JPS62298918A - Magnetic recording medium - Google Patents
Magnetic recording mediumInfo
- Publication number
- JPS62298918A JPS62298918A JP14194186A JP14194186A JPS62298918A JP S62298918 A JPS62298918 A JP S62298918A JP 14194186 A JP14194186 A JP 14194186A JP 14194186 A JP14194186 A JP 14194186A JP S62298918 A JPS62298918 A JP S62298918A
- Authority
- JP
- Japan
- Prior art keywords
- film
- substrate
- concn
- concentration
- people
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 19
- 229910052802 copper Inorganic materials 0.000 claims abstract description 16
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 11
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 239000000654 additive Substances 0.000 abstract 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 abstract 1
- 239000010408 film Substances 0.000 description 73
- 238000001704 evaporation Methods 0.000 description 15
- 230000008020 evaporation Effects 0.000 description 15
- 239000000203 mixture Substances 0.000 description 11
- 230000005415 magnetization Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 238000007738 vacuum evaporation Methods 0.000 description 4
- 229910018062 Ni-M Inorganic materials 0.000 description 3
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 3
- 229910001096 P alloy Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910018104 Ni-P Inorganic materials 0.000 description 1
- 229910018536 Ni—P Inorganic materials 0.000 description 1
- 229920001646 UPILEX Polymers 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Magnetic Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
産業上の利用分野
本発明は高密度記録特性の優れた垂直記録用の薄膜型磁
気記録媒体に関する。Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to a thin-film magnetic recording medium for perpendicular recording with excellent high-density recording characteristics.
従来の技術
従来、短波長記録特性の優れた磁気記録方式として、垂
直記録方式がある。この方式においては垂直磁気異方性
を有する垂直磁気記録媒体が必要となる。このような媒
体に信号を記録すると、残留磁化は媒体の膜面に略垂直
方向を向く・従って信号が短波長になる程媒体内反磁界
は減少し、浸れた再生出力が得られる。垂直磁気記録媒
体として、従来、最も優れていると考えられているもの
は、高分子材料あるいは非磁性金属等の非磁性基板上に
、直接に、あるいはパーマロイ膜等の軟磁性層を介して
、COとCrを主成分とし、垂直磁気異方性を有する磁
性層(以下この磁性層をCO−Cr垂直磁気異方性膜と
呼ぶ)をスパッタ法あるいは真空蒸着法により形成した
ものである。2. Description of the Related Art Conventionally, a perpendicular recording method has been known as a magnetic recording method with excellent short wavelength recording characteristics. This method requires a perpendicular magnetic recording medium having perpendicular magnetic anisotropy. When a signal is recorded on such a medium, the residual magnetization is oriented in a direction substantially perpendicular to the film surface of the medium. Therefore, the shorter the wavelength of the signal, the smaller the demagnetizing field within the medium, and a immersed reproduction output can be obtained. What has traditionally been considered the best perpendicular magnetic recording medium is a perpendicular magnetic recording medium that is formed on a non-magnetic substrate made of a polymeric material or a non-magnetic metal, either directly or through a soft magnetic layer such as a permalloy film. A magnetic layer containing CO and Cr as main components and having perpendicular magnetic anisotropy (hereinafter this magnetic layer will be referred to as a CO--Cr perpendicular magnetic anisotropic film) is formed by sputtering or vacuum evaporation.
スパッタ法や真空蒸着法で満足な磁気特性を有する、G
o−Cr垂直磁気異方性膜を作製する際Qては、基板温
度全200°C程度にする必要がある。G has satisfactory magnetic properties when used with sputtering or vacuum evaporation.
When producing an o-Cr perpendicular magnetic anisotropy film, the total substrate temperature must be about 200°C.
200″C以下でも垂直磁気異方性膜が得られるが、膜
面に垂直方向の保磁力Hc土が小さい。特(て量産に最
適と考えられている真空蒸着法では200・C以下の基
板温度では、N0工は20000以下である。Perpendicular magnetic anisotropy films can be obtained even below 200°C, but the coercive force Hc in the direction perpendicular to the film surface is small. In terms of temperature, NO is less than 20,000.
また磁化機構も、垂直磁気記録媒体として適している磁
化回転のみならず、磁壁移動による割合が多い。その結
果再生出力が低く、またノイズも高くなり、高いS/N
が得られない。一方200℃程度の基板温度でGo−C
r垂直磁気異方性膜を形成すると、H,工は600〜1
0000e程度になり、磁化機構は磁化回転が主になる
。この場合には再生出力が高く、ノイズは低くなり、高
いS/Nが得られる。以上の様に、高いS/Nを有する
Go−Cr垂直磁気異方性膜を作製するためには基板温
度を200℃程度にする必要がある為、現在磁気テープ
やフロッピーディスクに大量かつ安定に使用されている
安価なポリエチレンテレフタレートフィルム等の耐熱性
の悪い基板を使用して垂直磁気異方性膜を量産すること
が困難であったが、我々は、N1と、Cu、P、Alの
少なくとも一種を加えたCo −Or −Ni−M垂直
磁気異方性膜(M=Cu。Furthermore, the magnetization mechanism is not limited to magnetization rotation, which is suitable for a perpendicular magnetic recording medium, but is also largely due to domain wall movement. As a result, the playback output is low, the noise is high, and the S/N is high.
is not obtained. On the other hand, Go-C at a substrate temperature of about 200℃
When a perpendicular magnetic anisotropic film is formed, H, F is 600 to 1
0000e, and the magnetization mechanism is mainly magnetization rotation. In this case, the reproduction output is high, the noise is low, and a high S/N ratio is obtained. As mentioned above, in order to fabricate a Go-Cr perpendicular magnetic anisotropic film with a high S/N ratio, it is necessary to keep the substrate temperature at about 200°C. It has been difficult to mass-produce perpendicular magnetic anisotropic films using substrates with poor heat resistance such as inexpensive polyethylene terephthalate films, but we have developed a method using at least N1, Cu, P, and Al. Co-Or-Ni-M perpendicular magnetic anisotropic film (M=Cu.
P1人l)を用いることにより、100℃以下の基板温
度においても、高いH6□を有する垂直磁気異方性膜を
得ることを既に見い出している。また記録密度120
KFRPIでの再生出力或いはS/Nは高温基板上のC
o−0r垂直磁化膜と変わらない。It has already been found that a perpendicular magnetic anisotropy film having a high H6□ can be obtained even at a substrate temperature of 100° C. or lower by using P1. Also, the recording density is 120
The playback output or S/N of KFRPI is based on the C on the high temperature board.
It is no different from the o-0r perpendicular magnetization film.
発明が解決しようとする問題点
しかしながら、Co−Or−N i−M垂直磁気異方性
膜では高H6,が得られているにもかかわらず、記録密
度が180 KFRPI 程度になると、同じHo□を
有するCo−0r垂直磁化膜に比べて再生出力が低い事
が明らかになった。即ち、記録密度180 KFRP工
以上ではCo−Cr−N1−M垂直磁気異方性膜は再生
出力がGo−Cr垂直磁気異方性膜に比べて劣っていた
。Problems to be Solved by the Invention However, although the Co-Or-Ni-M perpendicular magnetic anisotropic film has a high H6, when the recording density reaches about 180 KFRPI, the same Ho□ It has become clear that the reproduction output is lower than that of a Co-0r perpendicularly magnetized film having . That is, at a recording density of 180 KFRP or higher, the reproduction output of the Co--Cr-N1-M perpendicular magnetic anisotropic film was inferior to that of the Go-Cr perpendicular magnetic anisotropic film.
問題点を解決するための手段
基板上にCo 、 Crを主成分とし、Ni及びCu
。Means for solving the problem A substrate containing Co, Cr as main components, Ni and Cu
.
AI!、Pの少なくとも一元素の添加物及び微量不純物
から成る磁性層を、基板近傍のCu、kl、 Pの濃
度、あるいはN1及びCu、A7.Pの濃度が膜全体の
平均濃度よりも低くなる様に形成する。AI! , P, and a trace amount of impurity, the concentration of Cu, kl, and P in the vicinity of the substrate, or the concentration of N1 and Cu, A7. The film is formed so that the concentration of P is lower than the average concentration of the entire film.
作用
従来のGo−Cr−Ni−M垂直磁気異方性膜(M=C
u、ム1.P )に対し、本発明の構成を有する膜は
、基板としてポリエチレンテレフタレートが使用可能な
100°C以下の基板温度で、記録密度180KFRP
I以上においても高い再生出力を有する。Function Conventional Go-Cr-Ni-M perpendicular magnetic anisotropic film (M=C
u, mu1. P), the film having the structure of the present invention has a recording density of 180KFRP at a substrate temperature of 100°C or less, where polyethylene terephthalate can be used as a substrate.
It has high reproduction output even at I or higher.
実施例
以下に本発明の実施例について説明する。真空槽内を1
X1o−5torr以下に排気した後、真空蒸着法によ
り、膜厚10μmのポリエチレンテレフタレートフィル
ム上に、Go−23重t % Or +Go−20重量
%0r−19重量t4N=−o、s重量%Cu、 Go
−20重量%Ct −19重量%Ni−0,4重量%
Ag、Go −20重量%、Co−20重食チCr −
19重量係y1−o、s重量%Pなる組成の膜を形成し
、これらの膜の静磁気特性、結晶配向性及び記録再生特
性を調べた。膜を形成する際に用いた真空蒸着装置の慨
略を第1図に示す。Examples Examples of the present invention will be described below. Inside the vacuum chamber 1
After evacuation to X1 o -5 torr or less, Go-23 weight t % Or + Go - 20 weight % 0 r -19 weight t4 N = -o, s weight % Cu, Go
-20% by weight Ct -19% by weight Ni - 0.4% by weight
Ag, Go -20% by weight, Co-20 heavy feeding Chi Cr -
Films having a composition of 19% by weight y1-o and s% by weight P were formed, and the magnetostatic properties, crystal orientation, and recording and reproducing properties of these films were investigated. FIG. 1 shows a schematic diagram of the vacuum evaporation apparatus used to form the film.
基板1は円筒状の第一キャン2及び第二キャン3に沿っ
て矢印人の向きに走行する。第一蒸発源4と第一キャン
2の間には第一マスク5が、第二蒸発源6と第二キャン
3との間には第二マスク7が、それぞれ配置されておυ
、蒸発原子はスリットS1及びスリットS2を通って基
板1に付着する。8゜9はそれぞれ基板1の供給ロール
及び巻取りロールである。10は案内ローラである。蒸
着の際には、磁性薄膜の堆積速度’l5ooo人/秒と
し、膜厚2500人とした。蒸発原子中のCr濃度及び
Cu、Ag、P濃度は、蒸着時に粒状のOr及びCu、
人1.C;o−P合金を蒸発源の中に供給することによ
シ調整した。その際、第−蒸発源及び第二蒸発源・に供
給するCu、kl、Go−P合金の量に差をもたせるこ
とにより形成した膜の膜厚方向の組成変化を持たせた。The substrate 1 runs along the cylindrical first can 2 and second can 3 in the direction of the arrow. A first mask 5 is arranged between the first evaporation source 4 and the first can 2, and a second mask 7 is arranged between the second evaporation source 6 and the second can 3.
, the evaporated atoms pass through the slits S1 and S2 and adhere to the substrate 1. Reference numerals 8 and 9 are a supply roll and a take-up roll for the substrate 1, respectively. 10 is a guide roller. During the vapor deposition, the magnetic thin film was deposited at a deposition rate of 1500 people/second and a film thickness of 2500 people/second. The Cr concentration and the Cu, Ag, and P concentration in the evaporated atoms are determined by the concentration of granular Or and Cu during evaporation.
Person 1. C: Prepared by feeding o-P alloy into an evaporation source. At that time, the composition of the formed film was varied in the film thickness direction by varying the amounts of Cu, Kl, and Go-P alloy supplied to the first evaporation source and the second evaporation source.
また第一蒸発源による形成膜厚d1と第二蒸発源による
形成膜厚d2の比はスリットS1及びスリットS2の巾
の比を真空槽外部からの操作で変えることによりdl:
d2=2・23〜1:0の範囲に変化させた。この様に
して得られた膜の膜厚方向に平均された飽和磁化MSが
M s ” 300〜3806 m u / CCの範
囲となった。また蒸着時の第一、第二キャンの表面温度
は40°Cとした。The ratio of the film thickness d1 formed by the first evaporation source to the film thickness d2 formed by the second evaporation source can be determined by changing the ratio of the widths of the slits S1 and slits S2 by operating from outside the vacuum chamber.
It was varied within the range of d2=2.23 to 1:0. The saturation magnetization MS averaged in the film thickness direction of the film thus obtained was in the range of M s "300 to 3806 mu/CC. Also, the surface temperature of the first and second cans during vapor deposition was The temperature was set at 40°C.
蒸着膜の静磁気特性は振動試料型磁力計で測定し、膜面
に垂直方向の保磁力H0工、膜面内の保磁力H67を求
めた。結果を第1表にまとめである。The magnetostatic properties of the deposited film were measured using a vibrating sample magnetometer, and the coercive force H0 in the direction perpendicular to the film surface and the coercive force H67 in the film surface were determined. The results are summarized in Table 1.
結晶配向性はX線回折装置によりΔθ5oを測定し評価
したΔθ5oも第1表にまとめである。なおΔθ、。は
稠密六方構造を有する磁性薄膜の、(002)面に関す
るロッキング曲線の半値巾であシ、C軸の膜面に垂直方
向への配向度合を示す。The crystal orientation was evaluated by measuring Δθ5o using an X-ray diffractometer, and the Δθ5o is also summarized in Table 1. Note that Δθ,. is the half width of the rocking curve with respect to the (002) plane of a magnetic thin film having a dense hexagonal structure, and indicates the degree of orientation of the C axis in the direction perpendicular to the film plane.
一般に、Δθ5oの小さい膜種、C軸が膜面に垂直方向
に良く配向しておシ、垂直磁気異方性エネルギが大きく
、垂直磁気記録媒体として優れている。In general, film types with a small Δθ5o, in which the C axis is well oriented perpendicular to the film surface, have a large perpendicular magnetic anisotropy energy, and are excellent as perpendicular magnetic recording media.
記録再生特性はMn−Znフェライトから成るギャップ
長0.14μmのリング形ヘッドを用いて測定した。1
80KFRPI の信号の再生出力も第1表に示す。な
お、180KFRP I とは1インチ当だシ18o
o00回磁化反転のあるディジタル信号の記録密度であ
る。また再生出力は、Go−23重量%Cr膜を基準、
すなわちOdBとして相対値で示しである。The recording and reproducing characteristics were measured using a ring-shaped head made of Mn-Zn ferrite and having a gap length of 0.14 μm. 1
The reproduction output of the 80KFRPI signal is also shown in Table 1. In addition, 180KFRP I means 1 inch per inch.
This is the recording density of a digital signal with o00 magnetization reversals. In addition, the playback output is based on Go-23 weight% Cr film.
That is, it is expressed as a relative value in OdB.
第1表から、Go−23重量%Cr膜はH6工が100
0eと非常に低く、さらにH67の方がH,工よりも大
きく、磁壁移動が、磁化機構にかなりの割合を占めてい
ることが分る。またco−23重量%Cr膜の180K
FRPIにおける再生出力の絶対値は60 μV 、−
,7mm −T−m 7秒である。From Table 1, it can be seen that the Go-23 wt% Cr film has a H6 coating of 100%
0e, which is very low, and H67 is larger than H,E, indicating that domain wall movement accounts for a considerable proportion of the magnetization mechanism. Also, 180K of co-23 wt% Cr film
The absolute value of the playback output in FRPI is 60 μV, -
, 7mm -Tm 7 seconds.
60μV、−,10−T−m7秒とはヘットノドラック
幅を1 ff 、ヘッドのコイル巻数を1ターン、ヘッ
ドと媒体間の相対速度を1m/秒と換算した場合の出力
が60μvp−pということである。60μV, -,10-T-m 7 seconds means that the output is 60μvp-p when the head nodrak width is 1 ff, the number of turns of the head coil is 1 turn, and the relative speed between the head and the medium is 1 m/s. That's true.
(以 下 余 白)
第−表には第一蒸発源による形成膜厚d、と第二蒸発源
による形成膜厚d2と、各蒸発源により形成された部分
の膜組成を同時に示している。各部分の膜組成はS2又
はS、をOとすることにより、d2又はdlをQとした
時の組成を原子吸光法により求めている。膜全体の組成
も原子吸光法によシ求めている。膜厚は充てん率が1と
仮定して、原子吸光法の結果から得られた膜質量を、構
成元素の組成平均密度で除した値を用いた。(Left below) Table 1 shows the film thickness d formed by the first evaporation source, the film thickness d2 formed by the second evaporation source, and the film composition of the portion formed by each evaporation source. The film composition of each part is determined by atomic absorption spectrometry by setting S2 or S to O and d2 or dl to Q. The composition of the entire film was also determined using atomic absorption spectroscopy. Assuming that the filling factor was 1, the film thickness was calculated by dividing the film mass obtained from the results of atomic absorption spectrometry by the compositional average density of the constituent elements.
第−表のd、:2500人、d2=0の結果から、Ni
及びCu 、人6.pの一種を加える事によシ、H0工
が向上し、180KFRPIでの再生出力がGo−Cr
垂直磁気異方性膜に比べてedB〜7dB向上している
事が分る。しかしながらNi及びCu。From the results of d in Table 1: 2500 people, d2=0, Ni
and Cu, person 6. By adding a type of Go-Cr, the H0 performance is improved and the playback output at 180KFRPI is
It can be seen that there is an improvement of edB to 7 dB compared to the perpendicular magnetic anisotropic film. However, Ni and Cu.
Al、Pを添加したことに伴ない、結晶配向性が乱れ、
Δθ5oは大きくなっている。120 KFRP工程度
の記録再生時にはΔθ5oが100程度以下であれば再
生出力はΔθ5oにほとんど関係がなかったが、記録密
度が更に高くなるとΔθ5oの条件が更にきびしくなる
可能性がある。そこでd1=1000人、d2=150
0人とし、かつ第1層に含まれているCu 、 kl
、 Pの膜中濃度を膜全体の平均組成のA程度とした。Due to the addition of Al and P, the crystal orientation is disturbed,
Δθ5o is large. When recording and reproducing at a 120 KFRP process level, if Δθ5o is about 100 or less, the reproduction output has almost no relation to Δθ5o, but as the recording density becomes higher, the conditions for Δθ5o may become even more severe. So d1=1000 people, d2=150
Cu, kl that is 0 people and included in the first layer
, the concentration of P in the film was set to about A of the average composition of the entire film.
すると、結晶配向性が改善されΔθ5o値は5°以下と
なった。しかしながらこの様な構成ではH6工があまシ
大きくなく、従って再生出力はG o −Or垂直磁気
異方性膜に比べて+1〜+3 dB程度しか増加しない
。次にd1=500人、d2=2000人とした場合の
結果について述べる。先程と同様に第1層中に含まれる
Cu 。As a result, the crystal orientation was improved and the Δθ5o value became 5° or less. However, in such a configuration, the H6 process is not very large, and therefore the reproduction output increases by only about +1 to +3 dB compared to the G o -Or perpendicular magnetic anisotropic film. Next, the results when d1=500 people and d2=2000 people will be described. Cu contained in the first layer as before.
Al、Pの膜中濃度を膜全体の平均組成の恥程度とした
。するとΔθ5oが5°以下で、かつH0工がd1=2
500人、d2=oの場合とほぼ同程度に大きくなった
。そうして再生出力もco−Cr垂直磁気異方性膜に比
べて+9〜+11dB大きくなった。この再生出力はd
1=2500人、d2−○とした場合よりも+3〜+4
dB大きくなっておシ、Δθ5oを5°以下におさえ
た効果を表しているものと思われる。d、=200人、
d2=2300人とした時も、dl:600人、d2=
2600人の場合と同様の結果が得られた。なお、d1
=500人、d2=2000人とした場合でも、第1層
、第2層が共VCGo−23Cr F)場合にばH6工
の向上が見られず、再生出力も、61=2500人、d
2=OのGo−23Or膜と差がなかった。The concentrations of Al and P in the film were defined as the average composition of the entire film. Then, Δθ5o is 5° or less and H0 work is d1=2
500 people, almost the same size as in the case of d2=o. The reproduction output was also increased by +9 to +11 dB compared to the co-Cr perpendicular magnetic anisotropic film. This playback output is d
1 = 2500 people, +3 to +4 than when d2 - ○
This seems to represent the effect of suppressing Δθ5o to 5° or less, which increases by dB. d, = 200 people,
Even when d2 = 2300 people, dl: 600 people, d2 =
Similar results were obtained for 2,600 people. In addition, d1
= 500 people, d2 = 2000 people, if the first and second layers are both VCGo-23Cr F), there is no improvement in H6, and the playback output is 61 = 2500 people, d
There was no difference from the 2=O Go-23Or film.
比較の為に、円筒状キャンの表面温度を200℃として
d1==2500人、d2=○として膜厚12μmのポ
リイミドフィルム上に形成した、膜厚2S00人のG
o −23重量%Cr膜の、第1表と同様の特性を第2
表に示す。For comparison, G of 2S00 people with a film thickness of 2S00 was formed on a polyimide film with a film thickness of 12 μm with the surface temperature of the cylindrical can being 200°C, d1==2500 people, and d2=○.
The same characteristics as in Table 1 of the o-23 wt% Cr film are shown in Table 2.
Shown in the table.
° (以下余 白) 第1表と第2表を比較すると分る様に、Go 。° (Hereafter the margin) As you can see by comparing Tables 1 and 2, Go.
CrKNi及び、Cu、人l、Pの一種を添加した膜に
おいて、基板近傍200〜500人の領域でのCu、人
l、Pの濃度全膜全体での平均濃度のA以下にすると、
ポリエチレンテレフタレートフィルムが使用可能な、4
0℃というキャン表面温度で作製したにもかかわらず、
耐熱性のあるポリイミドフィルム上に、キャン表面温度
200°Cで作製したCo−0r膜とほぼ同様の静磁気
特性及び記録再生性aを、180KFRPIという高い
記録密度においても有する。In a film doped with CrKNi and one of Cu, P, and P, if the concentration of Cu, P, and P in the 200 to 500 region near the substrate is lower than the average concentration of the entire film,
4.Polyethylene terephthalate film can be used.
Even though it was made at a can surface temperature of 0℃,
It has almost the same magnetostatic properties and recording/reproducing properties as a Co-Or film produced on a heat-resistant polyimide film at a can surface temperature of 200°C, even at a high recording density of 180KFRPI.
第1層膜厚が500人を超えると、第2層の組成が高H
c上の組成であっても第1層の影響が支配的になり、膜
全体は低いHc土となる。逆に第1層膜厚が200人未
満では結晶配向性を安定させるのには不十分で膜全体の
Δθ5oは第2層の組成によってほぼ決定された。従っ
てCu、人1.Pの少ない領域の厚みは200〜500
人程度が望ましいと思われる。また、一般に第1層のC
u、Al。If the thickness of the first layer exceeds 500, the composition of the second layer will be high.
Even if the composition is above c, the influence of the first layer becomes dominant, and the entire film becomes a low Hc soil. On the other hand, if the thickness of the first layer was less than 200, it was insufficient to stabilize the crystal orientation, and the Δθ5o of the entire film was almost determined by the composition of the second layer. Therefore Cu, person 1. The thickness of the region with less P is 200 to 500
Approximately one person is considered desirable. In addition, generally the first layer C
u, Al.
P濃度が低い程Δθ5oが下が9、再生出力が増加する
が、その効果が明確になるのは第1層中のCuA4 、
P濃度が膜全体の平均値のIA程度以下になった場合で
あった。The lower the P concentration, the lower Δθ5o is 9, and the reproduction output increases, but this effect becomes clearer when CuA4 in the first layer,
This was a case in which the P concentration was lower than about IA, which is the average value of the entire film.
第1層中のCu、人β、P濃度のみならず、Ni濃度を
も膜全体の平均値のA程度にした場合の、第1表と同様
の特性を第3表に示す。膜厚方向にNi濃度の勾配を持
たせることによ!1lGo−Cr−Ni−人l 、 G
o−Cr−Ni−Pの場合にも第1表に比べて+2〜+
3dB再生出力が更に向上した(以下余 白)
配向性が向上し、再生出力が増加すること、また膜表面
近傍でのCr濃度を膜平均のCr濃度より高くすれば耐
蝕性が改善されるという効果が見られる。Table 3 shows the same characteristics as in Table 1 when not only the Cu, β, and P concentrations in the first layer but also the Ni concentration were set to about A, which is the average value of the entire film. By creating a Ni concentration gradient in the film thickness direction! 1lGo-Cr-Ni-personl, G
Also in the case of o-Cr-Ni-P, +2 to + compared to Table 1.
The 3 dB playback output was further improved (see the margin below). It is said that the orientation is improved and the playback output is increased, and that corrosion resistance is improved by making the Cr concentration near the film surface higher than the average Cr concentration of the film. You can see the effect.
以上においては、ポリエチレンテレフタレートフィルム
あるいはポリイミドフィルムを基板として用いた例につ
いて説明したが、これら以外の高分子フィルムあるいは
非磁性金属基板を用いても結果は変わらない。また以上
の説明においては2つのキャンと2つの蒸発源を用いて
膜組成を不連続に変えて膜を作製した場合について述べ
たが、1つのキャンで2元蒸着法によって膜厚方向のC
u。Although the above example uses a polyethylene terephthalate film or a polyimide film as a substrate, the results will not change even if a polymer film other than these or a nonmagnetic metal substrate is used. In addition, in the above explanation, we have described the case where the film was fabricated by changing the film composition discontinuously using two cans and two evaporation sources.
u.
AI!、P、Ni、Cr濃度を連続的に変えた場合、あ
るいはCu、ムl、Co−Pの粒の供給位置を蒸発源中
心に対して偏在させることによυ膜厚方向のCu、ムl
、P濃度を連続的に変えても同様の結果が得られた。AI! , P, Ni, and Cr concentrations, or by unevenly distributing the supply position of Cu, Mul, and Co-P grains with respect to the center of the evaporation source.
, similar results were obtained by continuously changing the P concentration.
発明の効果
本発明によれば、ポリエチレンテレフタレートフィルム
等の耐熱性の悪い基板を用いても、短波長領域において
高い再生出力を有する垂直記録用の薄膜型磁気記録媒体
が得られる。Effects of the Invention According to the present invention, a thin film magnetic recording medium for perpendicular recording having high reproduction output in the short wavelength region can be obtained even if a substrate with poor heat resistance such as a polyethylene terephthalate film is used.
図は真空蒸着装置の内部構造の概略図である。
1・・・・・・基板、2・・・・・・第一キャン、3・
・・・・・第二キャン、4・・・・・・第一蒸発源、5
・・・・・・第一マスク、6・・・・・・第二蒸発源、
7・・・・・・第二マスク、8・・・・・・供給ロール
、9・・・・・・巻取リロール、Sl、S2・・・・・
・スリット。The figure is a schematic diagram of the internal structure of the vacuum evaporation apparatus. 1... Board, 2... First can, 3.
...Second can, 4...First evaporation source, 5
...First mask, 6...Second evaporation source,
7...Second mask, 8...Supply roll, 9...Take-up reroll, Sl, S2...
·slit.
Claims (2)
、P、Alの少なくとも一元素の添加物及び微量不純物
から成る磁性層が形成され、前記磁性層は基板近傍のC
u又はP又はAl、あるいはNiと、Cu又はP又はA
lの濃度が膜全体の平均濃度よりも低いことを特徴とす
る磁気記録媒体。(1) Co and Cr are the main components on the substrate, and Ni and Cu
, P, Al, and a small amount of impurity, and the magnetic layer is made of carbon near the substrate.
u or P or Al or Ni and Cu or P or A
A magnetic recording medium characterized in that the concentration of l is lower than the average concentration of the entire film.
Cu又はP又はAlあるいはNiと、Cu又はP又はA
lの平均濃度が、膜全体での平均濃度の1/2以下であ
ることを特徴とする特許請求の範囲第1項記載の磁気記
録媒体。(2) Cu or P or Al or Ni and Cu or P or A within 500 Å from the interface between the substrate and the magnetic layer.
2. The magnetic recording medium according to claim 1, wherein the average concentration of l is 1/2 or less of the average concentration of the entire film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14194186A JPH0766512B2 (en) | 1986-06-18 | 1986-06-18 | Magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14194186A JPH0766512B2 (en) | 1986-06-18 | 1986-06-18 | Magnetic recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62298918A true JPS62298918A (en) | 1987-12-26 |
JPH0766512B2 JPH0766512B2 (en) | 1995-07-19 |
Family
ID=15303698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14194186A Expired - Fee Related JPH0766512B2 (en) | 1986-06-18 | 1986-06-18 | Magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0766512B2 (en) |
-
1986
- 1986-06-18 JP JP14194186A patent/JPH0766512B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0766512B2 (en) | 1995-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5939202A (en) | Magnetic recording medium and method for manufacturing the same | |
KR910007774B1 (en) | Magnetic recording medium | |
US4521481A (en) | Magnetic recording medium | |
JPH05342553A (en) | Magnetic recording medium and manufacturing method thereof | |
US4536443A (en) | Magnetic recording medium | |
JPS59140629A (en) | Vertical magnetic recording medium and its production | |
US5413868A (en) | Perpendicular magnetic recording medium comprising a magnetic thin film of cobalt, palladium, chromium and oxygen | |
US5496620A (en) | Magnetic recording medium | |
JPS62298918A (en) | Magnetic recording medium | |
JPH04221418A (en) | Magnetic recording medium | |
JPH071535B2 (en) | Magnetic recording medium | |
JP2988188B2 (en) | Magnetic recording medium and method of manufacturing the same | |
JPH0311531B2 (en) | ||
JPS60195737A (en) | Magnetic recording body and its manufacture | |
JPS60231911A (en) | Magnetic recording medium | |
EP0247334B1 (en) | Magnetic recording medium | |
JPH0612649A (en) | Magnetic recording medium | |
JPS62232722A (en) | Magnetic recording medium | |
JPH0337724B2 (en) | ||
JPH06111272A (en) | Magnetic recording medium and its manufacture | |
JPH0656650B2 (en) | Magnetic recording medium | |
JPS5816512A (en) | Magnetic recording medium | |
JPS63815A (en) | Magnetic recording medium | |
JPH0512646A (en) | Perpendicular magnetic recording medium | |
JPH04229411A (en) | Magnetic recording medium and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |