[go: up one dir, main page]

JPS6243363B2 - - Google Patents

Info

Publication number
JPS6243363B2
JPS6243363B2 JP8955678A JP8955678A JPS6243363B2 JP S6243363 B2 JPS6243363 B2 JP S6243363B2 JP 8955678 A JP8955678 A JP 8955678A JP 8955678 A JP8955678 A JP 8955678A JP S6243363 B2 JPS6243363 B2 JP S6243363B2
Authority
JP
Japan
Prior art keywords
filter
substrate
conductive film
piezoelectric substrate
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8955678A
Other languages
Japanese (ja)
Other versions
JPS5516569A (en
Inventor
Takeshi Inoe
Tomeji Oono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8955678A priority Critical patent/JPS5516569A/en
Publication of JPS5516569A publication Critical patent/JPS5516569A/en
Publication of JPS6243363B2 publication Critical patent/JPS6243363B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、同一圧電基板上に設けられた複数個
のフイルタ素子と、これらのフイルタ素子を電気
的に結合する部分からなる複合型エネルギー閉じ
込め型フイルタにおいて、不要振動を除去し、阻
止域の保証減衰量遮断特性を向上せしめることを
目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention eliminates unnecessary vibrations in a composite energy trapping filter consisting of a plurality of filter elements provided on the same piezoelectric substrate and a part that electrically couples these filter elements. The purpose is to improve the guaranteed attenuation cutoff characteristics of the stopband.

エネルギー閉じ込め型フイルタの保証減衰量を
上げ良好なる遮断特性を実現するための一つの方
法として、エネルギー閉じ込め型フイルタ同志を
電気的に並列に入る容量によつて結合させたタン
デム型構成方法や、あるいは結合部分を厚膜抵抗
素子などで実現させる方法があることは一般的に
知られている。
One way to increase the guaranteed attenuation of energy trapping filters and achieve good cutoff characteristics is to use a tandem configuration method in which energy trapping filters are electrically connected in parallel by a capacitance, or It is generally known that there is a method of realizing the coupling portion using a thick film resistive element or the like.

しかし同一圧電基板に複数個のエネルギー閉じ
込め型フイルタ素子を配置した構成では、確かに
フイルタ全体が小さくなり、電気的接続といつた
工程が減るために低価格のフイルタが期待できる
が、フイルタ特性の点からみれば、以下に述べる
理由により、一つの圧電基板に一個のエネルギー
閉じ込め型フイルタを形成しこれら多数枚の圧電
基板からなるフイルタ素子および結合部分を電気
的に縦続接続したフイルタに比べて著るしく悪く
なる。
However, in a configuration in which multiple energy trapping filter elements are arranged on the same piezoelectric substrate, the overall size of the filter becomes smaller, and the number of processes such as electrical connections is reduced, so a low-cost filter can be expected. From this point of view, for the reasons described below, it is significantly more efficient than a filter in which one energy trapping filter is formed on one piezoelectric substrate and the filter elements and coupling parts made of a large number of piezoelectric substrates are electrically connected in cascade. It gets worse.

つまり同一圧電基板にフイルタ素子を複数個配
置した構造のものでは、フイルタ素子から不要な
弾性振動が発生し、それが直接出力側に伝搬する
ために保証減衰量および遮断特性の急峻度の低下
をまねく原因となる。
In other words, in a structure in which multiple filter elements are arranged on the same piezoelectric substrate, unnecessary elastic vibrations are generated from the filter elements and propagate directly to the output side, resulting in a decrease in the guaranteed attenuation amount and the steepness of the cutoff characteristics. It causes a lot of things.

従つて、一枚の圧電板に形成された複合フイル
タ構造をなすタイプのものではフイルタ素子から
発生する不要な弾性波動の伝搬を充分に抑圧して
やる必要がある。
Therefore, in a type of filter having a composite filter structure formed on a single piezoelectric plate, it is necessary to sufficiently suppress the propagation of unnecessary elastic waves generated from the filter element.

第1図は従来のタイプの同一圧電基板上にエネ
ルギー閉じ込め型フイルタと結合容量を同時に実
現した圧電フイルタの正面図、第2図はその背面
図である。図において、11は圧電基板であり、
この圧電基板11上には二重モードフイルタ1
2,13および結合容量を実現させる電極14が
形成されている。しかしこのままの状態では、フ
イルタ素子から発生する不要な弾性波動の伝搬を
抑圧することは不可能である。
FIG. 1 is a front view of a conventional piezoelectric filter in which an energy trapping filter and a coupling capacitance are simultaneously realized on the same piezoelectric substrate, and FIG. 2 is a rear view thereof. In the figure, 11 is a piezoelectric substrate,
A dual mode filter 1 is mounted on this piezoelectric substrate 11.
2 and 13, and an electrode 14 for realizing coupling capacitance. However, in this state, it is impossible to suppress the propagation of unnecessary elastic waves generated from the filter element.

一方、従来この不要弾性波動の伝搬を抑圧する
対策として、フイルタ基板において弾性波動の伝
搬経路の途中にスリツトまたは穴を形成すること
が行なわれてきた。
On the other hand, as a measure to suppress the propagation of unnecessary elastic waves, conventionally, a slit or a hole has been formed in the filter substrate in the middle of the propagation path of the elastic waves.

しかし、フイルタ基板の大きさは10.7MHz厚み
縦モード利用のエネルギー閉じ込め型フイルタを
例にとればせいぜい7mm×7mm程度であるから、
基板にスリツトまたは穴を形成することは大変な
微細加工技術を要し、また、基板にクラツクの入
るおそれがある等の欠点があつた。
However, the size of the filter substrate is about 7 mm x 7 mm at most, taking an energy trapping filter that uses a 10.7 MHz thickness longitudinal mode as an example.
Forming slits or holes in the substrate requires a very sophisticated microfabrication technique, and there are also drawbacks such as the possibility of cracks being formed in the substrate.

本発明は、以上のごとき欠点を除去するため、
フイルタ素子の中間部に多数本の枝分かれした櫛
形の導電膜を形成することにより弾性波動の伝搬
を抑えたものであり、以下図によつて説明する。
In order to eliminate the above-mentioned drawbacks, the present invention has the following features:
The propagation of elastic waves is suppressed by forming a multi-branched comb-shaped conductive film in the middle of the filter element, and will be explained below with reference to the drawings.

第3図は本発明の一実施例を示す圧電フイルタ
の正面図、第4図はその背面図である。
FIG. 3 is a front view of a piezoelectric filter showing an embodiment of the present invention, and FIG. 4 is a rear view thereof.

図において、31は圧電基板であり、圧電基板
31上には二重モードフイルタ32,33および
結合容量となる電極34が形成されており、また
正面図の35および背面図のアース部分におい
て、本発明の櫛形状導電膜36が設けられてい
る。
In the figure, 31 is a piezoelectric substrate, on which are formed dual mode filters 32, 33 and an electrode 34 that serves as a coupling capacitance. A comb-shaped conductive film 36 of the invention is provided.

また第5図は本発明の櫛形状導電膜部分の断面
図であり、51は圧電基板、斜線部分52は導電
膜を示す。
Further, FIG. 5 is a cross-sectional view of a comb-shaped conductive film portion of the present invention, where 51 indicates a piezoelectric substrate and a hatched portion 52 indicates a conductive film.

すなわち圧電基板上に櫛形状導電膜を形成する
ことによつて第5図での圧電基板のむき出しにな
つている部分と導電膜52を形成した部分による
音響インピーダンスの違いによる入力側から出力
側に直接達する伝播波動の反射、および導電膜部
分の電位は到るところ皆等しく、電気的に波動の
伝搬を阻止することが可能であり、フイルタの阻
止域の特性を著るしく良好にすることができる。
That is, by forming a comb-shaped conductive film on the piezoelectric substrate, the difference in acoustic impedance between the exposed portion of the piezoelectric substrate and the portion on which the conductive film 52 is formed in FIG. The reflection of the propagating wave that reaches directly and the potential of the conductive film portion are all the same everywhere, making it possible to electrically block the propagation of the wave and significantly improving the stopband characteristics of the filter. can.

本発明の実施例として厚み縦モード利用10.7M
Hzタンデム構成エネルギー閉じ込め形フイルタに
ついて説明する。このフイルタは第1図および第
2図に示すごとく、二重モードフイルタ2個と結
合容量部分からなる構造であり、動作減衰量特性
を第6図に示す。第6図の実線は第3図、第4図
に示す本発明の櫛形導電膜を形成した場合の特
性、点線は入力側から出力側に直接達する波動の
伝搬を考慮しない従来タイプの第1図、第2図の
構造の特性を示している。
As an example of the present invention, thickness longitudinal mode is used 10.7M
The Hz tandem configuration energy trapping filter will be explained. As shown in FIGS. 1 and 2, this filter has a structure consisting of two dual mode filters and a coupling capacitance section, and its operational attenuation characteristics are shown in FIG. 6. The solid line in FIG. 6 is the characteristic when the comb-shaped conductive film of the present invention shown in FIGS. 3 and 4 is formed, and the dotted line is the characteristic of the conventional type shown in FIG. , which shows the characteristics of the structure of FIG.

以上の実施例から明らかなように、フイルタ素
子の中間部分において何ら対策を講じることなし
でフイルタを製造すると、阻止域の急峻立ち上が
り特性および保証減衰量の低下を招くことにな
る。
As is clear from the above embodiments, if a filter is manufactured without taking any measures at the intermediate portion of the filter element, the characteristic of a steep rise in the stopband and the guaranteed attenuation amount will be reduced.

これに対し、本発明に従えば良好なフイルタ特
性を得ることが可能であり、高性能の圧電フイル
タを供給することに寄与する。
On the other hand, according to the present invention, it is possible to obtain good filter characteristics, and contributes to providing a high-performance piezoelectric filter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の圧電フイルタの正面図、第2図
はその背面図、第3図は本発明の一実施例を示す
正面図、第4図はその背面図である。図におい
て、31は圧電基板、32,33は二重モードフ
イルタ、34は電極、35,36は本発明の櫛形
状導電膜である。第5図は本発明の櫛形状導電膜
部分の断面図を示し、51は圧電基板、52は導
電膜である。第6図はタンデム構成エネルギー閉
じ込め形フイルタの動作減衰量特性を示し、点線
は従来タイプの特性、実線は本発明によるフイル
タの特性である。
FIG. 1 is a front view of a conventional piezoelectric filter, FIG. 2 is a rear view thereof, FIG. 3 is a front view showing an embodiment of the present invention, and FIG. 4 is a rear view thereof. In the figure, 31 is a piezoelectric substrate, 32 and 33 are dual mode filters, 34 is an electrode, and 35 and 36 are comb-shaped conductive films of the present invention. FIG. 5 shows a cross-sectional view of the comb-shaped conductive film portion of the present invention, where 51 is a piezoelectric substrate and 52 is a conductive film. FIG. 6 shows the operating attenuation characteristics of the tandem configuration energy trapping filter, where the dotted line is the characteristic of the conventional type and the solid line is the characteristic of the filter according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 同一圧電基板に設けられた2個のエネルギー
閉じ込め型フイルタ素子と、該基板表裏面に形成
され結合容量となる電極と、前記2個のエネルギ
ー閉じ込め型フイルタ素子の中間部の前記基板表
裏面に形成された複数本に枝分かれした櫛形の導
電膜とを備えたことを特徴とする圧電フイルタ。
1 Two energy trapping filter elements provided on the same piezoelectric substrate, electrodes formed on the front and back surfaces of the substrate to serve as coupling capacitors, and electrodes on the front and back surfaces of the substrate at an intermediate portion between the two energy trapping filter elements. A piezoelectric filter comprising a comb-shaped conductive film branched into a plurality of branches.
JP8955678A 1978-07-21 1978-07-21 Piezoelectric filter Granted JPS5516569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8955678A JPS5516569A (en) 1978-07-21 1978-07-21 Piezoelectric filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8955678A JPS5516569A (en) 1978-07-21 1978-07-21 Piezoelectric filter

Publications (2)

Publication Number Publication Date
JPS5516569A JPS5516569A (en) 1980-02-05
JPS6243363B2 true JPS6243363B2 (en) 1987-09-14

Family

ID=13974086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8955678A Granted JPS5516569A (en) 1978-07-21 1978-07-21 Piezoelectric filter

Country Status (1)

Country Link
JP (1) JPS5516569A (en)

Also Published As

Publication number Publication date
JPS5516569A (en) 1980-02-05

Similar Documents

Publication Publication Date Title
JPH033411B2 (en)
JPH0559609B1 (en)
US3980904A (en) Elastic surface wave device
JPS60169210A (en) Surface wave device
JPS5834049B2 (en) surface acoustic wave device
US5838091A (en) Surface acoustic wave device including IDT electrode having solid electrode portion and split electrode portion
KR100407463B1 (en) Surface acoustic wave device
US4160219A (en) Transducer electrodes for filters or delay lines utilizing surface wave principles
EP0031685B1 (en) Surface acoustic wave device
US4396851A (en) Surface acoustic wave device
US5818146A (en) Surface acoustic wave resonator filter apparatus
EP0197640B1 (en) Saw devices with reflection-suppressing fingers
US4346322A (en) Elastic surface wave device
JPS6243363B2 (en)
US4205285A (en) Acoustic surface wave device
JP2685537B2 (en) Surface acoustic wave device, manufacturing method thereof, adjusting method thereof, and communication device using the same
JPS5937723A (en) Surface acoustic wave resonator type filter device
US4258342A (en) Elastic surface wave device
JPH02250413A (en) Surface acoustic wave device
JPS5847086B2 (en) surface acoustic wave device
JPS6219088B2 (en)
JPH0243363B2 (en)
JPS5912816Y2 (en) surface acoustic wave filter
JPH06132778A (en) Ceramic filter utilizing thickness-shear vibration mode
JP3340563B2 (en) Surface acoustic wave device