[go: up one dir, main page]

JPS6241020B2 - - Google Patents

Info

Publication number
JPS6241020B2
JPS6241020B2 JP55187831A JP18783180A JPS6241020B2 JP S6241020 B2 JPS6241020 B2 JP S6241020B2 JP 55187831 A JP55187831 A JP 55187831A JP 18783180 A JP18783180 A JP 18783180A JP S6241020 B2 JPS6241020 B2 JP S6241020B2
Authority
JP
Japan
Prior art keywords
logarithmic
output
amplifier
input
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55187831A
Other languages
Japanese (ja)
Other versions
JPS57112851A (en
Inventor
Osamu Hayashi
Hirohide Miwa
Nobushiro Shimura
Tadahiko Yanajima
Shinichi Amamya
Yutaka Fukui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP55187831A priority Critical patent/JPS57112851A/en
Publication of JPS57112851A publication Critical patent/JPS57112851A/en
Publication of JPS6241020B2 publication Critical patent/JPS6241020B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

【発明の詳細な説明】 本発明は超音波測定装置に係り、特に、超音波
反射波により検体の断層像を得るに際し、検体の
診断深さに略無関係に、深い位置の断層像も浅い
位置の断層像と略同程度の明るさで表示できる超
音波診断装置に使用できる超音波測定装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic measuring device, and in particular, when obtaining a tomographic image of a specimen using reflected ultrasound waves, the tomographic image of a deep position can also be The present invention relates to an ultrasonic measurement device that can be used in an ultrasonic diagnostic device that can display images with approximately the same brightness as a tomographic image.

第1図は一般的な超音波診断装置の一例のブロ
ツク系統図を示す。同図中、1は検体で、探触子
2が音響的に接触されている。探触子2は走査制
御部3の制御の下に送信アンプ4の出力信号によ
り駆動されて超音波を検体1内に発射する。探触
子2から発射された超音波は第2図に示す如く、
音響インピーダンスの異なる境界1a,1b,1
c,1dから夫々インピーダンス不整合により反
射され、その反射波が探触子2にて浅い位置のも
のから順次受信され、ここで音響−電気変換され
る。探触子より取り出された反射波受信信号は、
受信アンプ5で増幅された後対数増幅器6に供給
される。
FIG. 1 shows a block system diagram of an example of a general ultrasonic diagnostic apparatus. In the figure, reference numeral 1 indicates a specimen, with which a probe 2 is acoustically contacted. The probe 2 is driven by the output signal of the transmission amplifier 4 under the control of the scanning control section 3 and emits ultrasonic waves into the specimen 1 . The ultrasonic waves emitted from the probe 2 are as shown in Fig. 2.
Boundaries 1a, 1b, 1 with different acoustic impedances
c and 1d due to impedance mismatching, and the reflected waves are sequentially received by the probe 2 starting from the shallowest position, where they are subjected to acoustic-to-electrical conversion. The reflected wave reception signal taken out from the probe is
After being amplified by a receiving amplifier 5, it is supplied to a logarithmic amplifier 6.

対数増幅器6は超音波の検体1内での減衰量
が、その伝搬路長に略比例するため、第2図に示
す検体1の表面に最も近い境界1aからの反射波
の減衰量が小さく、一方、検体1の深い位置にあ
る境界1dからの反射波の減衰量が大であること
に鑑み、対数増幅器6の入出力特性は例えば第3
図に破線で示す如く、1V以下の入力受信信号
電圧を対数増幅して出力する特性に選定されてい
る。なお、第3図中、ai+bi,ci,diは夫々境
界1a,1b,1c,1dの受信信号入力電圧、
p,bp,cp,dpはそのときの対数増幅器6の
出力電圧を示す。
In the logarithmic amplifier 6, since the amount of attenuation of the ultrasonic wave within the specimen 1 is approximately proportional to its propagation path length, the amount of attenuation of the reflected wave from the boundary 1a closest to the surface of the specimen 1 shown in FIG. 2 is small. On the other hand, in view of the fact that the amount of attenuation of the reflected wave from the boundary 1d located deep in the sample 1 is large, the input/output characteristics of the logarithmic amplifier 6 are, for example,
As shown by the broken line in the figure, the characteristics have been selected to logarithmically amplify and output the input received signal voltage of 1V or less. In FIG. 3, a i +b i , c i , and d i are the received signal input voltages at the boundaries 1a, 1b, 1c, and 1d, respectively;
a p , b p , c p , and d p indicate the output voltages of the logarithmic amplifier 6 at that time.

対数増幅器6を通過した受信信号は、整流回路
7で整流された後、表示器8に供給され、ここで
走査制御部3の出力により所定の走査線に反射位
置の輝度変調による表示を行なう。以下、上記と
同様にして探触子2から超音波が所定の周期で間
欠的に発射され、かつ、走査回路9の出力信号に
応じて超音波発射方向が走査され、それに応じて
表示器8の別の走査線にそのときの反射位置の輝
度変調による表示を行なうことが繰り返され、表
示器8には検体1の断層像の表示が行なわれる。
The received signal that has passed through the logarithmic amplifier 6 is rectified by a rectifier circuit 7 and then supplied to a display 8, where the reflected position is displayed by brightness modulation on a predetermined scanning line based on the output of the scan control section 3. Thereafter, ultrasonic waves are emitted intermittently from the probe 2 at a predetermined period in the same manner as described above, and the ultrasonic emission direction is scanned according to the output signal of the scanning circuit 9, and the display 8 is accordingly scanned. Displaying the current reflection position by brightness modulation on another scanning line is repeated, and the tomographic image of the specimen 1 is displayed on the display 8.

しかるに、上記の装置において従来は対数増幅
器6の対数変換桁数は受信信号レベルに関係なく
一定(例えば4桁程度)であつたため、対数増幅
をしたとしても、深い位置からの反射波受信信号
の出力レベルは低く、深い位置の像は暗く表示さ
れ、一方、浅い位置からの反射波受信信号の出力
レベルは高くなり、浅い位置の像は明るく表示さ
れてしまい、深さによつて像の明るさが変化して
しまうという欠点があつた。
However, in the above device, the number of logarithmic conversion digits of the logarithmic amplifier 6 was conventionally constant (for example, about 4 digits) regardless of the received signal level, so even if logarithmic amplification is performed, the reflected wave reception signal from a deep position is The output level is low, and the image at a deep position is displayed darkly.On the other hand, the output level of the reflected wave reception signal from a shallow position is high, and the image at a shallow position is displayed brightly, and the brightness of the image varies depending on the depth. The drawback was that the image quality changed.

本発明の目的は、反射波の減衰量に応じて対数
増幅器の対数変換桁数を実質上変えることによ
り、減衰量の少ない浅い位置からの反射波の像は
できるだけ広い範囲のレベルのものまで表示し、
かつ、減衰量の大なる深い位置からの反射波の像
は浅い位置の像と略同程度の明るさで表示するこ
とのできる超音波診断装置を提供するにある。
An object of the present invention is to display images of reflected waves from shallow positions with low attenuation as wide as possible by changing the number of logarithmic conversion digits of a logarithmic amplifier according to the amount of attenuation of reflected waves. death,
Further, it is an object of the present invention to provide an ultrasonic diagnostic apparatus that can display an image of a reflected wave from a deep position with a large amount of attenuation with approximately the same brightness as an image from a shallow position.

本発明は、超音波を検体内に発射し、その反射
波を受信して音響−電気変換して得た受信信号を
対数増幅器により対数増幅し、この対数増幅され
た信号により検体の断像情報を得る超音波測定装
置において、上記超音波の検体内での減衰量に応
じて対数増幅器の対数変換特性を部分的に、又は
全体的に変える手段を有してなり、表示器に供給
される信号レベルを検体内での減衰量に関係なく
略一定レベルとすることにより、上記欠点を除去
したものであり、第4図以下の図面と共にその各
実施例につき説明する。
The present invention emits ultrasonic waves into a specimen, receives the reflected waves, performs acoustic-to-electrical conversion, and logarithmically amplifies the received signal using a logarithmic amplifier, and uses this logarithmically amplified signal to provide tomographic information of the specimen. an ultrasonic measuring device for obtaining the ultrasonic waves, which comprises means for partially or entirely changing the logarithmic conversion characteristics of the logarithmic amplifier according to the amount of attenuation of the ultrasonic waves within the specimen, and is supplied to a display device. The above drawbacks are eliminated by keeping the signal level at a substantially constant level regardless of the amount of attenuation within the specimen, and each embodiment thereof will be described with reference to the drawings from FIG. 4 onwards.

第4図は本発明装置の要部の第1実施例のブロ
ツク系統図を示す。同図中、入力端子10には第
1図に示した受信アンプ5より取り出された受信
信号が入来し複数系統に分岐される。この分岐数
は必要に応じていくつでもよいが、ここでは4分
岐されて受信信号は可変利得増幅器11,11
,11,11に夫々供給される。これらの
可変利得増幅器11〜11の各ゲインは、コ
ントローラ12、カウンタ13、メモリ14及び
DA変換器15〜15よりなる制御回路の出
力制御信号により、夫々互いに独立して可変制御
せしめられる。すなわち、コントローラ12の出
力が供給されてカウンタ13は1づゝ歩進し、そ
の計数出力がメモリ14にアドレス指定信号とし
て印加される。メモリ14はコントローラ12の
出力により記憶データが読み出される。メモリ1
4には予めアドレスが1増加する毎に、可変利得
増幅器11〜11のゲインA1〜A4を適宜変
化するようなデータが記憶されている。メモリ1
4の例えば16ビツトのうちの下位ビツトから4ビ
ツトづつは、夫々DA変換器15〜15によ
りデイジタル−アナログ変換された後、可変利得
増幅器11〜11の各ゲイン制御端子に印加
され、そのゲインを可変制御する。
FIG. 4 shows a block system diagram of the first embodiment of the essential parts of the apparatus of the present invention. In the figure, a received signal taken out from the receiving amplifier 5 shown in FIG. 1 enters an input terminal 10 and is branched into a plurality of systems. The number of branches may be any number as required, but in this case, the received signal is divided into four branches and the received signal is passed through the variable gain amplifiers 11 1 , 11
2 , 113 , and 114 , respectively. The respective gains of these variable gain amplifiers 11 1 to 11 4 are determined by the controller 12 , counter 13 , memory 14 and
Each of the DA converters 15 1 to 15 4 is variably controlled independently of each other by output control signals from a control circuit. That is, the counter 13 is supplied with the output of the controller 12 and increments by 1, and the counting output is applied to the memory 14 as an address designation signal. Data stored in the memory 14 is read out by the output of the controller 12. memory 1
4 stores in advance data for appropriately changing the gains A 1 to A 4 of the variable gain amplifiers 11 1 to 11 4 each time the address increases by 1. memory 1
For example, the lower 4 bits of the 16 bits of 4 are digital-to-analog converted by DA converters 15 1 to 15 4 , respectively, and then applied to the gain control terminals of variable gain amplifiers 11 1 to 11 4 . , whose gain is variably controlled.

例えば、超音波を発射した直後より比較的浅い
位置からの反射波が受信されるまでの期間、可変
利得器11のゲインは0dB、11のそれは
20dB、11のそれは40dB、11のそれは
60dBに制御されており、一方、対数増幅器6
〜6の夫々の入出力特性は第5図に示す如きも
のであるとすると、可変利得増幅器11〜11
、対数増幅器6〜6を夫々経た出力信号電
圧と入力端子10の入力信号電圧とは、第6図A
及びで夫々示す如くにな
る。ここで、及びは夫々上
記入力信号電圧と、対数増幅器6,6,6
及び6の出力信号電圧との特性図を示す。
For example, immediately after emitting ultrasonic waves until a reflected wave from a relatively shallow position is received, the gain of variable gain device 11 1 is 0 dB, and that of variable gain device 11 2 is 0 dB.
20dB, that of 11 3 is 40dB, that of 11 4 is
60dB, while the logarithmic amplifier 6 1
Assuming that the input/output characteristics of each of the variable gain amplifiers 11 1 to 11 are as shown in FIG .
4 , the output signal voltages passing through the logarithmic amplifiers 61 to 64 , respectively, and the input signal voltages at the input terminal 10 are as shown in FIG.
1 , 2 , 3 and 4 , respectively. Here, 1 , 2 , 3 and 4 are the above input signal voltages and logarithmic amplifiers 61 , 62 , 63, respectively.
A characteristic diagram of the output signal voltage and the output signal voltage of 64 is shown.

上記の対数増幅器6〜6の各出力信号は加
算器16により夫々加算合成された後出力端子1
7より第1図に示す整流回路7へ供給される。従
つて、このときの入力端子10の入力信号電圧と
出力端子17の出力信号電圧との特性は、第6図
Aにaで示す如くになり、10-4Vから1Vの入力
電圧に対して出力電圧が直線的に上昇する特性と
なる。
The respective output signals of the logarithmic amplifiers 61 to 64 are added and synthesized by an adder 16, and then sent to the output terminal 1.
7 to the rectifier circuit 7 shown in FIG. Therefore, the characteristics of the input signal voltage at the input terminal 10 and the output signal voltage at the output terminal 17 at this time are as shown by a in FIG . The characteristic is that the output voltage increases linearly.

これにより、比較的浅い位置からの受信信号
は、増幅器などの雑音レベルよりもはるかに大レ
ベルであり、また第6図Aにaで示す如く対数
変換の桁数が4桁と大きくされているため、大き
い信号レベルから小さい信号レベルまで広いダイ
ナミツクレンジで像の表示ができる。
As a result, the received signal from a relatively shallow position is at a much higher level than the noise level of the amplifier, etc., and the number of digits of logarithmic conversion is increased to 4 digits, as shown by a in Figure 6A. Therefore, images can be displayed with a wide dynamic range from large signal levels to small signal levels.

次に、上記の比較的浅い位置からの反射波が受
信された期間経過時点より比較的深い位置からの
反射波が受信されるまでの期間は、可変利得器1
,11,11,11の各ゲインは、
30dB,40dB,50dB,60dBに可変されたものとす
ると、入力信号電圧と対数増幅器6〜6の出
力信号電圧との特性は、第6図Bに′,′
,′,′で示す如くになる。従つて、入
力端子10の入力信号は出力端子17より第6図
Bにbで示す如き対数増幅特性が付与されて取
り出されることになる。すなわち、この受信期間
では、対数変換の傾斜が大となり、比較的深い位
置からの反射波は減衰量が大であるが、その反射
波の受信信号は、第6図Bにbで示す対数増幅
特性が付与されて前記最初の受信期間における信
号レベルと略同一レベルとされて第1図に示した
整流回路7へ供給されることにより、表示器8に
は前記比較的浅い位置からの反射波による像と同
程度の明るさで比較的深い位置からの反射波によ
る像が表示される。
Next, during the period from when the reflected wave from a relatively shallow position is received until the reflected wave from a relatively deep position is received, the variable gain unit 1
Each gain of 1 1 , 11 2 , 11 3 , 11 4 is
Assuming that the voltages are varied to 30 dB, 40 dB, 50 dB, and 60 dB, the characteristics of the input signal voltage and the output signal voltage of the logarithmic amplifiers 61 to 64 are shown in FIG.
2 , ' 3 , and ' 4 . Therefore, the input signal at the input terminal 10 is extracted from the output terminal 17 with logarithmic amplification characteristics as shown by b in FIG. 6B. In other words, during this reception period, the slope of the logarithmic transformation is large, and the reflected wave from a relatively deep position has a large attenuation amount, but the received signal of the reflected wave is logarithmically amplified as shown by b in Figure 6B. By imparting characteristics to the signal level and making it approximately the same level as the signal level during the first reception period, the signal is supplied to the rectifier circuit 7 shown in FIG. An image created by reflected waves from a relatively deep position is displayed with about the same brightness as the image created by .

次に、上記の比較的深い位置からの反射波が受
信された期間経過後、次に超音波が発射されるま
での受信期間は、可変利得増幅器11,11
,11,11の各ゲインは、例えばすべて
60dBに可変制御される。これにより、入力端子
10の入力信号電圧と対数増幅器6,6,6
,6の各出力信号電圧とは、第6図Cに夫々
,′,′,′で示す如くすべて同
一特性を示し、またこの入出力特性は第5図に示
す対数増幅器6〜6の入出力特性と同一特性
である。従つて、この受信期間における入力端子
10及び出力端子17の入出力特性は、第6図C
cで示す如く、10-3V以上の入力信号電圧に対
しては出力信号電圧が4Vで一定で、他方、10-4V
〜10-3Vの入力信号電圧に対しては直線的に出力
信号電圧が上昇する特性となり、対数変換の傾斜
は急峻となる。
Next, after the period in which the reflected waves from the above-mentioned relatively deep position are received, the reception period until the next ultrasonic wave is emitted is carried out by the variable gain amplifiers 11 1 , 11
For example, the gains of 2 , 11 3 , and 11 4 are all
Variably controlled to 60dB. As a result, the input signal voltage at the input terminal 10 and the logarithmic amplifiers 6 1 , 6 2 , 6
The output signal voltages 3 , 6, and 4 all have the same characteristics as shown in Figure 6C as ' 1 , ' 2 , ' 3 , and ' 4, respectively, and the input/output characteristics are logarithmic as shown in Figure 5. The input/output characteristics are the same as those of the amplifiers 6 1 to 6 4 . Therefore, the input/output characteristics of the input terminal 10 and the output terminal 17 during this reception period are as shown in FIG.
As shown in c , the output signal voltage is constant at 4 V for an input signal voltage of 10 -3 V or higher;
For an input signal voltage of ~10 -3 V, the output signal voltage increases linearly, and the slope of logarithmic conversion becomes steep.

この結果、反射位置が極めて深くて減衰量が極
めて大である反射波が受信されるこの受信期間に
おいては、受信信号が大幅に増幅されて前記最初
の受信期間と略同一のレベルで出力されるので、
極めて深い位置からの反射波による像は、比較的
浅い位置からの反射波による像と同程度の明るさ
で第1図に示した表示器8に表示される。
As a result, during this reception period in which a reflected wave whose reflection position is extremely deep and the amount of attenuation is extremely large is received, the received signal is greatly amplified and output at approximately the same level as in the first reception period. So,
An image resulting from a reflected wave from a very deep position is displayed on the display 8 shown in FIG. 1 with approximately the same brightness as an image resulting from a reflected wave from a relatively shallow position.

このように、本実施例によれば、反射波の減衰
が大きくなるにつれて、すなわち入力信号電圧の
低下と共に例えば第7図に示す如く対数変換の傾
斜を大きくすることにより、表示器8への信号レ
ベルを常に略一定レベルとし、検体1の反射位置
の深さに関係なく、深い位置の像も浅い位置の像
と同程度の明るさで表示器8に表示させることが
できる。
As described above, according to this embodiment, as the attenuation of the reflected wave increases, that is, as the input signal voltage decreases, the slope of the logarithmic conversion increases as shown in FIG. By keeping the level always at a substantially constant level, images at deep positions can be displayed on the display 8 with the same brightness as images at shallow positions, regardless of the depth of the reflected position of the specimen 1.

次に本発明装置の第2実施例につき説明する
に、第8図は本発明装置の要部の第2実施例のブ
ロツク系統図を示す。同図中、第1図と同一部分
には同一番号を付してある。対数増幅器6の入出
力特性が、いま第9図にで示すものであるとす
る。この対数増幅器6の後段には補正増幅器18
が設けられており、メモリ21の出力信号により
そのゲインが可変制御せしめられる。メモリ21
は、コントローラ19の出力を計数するカウンタ
20の出力によりアドレスが指定され、コントロ
ーラ19の出力に応じてその指定アドレスの記憶
データが読み出される。ここで、メモリ21の読
み出しデータは時間の経過と共に補正増幅器18
のゲインを適当な大きさに変化させるデータとさ
れている。
Next, a second embodiment of the apparatus of the present invention will be described. FIG. 8 shows a block system diagram of the second embodiment of the main part of the apparatus of the present invention. In the figure, the same parts as in FIG. 1 are given the same numbers. Assume that the input/output characteristics of the logarithmic amplifier 6 are as shown in FIG. A correction amplifier 18 is provided after the logarithmic amplifier 6.
is provided, and its gain is variably controlled by the output signal of the memory 21. memory 21
The address is designated by the output of the counter 20 that counts the output of the controller 19, and the stored data at the designated address is read out in accordance with the output of the controller 19. Here, the read data of the memory 21 is transferred to the correction amplifier 18 as time passes.
It is said that this is data that changes the gain to an appropriate amount.

すなわち、対数増幅器6の入力信号電圧は超音
波送信周期内において、時間の経過と共に小レベ
ルとなるから、まず超音波送信時直後から一定期
間は補正増幅器18のゲインを所定の値Gとし、
以後時間の経過と共に入力信号電圧が10-2V付近
となる時間では2G、10-3V付近となる時間では
4Gとなるように、第10図に示す如き特性の矢
印方向への制御を行なう。
That is, since the input signal voltage of the logarithmic amplifier 6 becomes a small level as time passes within the ultrasound transmission cycle, first, the gain of the correction amplifier 18 is set to a predetermined value G for a certain period of time immediately after ultrasound transmission, and
After that, as time passes, the input signal voltage will be 2G when it is around 10 -2 V, and 2G when it is around 10 -3 V.
4G, the characteristics are controlled in the direction of the arrow as shown in FIG.

これにより、入力信号電圧が1V,10-1V,
10-2V,10-3Vのいずれの場合も、補正増幅器1
8の出力信号電圧は第9図に破線V1,V2,V3
V4で示す如く約1Vと等しくなる。従つて、本実
施例の場合も入力信号電圧の低下につれて(時間
の経過と共に)補正増幅器のゲインが大に制御さ
れ、この結果、検体1の反射位置の深さに関係な
く、深い位置の像も浅い位置の像と同程度の明る
さで第1図に示した表示器8で表示させることが
できる。本実施例は第1実施例に比し回路部品点
数が小であり、安価に構成することができる。
This allows the input signal voltage to be 1V, 10 -1 V,
In both cases of 10 -2 V and 10 -3 V, correction amplifier 1
The output signal voltages of 8 are shown in FIG. 9 by broken lines V 1 , V 2 , V 3 ,
It is equal to about 1V as shown by V4 . Therefore, in the case of this embodiment as well, the gain of the correction amplifier is controlled to be large as the input signal voltage decreases (as time passes), and as a result, regardless of the depth of the reflection position of the specimen 1, the image at a deep position is The image can also be displayed on the display 8 shown in FIG. 1 with the same brightness as an image at a shallow position. This embodiment has a smaller number of circuit components than the first embodiment, and can be constructed at low cost.

なお、第1実施例と第2実施例とを夫々併用す
ることもできる。
Note that the first embodiment and the second embodiment can also be used in combination.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な超音波診断装置の一例を示す
ブロツク系統図、第2図は検体内の超音波反射位
置(境界)を示す図、第3図は従来装置における
対数増幅器の入出力特性の一例を示す図、第4図
は本発明装置の要部の第1実施例を示すブロツク
系統図、第5図は第4図中の対数増幅器の入出力
特性の一例を示す図、第6図A〜Cは夫々第4図
の動作説明用の各部の入出力特性を示す図、第7
図は第4図示装置の入力電圧と対数変換桁数との
関係を示す図、第8図は本発明装置の要部の第2
実施例を示すブロツク系統図、第9図は第8図の
各部の入出力特性を示す図、第10図は第9図中
の補正増幅器のゲインの制御方法を説明する図で
ある。 1……検体、2……探触子、6,6〜6
…対数増幅器、8……表示器、10……受信信号
入力端子、11〜11……可変利得増幅器、
14,21……メモリ、16……加算器、17…
…出力端子、18……補正増幅器。
Figure 1 is a block diagram showing an example of a general ultrasound diagnostic device, Figure 2 is a diagram showing ultrasound reflection positions (boundaries) within a specimen, and Figure 3 is the input/output characteristics of a logarithmic amplifier in a conventional device. FIG. 4 is a block system diagram showing a first embodiment of the essential parts of the device of the present invention; FIG. 5 is a diagram showing an example of the input/output characteristics of the logarithmic amplifier in FIG. 4; Figures A to C are diagrams showing the input/output characteristics of each part for explaining the operation of Figure 4, and Figure 7.
The figure shows the relationship between the input voltage and the number of logarithmic conversion digits of the device shown in FIG.
FIG. 9 is a diagram showing the input/output characteristics of each part of FIG. 8, and FIG. 10 is a diagram illustrating a method of controlling the gain of the correction amplifier in FIG. 9. 1...Specimen, 2...Probe, 6,6 1 to 6 4 ...
... Logarithmic amplifier, 8 ... Display, 10 ... Received signal input terminal, 11 1 to 11 4 ... Variable gain amplifier,
14, 21...memory, 16...adder, 17...
...output terminal, 18...correction amplifier.

Claims (1)

【特許請求の範囲】 1 超音波を検体内に発射し、その反射波を受信
して音響−電気変換して得た受信信号を対数増幅
器により対数増幅し、この対数増幅された信号に
より上記検体の断層情報を得る超音波測定装置に
おいて、 複数個の対数増幅器と、 該対数増幅器のそれぞれの前段に設けられゲイン
が可変される可変利得増幅器と、 該可変利得増幅器のゲインを超音波発射時刻より
時間が経過するにつれて大になるように又は測定
対象に応じて適宜関数型で変化するように可変制
御する制御回路と、 該複数の対数増幅器の各出力信号をそれぞれ加算
する加算器と を備えることを特徴とする超音波測定装置。
[Claims] 1. Ultrasonic waves are emitted into the specimen, the reflected waves are received, and the received signal obtained by acoustic-to-electrical conversion is logarithmically amplified by a logarithmic amplifier, and the logarithmically amplified signal is used to An ultrasonic measurement device for obtaining tomographic information, comprising: a plurality of logarithmic amplifiers; a variable gain amplifier provided before each of the logarithmic amplifiers and whose gain is variable; It includes a control circuit that performs variable control so that it increases as time passes or changes in a functional manner as appropriate depending on the object to be measured, and an adder that adds each output signal of the plurality of logarithmic amplifiers. An ultrasonic measuring device featuring:
JP55187831A 1980-12-29 1980-12-29 Ultrasonic diagnostic apparatus Granted JPS57112851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55187831A JPS57112851A (en) 1980-12-29 1980-12-29 Ultrasonic diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55187831A JPS57112851A (en) 1980-12-29 1980-12-29 Ultrasonic diagnostic apparatus

Publications (2)

Publication Number Publication Date
JPS57112851A JPS57112851A (en) 1982-07-14
JPS6241020B2 true JPS6241020B2 (en) 1987-09-01

Family

ID=16212994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55187831A Granted JPS57112851A (en) 1980-12-29 1980-12-29 Ultrasonic diagnostic apparatus

Country Status (1)

Country Link
JP (1) JPS57112851A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125540A (en) * 1984-07-13 1986-02-04 株式会社島津製作所 Ultrasonic diagnostic apparatus
US5090412A (en) * 1987-08-31 1992-02-25 Yokogawa Medical Systems, Limited Ultrasonic diagnosis apparatus
JP2545188Y2 (en) * 1991-03-22 1997-08-25 大日本印刷株式会社 Breathable packaging bag

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636943A (en) * 1979-09-04 1981-04-10 Philips Corp Method and device for processing receiving signal in ultrasonic echo diagnosing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636943A (en) * 1979-09-04 1981-04-10 Philips Corp Method and device for processing receiving signal in ultrasonic echo diagnosing device

Also Published As

Publication number Publication date
JPS57112851A (en) 1982-07-14

Similar Documents

Publication Publication Date Title
US20020005071A1 (en) Ultrasound imaging method and apparatus based on pulse compression technique using a spread spectrum signal
CN1214901A (en) Ultrasonic image coherent filtering method and device
US4145741A (en) Signal processing arrangements
JPH0246212B2 (en)
US4472972A (en) Ultrasound imaging system employing operator controlled filter for reflected signal attenuation compensation
JPS60116338A (en) Object scanning method and apparatus
JPS6241020B2 (en)
US4289140A (en) Signal processing system
US20070266791A1 (en) Ultrasonic Diagnostic Apparatus
JPH0715457B2 (en) Ultrasonic echography inspection method and device
JPH0247212B2 (en)
EP0577982A2 (en) Ultrasonic imaging system
JPS621725B2 (en)
JP2774288B2 (en) Ultrasound diagnostic equipment
US20230181164A1 (en) Ultrasound observation system, operation method of ultrasound imaging apparatus, and computer-readable recording medium
JP2707448B2 (en) Ultrasound diagnostic equipment
JP3000554B2 (en) Dual beam ultrasonic detector
JP3034809B2 (en) Ultrasound diagnostic equipment
JPS59218144A (en) Ultrasonic diagnostic apparatus
JPH0344773B2 (en)
JPS6053134A (en) Ultrasonic diagnostic apparatus
JPS5886143A (en) Ultrasonic diagnostic apparatus
JPH02177948A (en) Ultrasonic diagnostic device
JPS6218085B2 (en)
JPS6029137A (en) Ultrasonic diagnostic apparatus