | 1985-01-29 | Agency Of Ind Science & Technol | Radiation resistant semiconductor element |
-
1985
- 1985-05-02 JP JP9525985A patent/JPS61253479A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5992560A (en) * | 1982-11-19 | 1984-05-28 | Agency Of Ind Science & Technol | Semiconductor integrated circuit device resistant to radiation |
JPS6017956A (en) * | 1983-07-11 | 1985-01-29 | Agency Of Ind Science & Technol | Radiation resistant semiconductor element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6927595B2 (en) | Dynamically switched voltage screen | |
US4816753A (en) | Method for reliability testing of integrated circuits | |
Towner et al. | Aluminum electromigration under pulsed dc conditions | |
JPS61253479A (en) | Selection of semiconductor device | |
Tsai et al. | Effect of radiation-induced interface traps on 1/f noise in MOSFET's | |
US5097214A (en) | Method and apparatus for determining the properties of an insulation layer by maintaining an output current ratio generated by directing ions at the insulation layer | |
Xiaosong et al. | 1/ƒ noise in MOSFET as a diagnostic tool | |
US3723873A (en) | Radiation method for determining semiconductor stability and reliability | |
US20020186016A1 (en) | Electrification quantity measurement apparatus, electrification quantity measurement method, static electricity discharge detection apparatus, and static electricity discharge detection method | |
GB1596655A (en) | Semiconductor devices | |
Augier et al. | Comparison of 1/f noise in irradiated power MOSFETs measured in the linear and saturation regions | |
McVittie | Process charging in ULSI: mechanisms, impact and solutions | |
Barillot et al. | Effects of reliability screening tests on bipolar integrated circuits during total dose irradiation | |
JPH06201761A (en) | Aging dielectric breakdown characteristic measuring method for insulating film | |
Cohen | SEM irradiation for hardness assurance screening and process definition | |
JPH0722477A (en) | Semiconductor integrated circuit measuring device | |
Flament et al. | Ionizing dose hardness assurance methodology for qualification of a BiCMOS technology dedicated to high dose level applications | |
JP3012242B2 (en) | Manufacturing method of semiconductor integrated circuit | |
JPH04134842A (en) | Method and device for evaluating reliability of insulating film | |
Bolin | Process defects and effects on MOSFET gate reliability | |
JPH0344415B2 (en) | ||
RU2073254C1 (en) | Semiconductor devices and integral circuit plates testing method | |
Pease et al. | Comparison of hot-carrier and radiation induced increases in base current in bipolar transistors | |
Rosenblatt et al. | Correlation of threshold voltage (Vt) on long channel transistors with Vt implant dose determined by high precision SIMS | |
JPS63101776A (en) | Method for testing semiconductive device |