JPS6244861B2 - - Google Patents
Info
- Publication number
- JPS6244861B2 JPS6244861B2 JP56135187A JP13518781A JPS6244861B2 JP S6244861 B2 JPS6244861 B2 JP S6244861B2 JP 56135187 A JP56135187 A JP 56135187A JP 13518781 A JP13518781 A JP 13518781A JP S6244861 B2 JPS6244861 B2 JP S6244861B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- transistor
- hole
- mask
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/85—Complementary IGFETs, e.g. CMOS
- H10D84/854—Complementary IGFETs, e.g. CMOS comprising arrangements for preventing bipolar actions between the different IGFET regions, e.g. arrangements for latchup prevention
Landscapes
- Drying Of Semiconductors (AREA)
- Element Separation (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Description
【発明の詳細な説明】
本発明はCMIS(CMOS)の新規な製造方法に
係る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for manufacturing CMIS (CMOS).
モノリシツク型相補型MIS集積回路の素子断面
図を第1図に示す。 FIG. 1 shows a cross-sectional view of a monolithic complementary MIS integrated circuit.
図に於て1はn型基板、8はpウエル層、11
はpチヤネルMISトランジスタ、12はnチヤネ
ルMISトランジスタ、13は基板電極、14はp
ウエルの電極である。 In the figure, 1 is an n-type substrate, 8 is a p-well layer, and 11
is a p-channel MIS transistor, 12 is an n-channel MIS transistor, 13 is a substrate electrode, and 14 is a p-channel MIS transistor.
This is the well electrode.
この構造に於いては寄生的に等価バーテイカル
トランジスタTv(基板1、ウエル層8、MISト
ランジスタ12のソースで構成されるnpnトラン
ジスタ)及び、等価ラテラルトランジスタTL
(MISトランジスタ11のドレイン、基板1、ウ
エル層8で構成されるpnpトランジスタ)が存在
し、第2図の一点鎖線内部の様な寄生サイリスタ
回路を構成している。このうち、点線内はpウエ
ル層8とn型基板1との接合の等価回路である。
RSは基板電極13とTLのベースの間の抵抗、R
Wはpウエル電極14とTVのベースの間の抵抗、
IRSはRSを流れる電流、IRWはRWを流れる電
流、点線内は基板1とPウエル8の接合の等価回
路で、CPSはPウエルと基板との接合容量、IPP
は電流である。 In this structure, an equivalent vertical transistor Tv (an npn transistor consisting of a substrate 1, a well layer 8, and the source of an MIS transistor 12) and an equivalent lateral transistor T L are parasitic.
(a pnp transistor consisting of the drain of the MIS transistor 11, the substrate 1, and the well layer 8), which constitutes a parasitic thyristor circuit as shown inside the dashed line in FIG. Of these, the area within the dotted line is an equivalent circuit of the junction between the p-well layer 8 and the n-type substrate 1.
R S is the resistance between the substrate electrode 13 and the base of T L , R
W is the resistance between the p-well electrode 14 and the base of T V ;
I RS is the current flowing through R S , I RW is the current flowing through R W , the dotted line is the equivalent circuit of the junction between substrate 1 and P well 8, C PS is the junction capacitance between P well and substrate, I PP
is the current.
VDD、VSS間には通常の状態ではpウエルと基
板間の接合の漏洩電流しか流れず阻止状態になつ
ているが、次の4つの条件
1 VDD〜VSS間に一瞬でもあるレベルを越えた
過大電圧が加わつた時。 Under normal conditions, only the leakage current from the junction between the p-well and the substrate flows between V DD and V SS , which is in a blocked state, but under the following four conditions 1 , even a momentary level between V DD and V SS When an excessive voltage exceeding .
2 入力端子にゲート酸化膜が絶縁破壊を起こす
位の正又は負の高い電圧が印加された時。2 When a high positive or negative voltage that causes dielectric breakdown of the gate oxide film is applied to the input terminal.
3 出力端子にVDDよりも或るレベル以上高い電
位、またはVSSよりも或レベル以下の低い電位
が印加された場合。3. When a potential higher than V DD by a certain level or lower than V SS by a certain level is applied to the output terminal.
4 光や放射線等により半導体内に電子正孔対が
発生した場合。4 When electron-hole pairs are generated in a semiconductor due to light, radiation, etc.
のうちどれかが加わり、しかも次の三つの条件
5 TL、TVのエミツタ・ベース接合が順方向に
バイアスされ、活性化状態にあること。Any one of these is added, and the following three conditions 5: The emitter-base junctions of T L and T V are forward biased and in an activated state.
6 二つのトランジスタのhFFの積が値よりも大
きいこと。6. The product of h FF of two transistors is greater than the value.
7 電源の供給できる電流が、ラツチアツプの保
持電流よりも大きいこと。7. The current that the power supply can supply is greater than the holding current of the latchup.
のすべてが満足された時、第2図のIRSがお互い
に相手のベース電流を供給し合う正帰還作用によ
りの二つのトランジスタが構成する等価サイリス
タがON状態になり、VDD〜VSS間を大きな電流
が流れ、一旦この状態になると原因となつていた
雑音電圧、光照射、放射線等を除去しても二つの
トランジスタTL,TVで構成される寄生サイリス
タはON状態を保ち一定の電流が流れ続ける。こ
の現象を相補型MISトランジスタにおけるラツチ
アツプと言う。ラツチアツプが起きると、VDD〜
VSS間の電圧をラツチアツプの保持電圧以下にす
るか、VDD〜VSS間に流れる電流をラツチアツプ
の保持電流以下に制限しない限りこれを阻止する
ことはできない。この現象が発生するとMISトラ
ンジスタのON又はOFF状態が制御できなくなる
ばかりか過大電流が流れる事により素子が焼損す
る事が多い。ラツチアツプの起こりやすさは、素
子が集積化される程大きくなる。When all of the above are satisfied, the equivalent thyristor formed by the two transistors is turned on due to the positive feedback effect in which IRS in Fig. 2 supplies each other's base current, and the voltage between V DD and V SS is turned on. A large current flows, and once this state is reached, the parasitic thyristor consisting of the two transistors T L and T V remains in the ON state and remains constant even if the noise voltage, light irradiation, radiation, etc. that caused it are removed. Current continues to flow. This phenomenon is called latch-up in complementary MIS transistors. When latchup occurs, V DD ~
This cannot be prevented unless the voltage between V SS is made below the holding voltage of the latch-up or the current flowing between V DD and V SS is limited below the holding current of the latch-up. When this phenomenon occurs, not only is it impossible to control the ON or OFF state of the MIS transistor, but also the element often burns out due to excessive current flowing. The likelihood of latch-up occurring increases as devices become more integrated.
ラツチアツプを防止する対策には様々な方法が
ある。 There are various ways to prevent latch-up.
第一の従来の方法は、pウエルの深さを深くし
て等価バーチカルトランジスタTVのベース幅を
大きくし、同時にpウエル端縁部とpチヤネル
MISトランジスタを離して等価ラテラルトランジ
スタTLのベース幅を大きくする方法である。ト
ランジスタのhFEはベース幅の減少関数になつて
いるから上記6の条件が満足されなくなりラツチ
アツプが防止される。たとえば或る形状のモノリ
シツク相補型MIS回路ではpウエル深さが11μ
m、pウエル端縁とpチヤネルMOSトランジス
タの距離が100μmであればラツチアツプは起き
ない。しかし、この方法は集積回路を考えた場合
素子の集積度が著ぢるしく低下し実用的ではな
い。 The first conventional method is to increase the depth of the p-well to increase the base width of the equivalent vertical transistor T V , and at the same time increase the width of the base of the equivalent vertical transistor T
This is a method of increasing the base width of the equivalent lateral transistor T L by separating the MIS transistors. Since the h FE of the transistor is a decreasing function of the base width, condition 6 above is no longer satisfied and latch-up is prevented. For example, in a certain shape of monolithic complementary MIS circuit, the p-well depth is 11μ.
If the distance between the m- and p-well edge and the p-channel MOS transistor is 100 μm, latch-up will not occur. However, when considering integrated circuits, this method significantly reduces the degree of integration of elements and is not practical.
第二の従来の方法は、金を拡散させてpウエル
内の小数キヤリアの寿命を短くし、等価バーチカ
ルトランジスタのhFEを下げて上記6の条件を満
足させなくするものである。 A second conventional method is to diffuse gold to shorten the lifetime of the fractional carriers in the p-well, lowering the h FE of the equivalent vertical transistor and making it impossible to satisfy condition 6 above.
しかしこの方法は金はシリコン中を拡散するの
がきわめて速いので、量および深さの制御が難し
い事、又界面準位等を形成して素子の性能に悪影
響が出てしまう等の欠点がある。 However, this method has drawbacks such as gold diffusing extremely quickly in silicon, making it difficult to control the amount and depth, and forming interface states, which adversely affects device performance. .
本発明の目的は、ラツチアツプが起こらず、集
積度の高い相補型MIS集積回路を実現する事にあ
る。 An object of the present invention is to realize a complementary MIS integrated circuit that does not cause latch-up and has a high degree of integration.
本発明によれば、上記目的は一導電型の半導体
基板表面に形成されたマスク膜を部分的に除去し
て第1の開口を形成する工程、該マスク膜をマス
クにして該第1の開口部分の基板表面をエツチン
グし、側面が該基板表面にほぼ垂直な穴を設ける
と共に、該マスク膜をひさし状にする工程、該穴
の内部表面に絶縁膜を形成し、該マスク膜をマス
クにしてドライエツチングにより該穴の側面部分
の絶縁膜を残したまま底部分の絶縁膜を除去し第
2の開口を形成する工程、該第2の開口部分の基
板上から反射導電型のウエル層をエピタキシヤル
成長する工程、該ウエル層に一導電型のMISトラ
ンジスタを、該半導体基板に反対導電型のMISト
ランジスタをそれぞれ形成する工程を有してなる
ことを特徴とする相補型MISトランジスタの製造
方法により達成される。 According to the present invention, the above object is a step of forming a first opening by partially removing a mask film formed on the surface of a semiconductor substrate of one conductivity type; etching a portion of the substrate surface to form a hole whose side surface is substantially perpendicular to the substrate surface, and forming the mask film into an eaves shape; forming an insulating film on the inner surface of the hole; and using the mask film as a mask. forming a second opening by removing the insulating film at the bottom of the hole while leaving the insulating film at the side faces of the hole by dry etching, and forming a reflective conductive well layer from above the substrate in the second opening. A method for manufacturing a complementary MIS transistor, comprising the steps of epitaxial growth, forming an MIS transistor of one conductivity type in the well layer, and forming an MIS transistor of the opposite conductivity type in the semiconductor substrate. This is achieved by
以下本発明の一実施例を図面に従つて説明す
る。 An embodiment of the present invention will be described below with reference to the drawings.
第3図な本発明に係る相補型MISトランジスタ
の素子断面図である。本実施例に於ては、本発明
の絶縁物からなる障壁の他にウエル層の底に高濃
度に不純物添加された埋込層を設けている。21
はn型シリコン基板、22はp+型埋込層、28
はpウエル、27は絶縁物からなる障壁である酸
化膜、31はpチヤネルMISトランジスタ、32
はnチヤネルMISトランジスタである。22の埋
込層は高濃度に不純物添加されたp型領域で、バ
ーチカルnpnトランジスタに於て、ベースの
Gummel数を増加させ、またベース中に引き戻し
電界を発生させる事により、バーチカルトランジ
スタのhFEを著しく減少させる働きがある。尚、
埋込層については、D.B.Estreich and A.Cchoa
Jr.、“An Analysis of Lotch−Up Prevention
CMOS ICs Using an Epitasirl−Buriecl Layer
Process”、International Electron Devcie
Meeting、Washington D.C.1978に詳しく説明さ
れている。27の酸化膜はラテラルpnpトランジ
スタのベース長を増加させて、ラテラルトランジ
スタのhFEを減少させると同時に集積度を高める
働きがある。埋込層22と酸化膜27により、前
述の条件6が満足されなくなり、ラツチアツプが
防止される。もちろん、ラツチアツプが完全に起
きなくなる為には、pウエル28の深さ、及び、
埋込層22の深さと濃度分布にも条件が必要であ
る。 FIG. 3 is an element cross-sectional view of a complementary MIS transistor according to the present invention. In this embodiment, in addition to the barrier made of the insulator of the present invention, a buried layer doped with impurities at a high concentration is provided at the bottom of the well layer. 21
is an n-type silicon substrate, 22 is a p+ type buried layer, 28
is a p-well, 27 is an oxide film which is an insulating barrier, 31 is a p-channel MIS transistor, 32
is an n-channel MIS transistor. The buried layer 22 is a heavily doped p-type region, and is used as a base layer in a vertical npn transistor.
By increasing the Gummel number and generating a pullback electric field in the base, it serves to significantly reduce the h FE of the vertical transistor. still,
Regarding the embedding layer, DBEstreich and A.Cchoa
Jr., “An Analysis of Lotch-Up Prevention
CMOS ICs Using an Epitasirl−Buriecl Layer
Process”, International Electron Devcie
Meeting, Washington DC1978. The oxide film No. 27 serves to increase the base length of the lateral PNP transistor, thereby reducing the h FE of the lateral transistor and increasing the integration density. The buried layer 22 and the oxide film 27 prevent the above-mentioned condition 6 from being satisfied and prevent latch-up. Of course, in order to completely prevent latch-up, the depth of the p-well 28 and the
Conditions are also required for the depth and concentration distribution of the buried layer 22.
本発明一実施例の相補型MIS集積回路を製造す
る方法第4図に従つて説明する。 A method of manufacturing a complementary MIS integrated circuit according to an embodiment of the present invention will be explained with reference to FIG.
(1) n型シリコン基板21の表面を薄い下地酸化
膜25で覆つてから、相補型MISトランジスタ
を形成する領域に窒化硅素膜26を選択的に形
成し、その窒化硅素膜26を耐酸化性マスクと
して選択酸化を行い、フイールド酸化膜27を
形成する。次に窒化硅素膜26及び下地酸化膜
25の一部を除去し、残された窒化硅素膜26
下地酸化膜25をマスクとしてドライエツチン
グを行い垂直な穴23を設ける。次に等方にエ
ツチングされる塩化水素ガスによりエツチング
を行い、最初のドライエツチングにより損傷し
た穴の底部のシリコンを除去する。次に硼素イ
オンを打ち込み、埋込層の為の打ち込み領域を
作る。(1) After covering the surface of the n-type silicon substrate 21 with a thin base oxide film 25, a silicon nitride film 26 is selectively formed in the region where the complementary MIS transistor is to be formed, and the silicon nitride film 26 is made oxidation-resistant. Selective oxidation is performed as a mask to form a field oxide film 27. Next, a portion of the silicon nitride film 26 and base oxide film 25 are removed, and the remaining silicon nitride film 26 is removed.
Dry etching is performed using the base oxide film 25 as a mask to form a vertical hole 23. Next, etching is performed using isotropic hydrogen chloride gas to remove the silicon at the bottom of the hole damaged by the first dry etching. Next, boron ions are implanted to create an implant area for the buried layer.
(2) 全面を熱酸化し、穴の底部及び側部に2000Å
程度の厚さの酸化膜28を形成し、反応性イオ
ンエツチングにより穴の底部の酸化膜を除去
し、続いて窒化硅素膜26を除去する。(2) The entire surface is thermally oxidized, and the bottom and sides of the hole are coated with a thickness of 2000Å.
An oxide film 28 having a certain thickness is formed, and the oxide film at the bottom of the hole is removed by reactive ion etching, and then the silicon nitride film 26 is removed.
(3) 穴23が全部埋まるまで全面にP型シリコン
をエピタキシヤル成長させる。穴29の中は埋
込層から出発し、シリコン29がエピタキシヤ
ル成長し、下地酸化膜及びフイールド酸化膜の
上には多結晶シリコン30が成長する。(3) Epitaxially grow P-type silicon over the entire surface until the holes 23 are completely filled. Silicon 29 is epitaxially grown in the hole 29 starting from the buried layer, and polycrystalline silicon 30 is grown on the base oxide film and the field oxide film.
(4) 全面に低粘度のフオトレジスト(図示せず)
を塗布すると穴31の部分にはその他の部分に
比べて厚いフオトレジスト層が形成される。(4) Low viscosity photoresist on the entire surface (not shown)
When this is applied, a photoresist layer that is thicker in the hole 31 area than in other areas is formed.
次に全体を灰化して穴31のところにのみフ
オトレジスタが残るようにする。次に穴31に
残つたフオトレジストをマスクとして、シリコ
ンをエツチングし、下地酸化膜25の上の多結
晶シリコン30を除去する。最後に下地酸化膜
25を除去する。尚、穴29の側壁の近くは側
壁から成長した多結晶シリコンが存在している
かもしれないのでレーザアニールにより単結晶
化することが必要かもしれない。 Next, the whole is incinerated so that only the photoresistor remains at the hole 31. Next, using the photoresist remaining in the hole 31 as a mask, the silicon is etched to remove the polycrystalline silicon 30 on the base oxide film 25. Finally, the base oxide film 25 is removed. In addition, since polycrystalline silicon grown from the sidewall may exist near the sidewall of the hole 29, it may be necessary to make it into a single crystal by laser annealing.
以下通常の相補型MISトランジスタの製造方法
によつてNチヤネルおよびPチヤネルのゲート電
極、ソース、ドレインの領域及び電極を形成し、
集積回路を形成する。 Next, N-channel and P-channel gate electrodes, source, and drain regions and electrodes are formed by a normal complementary MIS transistor manufacturing method,
form integrated circuits;
本発明によれば、集積度が高く、ラツチアツプ
の起きにくい相補型MIS集積回路が実現される。 According to the present invention, a complementary MIS integrated circuit with a high degree of integration and less latch-up is realized.
第1図は、従来のモノリシツク相補型MIS回路
の素子断面図、第2図はその等価回路図、第3図
は本発明に係る相補型MIS回路の素子断面図、第
4図は本発明の製造方法の製造手順を示した素子
断面図である。
これらの図に於て、21はn型シリコン基板、
22は埋込み層、27は絶縁膜、28はpウエ
ル、31はpチヤネルMISトランジスタ、32は
nチヤネルMISトランジスタである。
1 is a cross-sectional view of a conventional monolithic complementary MIS circuit, FIG. 2 is an equivalent circuit diagram thereof, FIG. 3 is a cross-sectional view of a complementary MIS circuit according to the present invention, and FIG. 4 is a cross-sectional view of a complementary MIS circuit according to the present invention. FIG. 3 is a cross-sectional view of an element showing a manufacturing procedure of a manufacturing method. In these figures, 21 is an n-type silicon substrate,
22 is a buried layer, 27 is an insulating film, 28 is a p-well, 31 is a p-channel MIS transistor, and 32 is an n-channel MIS transistor.
Claims (1)
ク膜を部分的に除去して第1の開口を形成する工
程、 該マスク膜をマスクにして該第1の開口部分の
基板表面をエツチングし、側面が該基板表面にほ
ぼ垂直な穴を設けると共に、該マスク膜をひさし
状にする工程、 該穴の内部表面に絶縁膜を形成し、該マスク膜
をマスクにしてエツチングにより該穴の側面部分
の絶縁膜を残したまま底部分の絶縁膜を除去し第
2の開口を形成する工程、 該第2の開口部分の基板上から反射導電型のウ
エル層をエピタキシヤル成長する工程、 該ウエル層に一導電型のMISトランジスタを、
該半導体基板に反対導電型のMISトランジスタを
それぞれ形成する工程を有してなることを特徴と
する相補型MISトランジスタの製造方法。[Claims] 1. A step of partially removing a mask film formed on the surface of a semiconductor substrate of one conductivity type to form a first opening, using the mask film as a mask to form a first opening portion. Etching the surface of the substrate to form a hole whose side surfaces are substantially perpendicular to the surface of the substrate, and forming the mask film into an eaves shape; forming an insulating film on the inner surface of the hole, and etching using the mask film as a mask. forming a second opening by removing the insulating film at the bottom while leaving the insulating film at the side faces of the hole; epitaxially growing a reflective conductivity type well layer on the substrate in the second opening; step, a MIS transistor of one conductivity type is placed in the well layer,
A method for manufacturing a complementary MIS transistor, comprising the step of forming MIS transistors of opposite conductivity types on the semiconductor substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56135187A JPS5835966A (en) | 1981-08-28 | 1981-08-28 | Manufacturing method of complementary MIS transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56135187A JPS5835966A (en) | 1981-08-28 | 1981-08-28 | Manufacturing method of complementary MIS transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5835966A JPS5835966A (en) | 1983-03-02 |
JPS6244861B2 true JPS6244861B2 (en) | 1987-09-22 |
Family
ID=15145863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56135187A Granted JPS5835966A (en) | 1981-08-28 | 1981-08-28 | Manufacturing method of complementary MIS transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5835966A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59204252A (en) * | 1983-05-06 | 1984-11-19 | Matsushita Electronics Corp | Manufacture of semiconductor integrated circuit |
JPS61128555A (en) * | 1984-11-27 | 1986-06-16 | Mitsubishi Electric Corp | Semiconductor device |
JPH079974B2 (en) * | 1985-10-15 | 1995-02-01 | 日本電気株式会社 | Manufacturing method of complementary semiconductor device |
JPS639963A (en) * | 1986-06-30 | 1988-01-16 | Nec Corp | Complementary MOS semiconductor device |
EP1001458A1 (en) * | 1998-11-09 | 2000-05-17 | STMicroelectronics S.r.l. | Isotropic etching of silicon using hydrogen chloride |
US6908793B2 (en) | 2000-11-22 | 2005-06-21 | The Johns Hopkins University | Method for fabricating a semiconductor device |
JP4766232B2 (en) * | 2005-04-28 | 2011-09-07 | 株式会社J−ケミカル | Control method of fast-curing liquid |
-
1981
- 1981-08-28 JP JP56135187A patent/JPS5835966A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5835966A (en) | 1983-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2938422B2 (en) | Method and apparatus for increasing latch-up immunity in CMOS devices | |
US4435896A (en) | Method for fabricating complementary field effect transistor devices | |
US5672897A (en) | Bimos semiconductor integrated circuit device including high speed vertical bipolar transistors | |
US4637125A (en) | Method for making a semiconductor integrated device including bipolar transistor and CMOS transistor | |
US5438005A (en) | Deep collection guard ring | |
US4035826A (en) | Reduction of parasitic bipolar effects in integrated circuits employing insulated gate field effect transistors via the use of low resistance substrate contacts extending through source region | |
JPS6273655A (en) | Highly planar integrated circuit structure | |
JPH0626253B2 (en) | Method of manufacturing semiconductor device including diffusion region having short length | |
US6198139B1 (en) | Complementary MOS device | |
JP3400891B2 (en) | Semiconductor storage device and method of manufacturing the same | |
US5102811A (en) | High voltage bipolar transistor in BiCMOS | |
JPH0557741B2 (en) | ||
JPS6244861B2 (en) | ||
US4819055A (en) | Semiconductor device having a PN junction formed on an insulator film | |
KR100331844B1 (en) | Complementary metal oxide semiconductor device | |
US6207996B1 (en) | Semiconductor device and method for manufacturing the same | |
JP2012114401A (en) | Semiconductor device and method of manufacturing the same | |
EP0281032B1 (en) | Semiconductor device comprising a field effect transistor | |
KR19990065744A (en) | Bipolar transistor having a diode between a collector and an emitter and a manufacturing method thereof | |
US6337252B1 (en) | Semiconductor device manufacturing method | |
JP2697631B2 (en) | Method for manufacturing semiconductor device | |
JPS59124157A (en) | Complementary type semiconductor integrated circuit | |
JPS60105265A (en) | Method for manufacturing complementary semiconductor device | |
EP0138162A2 (en) | CMOS structure | |
JPH02170571A (en) | Semiconductor device and its manufacturing method |