JPS6243341B2 - - Google Patents
Info
- Publication number
- JPS6243341B2 JPS6243341B2 JP12315380A JP12315380A JPS6243341B2 JP S6243341 B2 JPS6243341 B2 JP S6243341B2 JP 12315380 A JP12315380 A JP 12315380A JP 12315380 A JP12315380 A JP 12315380A JP S6243341 B2 JPS6243341 B2 JP S6243341B2
- Authority
- JP
- Japan
- Prior art keywords
- forming
- insulating film
- opening
- gate
- semiconductor substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32134—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32135—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
- H01L21/32136—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
- H01L21/32137—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Description
【発明の詳細な説明】
本発明は半導体装置の製造方法に関するもので
あり、特にMOS型半導体装置に於て、高密度、
高速化を図り、かつ表面を平担にする事により、
低消費電力化し、歩留りを向上させることを目的
とする。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and in particular, in a MOS type semiconductor device, high density,
By increasing the speed and making the surface flat,
The purpose is to reduce power consumption and improve yield.
最近、半導体装置特に第1図に示すような
MOS型半導体装置は、微細化が進み高速、高密
度化となつてきた。 Recently, semiconductor devices, especially those shown in Fig.
MOS type semiconductor devices have become finer, faster, and more dense.
ここで第1図のMOS型FETに於て、1はシリ
コン基板、2はゲート用多結晶シリコン、3は配
線層、4はソース領域、5はドレイン領域、6は
シリコン酸化膜、7はAl電極である。 In the MOS type FET shown in FIG. 1, 1 is a silicon substrate, 2 is polycrystalline silicon for gate, 3 is a wiring layer, 4 is a source region, 5 is a drain region, 6 is a silicon oxide film, and 7 is an Al It is an electrode.
この様な従来のMOS型FETに於て寸法基準が
2μm程度になると配線抵抗が大きくなり、配線
抵抗が素子のスピードに大きく影響してくる為、
配線抵抗を下げることが必要であり、その方法と
して、(1)多結晶シリコン膜を厚くする(2)不純物量
を多くする(3)配線層を金属にする等の方法が考え
られる。上記(1)の方法に於て第1図の多結晶シリ
コン膜の配線層3を形成する場合、微細なパター
ンをエツチングする方法として、ドライエツチン
グ方式(例えば反応性スパツタエツチング)が用
いられている。ドライエツチング方式の特徴とし
て横方向の入り込量、いわゆるサイドエツチング
量が非常に少ない点がある反面、欠点としてパタ
ーン側面が急俊になる為、膜厚が厚くなればなる
程、後の工程で膜を形成すると、その膜の急俊な
段部で段切れが生じ易くなる。次に(2)の方法では
多結晶シリコン膜への不純物の固溶限界があり、
かつ不純物の注入をイオン注入法で行なう場合、
注入量が多いと時間が長くなる。又その為イオン
注入時の基板温度が高くなり、イオン注入マスク
として一般に使われている感光性樹脂にクラツク
が生じたりパターン変形を生じ、工程不良が発生
する恐れがある。次に(3)の方法では配線用マスク
が別に最底1枚多くなる為、工程数も増え作業性
が悪くなる等の問題が生じる。 In such conventional MOS FETs, when the size standard becomes about 2 μm, the wiring resistance becomes large, and the wiring resistance has a large effect on the speed of the element.
It is necessary to lower the wiring resistance, and possible methods include (1) increasing the thickness of the polycrystalline silicon film, (2) increasing the amount of impurities, and (3) using metal for the wiring layer. When forming the wiring layer 3 of the polycrystalline silicon film shown in FIG. 1 in the method (1) above, a dry etching method (for example, reactive sputter etching) is used as a method for etching a fine pattern. There is. A feature of the dry etching method is that the amount of intrusion in the lateral direction, so-called side etching, is extremely small, but the drawback is that the side surfaces of the pattern become sharp, so the thicker the film, the more difficult it will be to process later. When a film is formed, step breakage tends to occur at abrupt step portions of the film. Next, in method (2), there is a solid solubility limit for impurities in the polycrystalline silicon film.
And when implanting impurities by ion implantation method,
The larger the amount of injection, the longer the time. Furthermore, the temperature of the substrate during ion implantation becomes high, which may cause cracks or pattern deformation in the photosensitive resin commonly used as an ion implantation mask, leading to process defects. Next, in method (3), the number of wiring masks increases by one at the bottom, which causes problems such as an increase in the number of steps and poor workability.
また第1図のゲート用多結晶シリコン2上にシ
リコン酸化膜6の開孔部を形成する時、開孔部が
大きくなつたり、あるいは開孔部の位置がずれる
と、ゲート用多結晶シリコン2とシリコン基板1
の表面のソース領域4あるいはドレイン領域5の
一部が露出する事になり、後にAl電極7を形成
した時に、ゲート部とソースあるいはドレイン間
でシヨートとなる。したがつて(1)の方法を使用す
る場合が多いが、この場合、先に述べたように
Al配線の段切れが発生する恐れがあり、この対
策を行なう必要がある。本発明は、この対策方法
を提供するものである。 Furthermore, when forming an opening in the silicon oxide film 6 on the polycrystalline silicon 2 for the gate shown in FIG. 1, if the opening becomes large or the position of the opening is shifted, and silicon substrate 1
A part of the source region 4 or the drain region 5 on the surface is exposed, and when the Al electrode 7 is formed later, a short will be formed between the gate portion and the source or drain. Therefore, method (1) is often used, but in this case, as mentioned earlier,
There is a risk of breakage in the Al wiring, and countermeasures must be taken to prevent this. The present invention provides a method for dealing with this problem.
本発明は上記従来の欠点を除去する為、半導体
装置が微細化されても製造方法が容易なセルフ・
アライン的な埋込み方式を利用したものであり、
以下本発明の一実施例をNチヤネルMOS型FET
の製造方法を示す第2図a〜hをもとにして詳細
に説明する。 In order to eliminate the above-mentioned drawbacks of the conventional technology, the present invention is a self-contained device that can be manufactured easily even when semiconductor devices are miniaturized.
It uses an aligned embedding method,
An embodiment of the present invention will be described below as an N-channel MOS FET.
The manufacturing method will be explained in detail based on FIGS. 2a to 2h showing the manufacturing method.
第2図aに於て、P型シリコン基板11を選択
的に酸化してフイールド酸化膜12をほぼ表面が
平担になる様に、例えば、酸化前にP型シリコン
基板11を少しエツチングして、その後酸化して
表面を盛り上げ、基板表面を平担にする(この工
程は図示せず)。その後n型不純物層13を例え
ば1011〜1012cm-2、数10KVでイオン注入せしめ、
選択的に能動領域の表面層付近に形成する。次に
第2図bに示すように気相成長法等によりシリコ
ン酸化膜14を3000〜8000Åの厚さに形成する。
この場合、シリコン酸化膜14の膜厚が厚い程、
次の工程である感光性樹脂の埋込みが容易とな
る。次に第2図cに於て、ゲート領域となる開孔
部15を〜2μm程度に形成する。次に900℃水
蒸気中で15分ぐらい酸化せしめ、開孔部15のシ
リコン基板表面にゲート酸化膜16を約500Åの
厚さに形成する。続いてゲート酸化膜16の直下
のシリコン基板表面はn型でデプリーシヨン型と
なつている為、一部エンハンスメント型とする時
には、P型不純物を数10KVで1011〜1013cm-2ゲー
ト酸化膜16の直下にイオン注入し、P型に反転
さす。図面にはP型イオン注入を行なつた領域
(n型領域を分離させて示している)を示してい
る。 In FIG. 2a, the P-type silicon substrate 11 is selectively oxidized so that the field oxide film 12 has a substantially flat surface, for example, the P-type silicon substrate 11 is slightly etched before oxidation. , and then oxidizes to raise the surface and flatten the substrate surface (this step is not shown). After that, the n-type impurity layer 13 is ion-implanted at, for example, 10 11 to 10 12 cm -2 and several tens of KV.
It is selectively formed near the surface layer of the active region. Next, as shown in FIG. 2b, a silicon oxide film 14 is formed to a thickness of 3,000 to 8,000 Å by vapor phase growth or the like.
In this case, the thicker the silicon oxide film 14 is, the more
The next step, embedding with photosensitive resin, becomes easier. Next, in FIG. 2c, an opening 15 which will become a gate region is formed to a thickness of about 2 μm. Next, it is oxidized in water vapor at 900° C. for about 15 minutes to form a gate oxide film 16 on the surface of the silicon substrate in the opening 15 to a thickness of about 500 Å. Next, since the surface of the silicon substrate directly under the gate oxide film 16 is n-type and is a depletion type, when making a part of the enhancement type, P-type impurities are added to the gate oxide film at several tens of kilovolts to 10 11 to 10 13 cm -2. Ions are implanted directly under 16 and inverted to P type. The drawing shows a region into which P-type ions have been implanted (the n-type region is shown separated).
次に第2図dにおいてシリコン酸化膜14をエ
ツチングせしめソース及びドレイン領域となる開
孔部17,18を形成する。同時に配線層領域の
開孔部19も形成する。 Next, in FIG. 2d, the silicon oxide film 14 is etched to form openings 17 and 18 that will become source and drain regions. At the same time, openings 19 in the wiring layer region are also formed.
次に第2図eにおいて多結晶シリコン20をシ
リコン酸化膜14とほぼ同じ膜厚になるように気
相成長法等により形成する。この場合n型不純物
として例えばリンを同時に拡散するか、イオン注
入法等により導入し、熱処理後ソース領域17′
及びドレイン領域18′となるP型シリコン基板
11との直接コンタクト領域を形成する。 Next, as shown in FIG. 2e, polycrystalline silicon 20 is formed by vapor phase growth or the like to have approximately the same thickness as silicon oxide film 14. In this case, an n-type impurity, for example, phosphorus, is simultaneously diffused or introduced by ion implantation, etc., and after heat treatment, the source region 17'
Then, a direct contact region with the P-type silicon substrate 11, which will become the drain region 18', is formed.
次に第2図fに於て、多結晶シリコン膜20上
に粘度の小さいネガ型ホトレジスト21を塗布
し、多結晶シリコン20の凹部に厚く、凸部には
薄く形成する。この場合例えば粘度10cstで段差
5000Åの時約2μm幅の凸部上には100Å以下で
かつ、凹部は完全に埋込まれる条件が得られてい
る。次にこの凸部上の薄いネガ型ホトレジスト2
1を酸素プラズマエツチングにより除去せしめ、
凸部の多結晶シリコン膜20を露出さす。次にフ
レオンガスを用いてプラズマエツチングにより、
上記凹部のネガ型ホトレジスト21をマスクに多
結晶シリコン膜20をエツチングし、シリコン酸
化膜14の表面が露出するまでエツチングする。
次にネガ型ホトレジスト21を除去すると、表面
がほぼ平担なシリコン酸化膜14の開孔部に多結
晶シリコンのソース、ゲート、ドレイン領域の多
結晶シリコン電極17″,15′,18″が埋込ま
れた形となる。次に表面全体にシリコン酸化膜2
2を気相成長法等により形成する。これを第2図
gに示す。 Next, in FIG. 2f, a negative type photoresist 21 having a low viscosity is coated on the polycrystalline silicon film 20, and is formed thickly in the concave portions of the polycrystalline silicon 20 and thinly in the convex portions. In this case, for example, a step with a viscosity of 10cst
When the thickness is 5000 Å, the thickness is less than 100 Å on the convex portions having a width of about 2 μm, and the conditions are obtained such that the concave portions are completely filled. Next, apply a thin negative photoresist 2 on this convex part.
1 was removed by oxygen plasma etching,
The polycrystalline silicon film 20 in the convex portion is exposed. Next, by plasma etching using Freon gas,
The polycrystalline silicon film 20 is etched using the negative photoresist 21 in the recessed portion as a mask until the surface of the silicon oxide film 14 is exposed.
Next, when the negative photoresist 21 is removed, the polycrystalline silicon electrodes 17'', 15', and 18'' of the source, gate, and drain regions of polycrystalline silicon are filled in the openings of the silicon oxide film 14, which has a substantially flat surface. It has a built-in shape. Next, silicon oxide film 2 is applied to the entire surface.
2 is formed by a vapor phase growth method or the like. This is shown in Figure 2g.
次に第2図hに於て、シリコン酸化膜22を選
択的にエツチングせしめ、各多結晶シリコン電極
上に開孔部を形成し、Al23をスパツタ蒸着法
等により形成し、配線処理を施こし、MOS型
FETを完成する。 Next, in FIG. 2h, the silicon oxide film 22 is selectively etched, openings are formed on each polycrystalline silicon electrode, Al 23 is formed by sputter deposition, etc., and wiring processing is performed. , MOS type
Complete FET.
以上の本発明を用いる事により、以下の効果が
得られる。 By using the present invention described above, the following effects can be obtained.
(1) 微細化が非常に容易であり、高速・高密度化
が図り易い。(1) It is very easy to miniaturize, and it is easy to achieve high speed and high density.
(2) レジストの埋込み方法を用いる為、微細にな
ればなる程、埋込まれ易くなり、表面の平担化
が容易となる。この事は、段切れ防止に寄与
し、歩留り向上が図れ、工業上有益なものであ
る。(2) Since a resist embedding method is used, the finer the resist, the easier it is to embed, and the easier it is to flatten the surface. This contributes to prevention of stage breakage, improves yield, and is industrially useful.
第1図は従来のMOS型FETの断面図、第2図
a〜hは本発明の一実施例を説明するための
MOS型FETの製造方法を示す工程の断面図であ
る。
11……半導体基板(P型シリコン基板)、1
2……第1の絶縁膜(フイールド酸化膜)、13
……導電性不純物(n型不純物層)、14……第
2の絶縁膜(シリコン酸化膜)、15……第2の
開口部(開口部)、16……第3の絶縁膜(ゲー
ト酸化膜)、17,18,19……第3の開口部
(開口部)、20……導電性物質(多結晶シリコ
ン)、22……第4の絶縁膜(シリコン酸化膜)、
23……配線パターン(Al)。
Fig. 1 is a cross-sectional view of a conventional MOS FET, and Fig. 2 a to h are diagrams for explaining an embodiment of the present invention.
FIG. 3 is a cross-sectional view of a process showing a method for manufacturing a MOS FET. 11...Semiconductor substrate (P-type silicon substrate), 1
2...first insulating film (field oxide film), 13
...Conductive impurity (n-type impurity layer), 14... Second insulating film (silicon oxide film), 15... Second opening (opening), 16... Third insulating film (gate oxide) film), 17, 18, 19... third opening (opening), 20... conductive material (polycrystalline silicon), 22... fourth insulating film (silicon oxide film),
23...Wiring pattern (Al).
Claims (1)
動領域となる第1の開口部を形成し、この第1の
開口部に選択的に第1の導電性不純物を導入する
工程と、上記半導体基板表面に第2の絶縁膜を形
成しこの絶縁膜にゲート領域となる第2の開口部
を形成する工程と、この第2の開孔部に第3のゲ
ート用絶縁膜を形成し、上記第1の導電性不純物
と反対の第2の導電性不純物を導入する工程と、
上記第2の絶縁膜にソース及びドレイン領域とな
る第3の開孔部を形成し上記半導体基板表面に導
電性物質を上記第2の絶縁膜とほぼ同じ膜厚に形
成する工程と、上記第2の絶縁膜に形成された開
孔部の凹部に選択的にソース、ゲート及びドレイ
ン用電極となる上記導電性物質を残存させる工程
と、上記半導体基板表面に第4の絶縁膜を形成し
上記ソース、ゲート及びドレイン電極上に第4の
開口部を形成する工程と、上記第4の開口部に金
属薄膜を形成し配線パターンを形成する工程とを
備えたことを特徴とする半導体装置の製造方法。1. A step of forming a first opening to become an active region in a first insulating film provided on a surface of a semiconductor substrate, and selectively introducing a first conductive impurity into the first opening; forming a second insulating film on the surface of the semiconductor substrate and forming a second opening to serve as a gate region in the insulating film; forming a third gate insulating film in the second opening; introducing a second conductive impurity opposite to the first conductive impurity;
forming third openings to serve as source and drain regions in the second insulating film, and forming a conductive material on the surface of the semiconductor substrate to have approximately the same thickness as the second insulating film; a step of selectively leaving the conductive material to serve as source, gate and drain electrodes in the recesses of the openings formed in the second insulating film; forming a fourth insulating film on the surface of the semiconductor substrate; and forming a fourth insulating film on the surface of the semiconductor substrate; Manufacturing a semiconductor device comprising the steps of forming a fourth opening on the source, gate, and drain electrodes, and forming a metal thin film in the fourth opening to form a wiring pattern. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12315380A JPS5748248A (en) | 1980-09-04 | 1980-09-04 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12315380A JPS5748248A (en) | 1980-09-04 | 1980-09-04 | Manufacture of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5748248A JPS5748248A (en) | 1982-03-19 |
JPS6243341B2 true JPS6243341B2 (en) | 1987-09-12 |
Family
ID=14853487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12315380A Granted JPS5748248A (en) | 1980-09-04 | 1980-09-04 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5748248A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1189976B (en) * | 1986-02-21 | 1988-02-10 | Sgs Microelettronica Spa | PROCESS FOR THE MANUFACTURE OF "GATE" FIELD-EFFECT TRANSISTORS ISOLATED WITH JOINTS AT NO DEPTH THROUGH PLANARIZATION |
JPH01281322A (en) * | 1988-05-09 | 1989-11-13 | Babcock Hitachi Kk | Composite plant and its operation |
KR0167274B1 (en) * | 1995-12-07 | 1998-12-15 | 문정환 | Cmos analog semiconductor device and its manufacture |
-
1980
- 1980-09-04 JP JP12315380A patent/JPS5748248A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5748248A (en) | 1982-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6032364A (en) | Manufacture of semiconductor device | |
US4751554A (en) | Silicon-on-sapphire integrated circuit and method of making the same | |
US5780347A (en) | Method of forming polysilicon local interconnects | |
JPS6243341B2 (en) | ||
EP0142186B1 (en) | Method of manufacturing a pattern of conductive material | |
JPH0640549B2 (en) | Method for manufacturing MOS semiconductor device | |
GB2024504A (en) | Manufacture of Integrated Circuits | |
JPS63275181A (en) | Manufacture of semiconductor device | |
KR100280537B1 (en) | Semiconductor device manufacturing method | |
KR100732744B1 (en) | Method of manufacturing transistor in semiconductor device | |
JPH0479336A (en) | Production of semiconductor device | |
KR100253344B1 (en) | Contact hole formation method of semiconductor memory | |
KR0147255B1 (en) | MOSFET manufacturing method | |
JPS6146964B2 (en) | ||
JPS6154661A (en) | Manufacture of semiconductor device | |
JP2623647B2 (en) | Method for manufacturing semiconductor device | |
JPH027441A (en) | Manufacture of semiconductor device | |
JPH0298173A (en) | Manufacture of semiconductor memory | |
KR950021133A (en) | Semiconductor device manufacturing method | |
JPH02159041A (en) | Manufacture of semiconductor device | |
KR960009204A (en) | How to prepare pyrom | |
JPH0766400A (en) | Semiconductor device and manufacturing method thereof | |
JPH0621464A (en) | MOS type thin film transistor | |
JPS60183771A (en) | Manufacture of semiconductor device | |
JPS6356958A (en) | Mos field-effect transistor |