JPS6245183A - Field-effect transistor - Google Patents
Field-effect transistorInfo
- Publication number
- JPS6245183A JPS6245183A JP60184046A JP18404685A JPS6245183A JP S6245183 A JPS6245183 A JP S6245183A JP 60184046 A JP60184046 A JP 60184046A JP 18404685 A JP18404685 A JP 18404685A JP S6245183 A JPS6245183 A JP S6245183A
- Authority
- JP
- Japan
- Prior art keywords
- source
- drain
- effect transistor
- electric field
- field effect
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005669 field effect Effects 0.000 title claims description 17
- 230000005684 electric field Effects 0.000 abstract description 9
- 239000000463 material Substances 0.000 abstract description 5
- 239000000969 carrier Substances 0.000 abstract description 4
- 238000010276 construction Methods 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 5
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/80—FETs having rectifying junction gate electrodes
- H10D30/87—FETs having Schottky gate electrodes, e.g. metal-semiconductor FETs [MESFET]
- H10D30/871—Vertical FETs having Schottky gate electrodes
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、高速論理回路または高周波領域で用いること
ができる電界効果トランジスタに関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a field effect transistor that can be used in high speed logic circuits or high frequency regions.
(従来の技術)
近年、化合物半導体を用いた電界効果トランジスタは、
キャリ・アがチャネル中を電界によるrリフトで走行す
るタイプの素子であるため、高周波で使用が可能な能動
素子として注目されている。(Prior art) In recent years, field effect transistors using compound semiconductors have
Since this is a type of device in which a carrier travels through a channel with an r-lift caused by an electric field, it is attracting attention as an active device that can be used at high frequencies.
第3図は、従来の電界効果トランジスタの断面図である
。同図において、11は基板、12は伝導チャネル、1
3はソース、14はドレイン、15はダートである。FIG. 3 is a cross-sectional view of a conventional field effect transistor. In the figure, 11 is a substrate, 12 is a conduction channel, and 1
3 is a source, 14 is a drain, and 15 is a dirt.
以上のように構成された電界効果トランジスタについて
、その動作を説明する。ただし、伝導チャネルがn型の
トランジスタについて説明する。The operation of the field effect transistor configured as above will be explained. However, a transistor with an n-type conduction channel will be described.
第3図において、r−)15に正電圧を印加すると、f
−)15直下のn領域の伝導チャネル12に電子が引き
込まれて、伝導チャネル12の抵抗が減少して、ソース
13、ドレイン14間の電流は増加する。逆にr−+−
電圧を負にすると、伝導チャネル12の電子が押し下げ
られ、この伝導チャネル12は電子が減少して抵抗が高
くなり、ソース13、ドレイン14間の電流は減少する
。In FIG. 3, when a positive voltage is applied to r-)15, f
-) Electrons are drawn into the conduction channel 12 in the n region directly under the conduction channel 15, the resistance of the conduction channel 12 decreases, and the current between the source 13 and drain 14 increases. On the contrary, r−+−
When the voltage is made negative, the electrons in the conduction channel 12 are pushed down, and the conduction channel 12 has fewer electrons and has a higher resistance, so that the current between the source 13 and the drain 14 decreases.
以上のように、電流通路の導電率をダート電極によって
静電的に変化させ、電流が制御される。As described above, the electric current is controlled by electrostatically changing the conductivity of the current path using the dart electrode.
(参考文献二手導体工学、高橋清著、森北出版(株)(
発明が解決しようとする問題点)
電界効果トランジスタの応答速度、または周波数特性を
決める要因の1つは、キャリアが、チャネル長を通過す
る時間である。(References: Two-handed conductor engineering, Kiyoshi Takahashi, Morikita Publishing Co., Ltd.)
Problems to be Solved by the Invention) One of the factors that determines the response speed or frequency characteristics of a field effect transistor is the time it takes for carriers to pass through the channel length.
本発明の目的は、従来例に比較して、さらに応答速度、
または周波数特性を改善することのできる電界効果トラ
ンジスタを提供することである。The object of the present invention is to further improve response speed compared to the conventional example.
Another object of the present invention is to provide a field effect transistor that can improve frequency characteristics.
(問題点を解決するだめの手段)
本発明の電界効果トランジスタは、活性層のバンドギャ
ップがソースからドレインに向かって変化しているもの
である。(Means for Solving the Problems) In the field effect transistor of the present invention, the bandgap of the active layer changes from the source to the drain.
(作 用)
本発明は、上記の構成によって、キャリアは電界による
ドリフトだけでなく、電子親和力の差によって、伝導チ
ャネルを走行するため、応答速度および周波数特性が改
善される。(Function) According to the present invention, with the above configuration, carriers travel through the conduction channel not only due to the drift caused by the electric field but also due to the difference in electron affinity, so that the response speed and frequency characteristics are improved.
(実施例)
本発明の一実施例を第1図および第2図に基づいて説明
する。(Example) An example of the present invention will be described based on FIGS. 1 and 2.
第1図は本発明の電界効果トランジスタの断面図である
。FIG. 1 is a sectional view of a field effect transistor of the present invention.
同図において、lはn+GaA s基板(ソース)、2
はn型伝導チャネル層、3はn ドレイン層で。In the figure, l is n+GaAs substrate (source), 2
is the n-type conduction channel layer, and 3 is the n-drain layer.
ある。n型伝導チャネル層2はAtxGa+−xA3
からなり、Atの混晶比Xがドレインからソースに向っ
て0から0.5まで変化している。4はドレイン電極、
5はダート電極、6はソース電極であシ、伝導チャネル
層2、ドレイン層3はMBE法であGaAs基板1の上
にエピタキシャル成長したものである。be. The n-type conduction channel layer 2 is AtxGa+-xA3
The At mixed crystal ratio X changes from 0 to 0.5 from the drain to the source. 4 is a drain electrode,
5 is a dirt electrode, 6 is a source electrode, a conduction channel layer 2 and a drain layer 3 are epitaxially grown on a GaAs substrate 1 by the MBE method.
以上のように構成された電界効果トランジスタについて
、その動作を説明する。The operation of the field effect transistor configured as above will be explained.
デート電極に、正または負の電圧を加え、伝導チャネル
の導電率を静電的に変化させ、ノース・ドレイン間の電
流を制御するのは、従来の電界効果トランジスタと同様
である。従来の電界効果トランジスタと異なるのは、伝
導チャネル領域にバンドギャップを連続的に変化させた
材料を用いることにより、キャリアが伝導チャネル中を
、電界によるドリフトに加えて、電子親和力の差によっ
て移動する点である。Similar to conventional field effect transistors, a positive or negative voltage is applied to the date electrode to electrostatically change the conductivity of the conduction channel and control the north-drain current. What differs from conventional field effect transistors is that by using a material with a continuously changing bandgap in the conduction channel region, carriers move within the conduction channel not only due to drift due to the electric field but also due to differences in electron affinity. It is a point.
第2図は、本発明の電界効果トランジスタのソース・ド
レイン間のバンド図である。FIG. 2 is a band diagram between the source and drain of the field effect transistor of the present invention.
同図において、ECは伝導帯、Evは価電子帯、EFは
7工ルミ準位であシ、■は印加電圧である。In the figure, EC is the conduction band, Ev is the valence band, EF is the 7-luminium level, and ■ is the applied voltage.
ドレインからソースに向って、 Atの組成を増してい
るために、伝導帯ECと価電子帯Evの間隔が、ドレイ
ンからソースに向って大きくなっている。Since the At composition increases from the drain to the source, the distance between the conduction band EC and the valence band Ev increases from the drain to the source.
電界をかけない状態では同図(、)に示すように、フェ
ルミ準位EFは水平になる。When no electric field is applied, the Fermi level EF becomes horizontal, as shown in the figure (,).
ここで、ドレインからソース向きに電界をかけると、第
2図(blに示すように、フェルミ準位EFが傾き、そ
れにつれて伝導帯ECも傾く。伝導帯ECの傾きは、電
界によるものに、さらにAt混晶比Xの差による傾きが
加わるため、小さな電界でも急勾配となる。伝導電子は
、この急勾配をソースからドレインに向って進むため、
その速度は速く、素子の応答速度も速くなる。When an electric field is applied from the drain to the source, the Fermi level EF tilts and the conduction band EC tilts accordingly, as shown in Figure 2 (bl).The slope of the conduction band EC is due to the electric field. Furthermore, since the slope due to the difference in the At mixed crystal ratio
The speed is fast, and the response speed of the element is also fast.
0.5μmダート幅のもので、応答速度は10 sec
以下、限界周波数は100 GH2以上のものが得られ
た。0.5μm dart width, response speed is 10 seconds
Hereinafter, a limit frequency of 100 GH2 or more was obtained.
(発明の効果)
本発明によれば、伝導チャネル領域の材料のバンドキャ
ップをソースからドレインに向って変化させることによ
シ、高速スイッチング、高周波応答ができるため、その
実用的効果は犬なるものがある。(Effects of the Invention) According to the present invention, high-speed switching and high-frequency response can be achieved by changing the band gap of the material of the conduction channel region from the source to the drain. There is.
第1図は本発明の一実施例による電界効果トランジスタ
の断面図、第2図は同電界効果トランソスタのバンド図
、第3図は従来の電界効果トランジスタの断面図である
。
1・・・GaAs基板(ソース)、2・・・n型伝導チ
ャネル層、3・・・n+ドレイン層、4・・・ドレイン
電極、5・・・ケ゛−ト電極、6・・・ソース電極、1
1・・・基板、12・・・伝導チャネル、13・・・ソ
ース、14・・・ドレイン、15・・・ダート、Ec・
・・伝導体、EF・・・フェミル準位、Ev・・・価電
子帯。
4.1−ルインi浦体
6 ソー久屯カ
第2区
一一一一一−−−−−−−〜 EF7Cルシ準スこ(ド
レベ′/)FIG. 1 is a sectional view of a field effect transistor according to an embodiment of the present invention, FIG. 2 is a band diagram of the same field effect transistor, and FIG. 3 is a sectional view of a conventional field effect transistor. DESCRIPTION OF SYMBOLS 1...GaAs substrate (source), 2...n-type conduction channel layer, 3...n+ drain layer, 4...drain electrode, 5...gate electrode, 6...source electrode ,1
DESCRIPTION OF SYMBOLS 1...Substrate, 12...Conduction channel, 13...Source, 14...Drain, 15...Dirt, Ec.
...Conductor, EF...femyl level, Ev...valence band. 4.1-Ruin i Urata 6 Sokyutunka 2nd Ward 11111----- EF7C Luci Junior Suko (Drebe'/)
Claims (1)
って変化していることを特徴とする電界効果トランジス
タ。A field effect transistor characterized in that the bandgap of the active layer changes from the source to the drain.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60184046A JPS6245183A (en) | 1985-08-23 | 1985-08-23 | Field-effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60184046A JPS6245183A (en) | 1985-08-23 | 1985-08-23 | Field-effect transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6245183A true JPS6245183A (en) | 1987-02-27 |
Family
ID=16146416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60184046A Pending JPS6245183A (en) | 1985-08-23 | 1985-08-23 | Field-effect transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6245183A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5436474A (en) * | 1993-05-07 | 1995-07-25 | Board Of Regents Of The University Of Texas System | Modulation doped field effect transistor having built-in drift field |
US5451800A (en) * | 1992-12-02 | 1995-09-19 | International Business Machines Corporation | Metal oxide semiconductor heterojunction field effect transistor (MOSHFET) |
-
1985
- 1985-08-23 JP JP60184046A patent/JPS6245183A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5451800A (en) * | 1992-12-02 | 1995-09-19 | International Business Machines Corporation | Metal oxide semiconductor heterojunction field effect transistor (MOSHFET) |
US5436474A (en) * | 1993-05-07 | 1995-07-25 | Board Of Regents Of The University Of Texas System | Modulation doped field effect transistor having built-in drift field |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2604349B2 (en) | Semiconductor device | |
JPH0258773B2 (en) | ||
KR940016780A (en) | Hybrid transistor | |
JPH024140B2 (en) | ||
US5414273A (en) | Heterojunction bipolar transistor | |
US5153682A (en) | HEMT device with doped active layer | |
JPH084138B2 (en) | Semiconductor device | |
JPH0312769B2 (en) | ||
JPS6245183A (en) | Field-effect transistor | |
US5900641A (en) | Field effect semiconductor device having a reduced leakage current | |
JPS61156773A (en) | heterojunction semiconductor device | |
US5895931A (en) | Semiconductor device | |
KR940003096A (en) | High electron mobility transistor and manufacturing method | |
JP3245657B2 (en) | Heterojunction field effect transistor | |
JPH0354870B2 (en) | ||
JPH0524662B2 (en) | ||
JPS6246564A (en) | Semiconductor device | |
JPH03227070A (en) | Semiconductor switching element | |
JPS60227479A (en) | field effect transistor | |
JPS60145671A (en) | integrated semiconductor device | |
JPS6246563A (en) | Semiconductor device | |
JPH0614551B2 (en) | Thermionic emission type static induction transistor | |
Lour et al. | Investigation of self-aligned p++-GaAs/n-InGaP heterojunction field-effect transistors | |
JPH01179460A (en) | field effect transistor | |
JPS60176275A (en) | Integrated type semiconductor device |