[go: up one dir, main page]

JPH0311531B2 - - Google Patents

Info

Publication number
JPH0311531B2
JPH0311531B2 JP58036652A JP3665283A JPH0311531B2 JP H0311531 B2 JPH0311531 B2 JP H0311531B2 JP 58036652 A JP58036652 A JP 58036652A JP 3665283 A JP3665283 A JP 3665283A JP H0311531 B2 JPH0311531 B2 JP H0311531B2
Authority
JP
Japan
Prior art keywords
film
magnetic
base material
composition
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58036652A
Other languages
Japanese (ja)
Other versions
JPS59163810A (en
Inventor
Kyuzo Nakamura
Yoshifumi Oota
Hiroki Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP3665283A priority Critical patent/JPS59163810A/en
Priority to DE8484301530T priority patent/DE3465647D1/en
Priority to EP84301530A priority patent/EP0122030B1/en
Publication of JPS59163810A publication Critical patent/JPS59163810A/en
Priority to US07/412,535 priority patent/US5024854A/en
Publication of JPH0311531B2 publication Critical patent/JPH0311531B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 本発明は、薄膜面に磁化が垂直に立つ磁気材料
の膜即ち垂直磁化膜を有する磁気記録体とその製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic recording body having a film of a magnetic material whose magnetization is perpendicular to the thin film surface, that is, a perpendicularly magnetized film, and a method for manufacturing the same.

最近、高密度記録の可能な新しい磁気記録方式
として、垂直磁気記録方式と光磁気記録方式が注
目され、研究されているが、これらの方式に用い
られる媒体は、垂直方向に磁気異方性を備え且つ
Ku⊥≧2πMs2或はHc⊥>Hc、Br⊥>Brの
条件を満足したいわゆる垂直磁化膜を使用する必
要がある。
Recently, perpendicular magnetic recording and magneto-optical recording have been attracting attention and research as new magnetic recording methods capable of high-density recording, but the media used in these methods have magnetic anisotropy in the perpendicular direction. Be prepared and
It is necessary to use a so-called perpendicular magnetization film that satisfies the conditions Ku⊥≧2πMs 2 or Hc⊥>Hc, Br⊥>Br.

従来、知られているように、CoはHCP構造の
C軸方向に大きな結晶磁気異方性を有しており、
この性質を利用して垂直磁化膜を得ようとする
と、膜面に対してC軸がほとんど垂直になるよ
うに結晶配向していること、結晶磁気異方性
Kuが薄膜の垂直方向の反磁界2πMs2より大きい
ことの2つの条件を満足させる必要がある。しか
し、Co薄膜では、飽和磁化Msの値が大きいた
め、前記の条件が満たされておらず、垂直磁化
膜とはならない。
As is conventionally known, Co has a large magnetocrystalline anisotropy in the C-axis direction of the HCP structure.
If you try to obtain a perpendicularly magnetized film by utilizing this property, you will find that the crystal orientation is such that the C-axis is almost perpendicular to the film surface, and that the magnetocrystalline anisotropy
It is necessary to satisfy two conditions: Ku is larger than the demagnetizing field 2πMs 2 in the perpendicular direction of the thin film. However, since the Co thin film has a large value of saturation magnetization Ms, the above condition is not satisfied and the film cannot be a perpendicularly magnetized film.

一方、従来、垂直磁化膜の有力なものの一つと
して、Co−Cr系薄膜があり、スパツタ法と蒸着
法により作成されている。しかし、スパツタ法で
は析出速度が小さいため、フロツピーデイスクや
磁気テープのような大量に使用する媒体には量産
性の点で問題がある。又、蒸着法では、CoとCr
の蒸気圧が大きく異なるため、長期に亘る安定し
たCr組成の制御が困難であり、而も、基材を200
〜300℃に加熱した状態で蒸着することにより初
めて垂直磁気特性が得られ、基材を未加熱の常温
では垂直磁化膜が得られず、従つて、基材として
耐熱性のものを使用しなければならない等の不都
合をもたらす。
On the other hand, one of the most popular perpendicular magnetization films has been a Co--Cr thin film, which has been produced by sputtering and vapor deposition. However, since the sputtering method has a low deposition rate, there are problems in terms of mass production for media that are used in large quantities, such as floppy disks and magnetic tapes. In addition, in the vapor deposition method, Co and Cr
It is difficult to control the stable Cr composition over a long period of time because the vapor pressure of
Perpendicular magnetic properties can only be obtained by vapor deposition while heated to ~300°C, and a perpendicular magnetic film cannot be obtained at room temperature without heating the base material. Therefore, a heat-resistant material must be used as the base material. This may cause inconveniences such as failure.

本発明は、かかる上記の諸点に鑑み、新しい形
式のCo−Ni−Oの組成から成る垂直磁化膜をも
つ垂直磁気記録体を提供するもので、非磁性基材
面に、直接、又は軟磁性薄膜層を介してCoxNiy
Oz(茲でx、y、zはat%で、0<y<40、15<
z<50、x+y+z=100)で表わされるCo−Ni
−0組成で、結晶構造が垂直方向にHCP構造の
C軸を配向した柱状粒子構造で且つ結晶磁気異方
性ku⊥が垂直方向の反磁界2πMs2以上に大きい
膜を形成して成る。
In view of the above-mentioned points, the present invention provides a perpendicular magnetic recording body having a perpendicular magnetization film made of a new type of composition of Co-Ni-O, in which a perpendicular magnetization film is applied directly to the surface of a non-magnetic base material, or Co x Ni y through thin film layer
O z (x, y, z are at%, 0<y<40, 15<
Co-Ni expressed as z<50, x+y+z=100)
-0 composition, the crystal structure has a columnar grain structure with the C axis of the HCP structure oriented in the vertical direction, and the crystal magnetic anisotropy ku⊥ is larger than the demagnetizing field 2πMs 2 in the vertical direction.

更に、第2発明は、上記の新規な垂直磁気記録
体の製造法を提供するもので、非磁性基材面に、
又は予めその面に形成した軟磁性薄膜層の面に、
実質上垂直に入射するようにCo及びNi原子を蒸
着させると同時にO2ガスを導入してCoxNiyOz(茲
でx、y、zはat%で、0<y<40、15<z<
50、x+y+z=100)で表わされるCo−Ni−0
組成で、結晶構造が垂直方向にHCP構造のC軸
を配向した柱状粒子構造で且つ結晶磁気異方性
ku⊥が垂直方向の反磁界2πMs2以上に大きい膜
を形成することを特徴とする。
Furthermore, a second invention provides a method for manufacturing the above-mentioned novel perpendicular magnetic recording body, in which a non-magnetic substrate surface is coated with:
Or on the surface of a soft magnetic thin film layer previously formed on that surface,
Co and Ni atoms are evaporated so as to be incident substantially perpendicularly, and at the same time O 2 gas is introduced to form Co x Ni y O z (where x, y, and z are at%, 0<y<40, 15 <z<
50, x+y+z=100)
In terms of composition, the crystal structure has a columnar grain structure with the C axis of the HCP structure oriented in the vertical direction, and has magnetic crystalline anisotropy.
It is characterized by forming a film in which ku⊥ is larger than the perpendicular demagnetizing field 2πMs 2 .

次に本発明の実施例につき説明する。 Next, examples of the present invention will be described.

第1図は、本発明を実施する真空蒸着装置を示
し、真空ポンプへ一側に於て接続された容器1内
に、回転冷却キヤン2とその直下に電子ビーム蒸
発源3を設け、その上部両側に巻解しローラー4
と巻取りローラー5とを配設し、該ローラー4に
巻きつけた非磁性基材、例えば、ロール状の
PETテープ基材aを、冷却キヤン2の周面をそ
の回動と共に回動走行しローラー5に巻き取られ
るようにした。本発明によれば、容器1内に酸素
を導入するための供給管6を備える。図示の例で
は、これを走行するテープa面の近傍で開口する
長手のものとした。7は、蒸発源直上に対向する
冷却キヤン2の最下面を残して水平に配置した棒
着板を示し、これにより蒸発源3からの蒸発Co
原子及びNi原子がテープ基材a面に対して実質
上垂直に入射蒸着するようにした。
FIG. 1 shows a vacuum evaporation apparatus for carrying out the present invention, in which a rotary cooling can 2 and an electron beam evaporation source 3 are provided directly below the container 1, which is connected to a vacuum pump on one side, and an electron beam evaporation source 3 is provided above the container 1. Unwinding roller 4 on both sides
and a take-up roller 5, and a non-magnetic base material, for example, a roll-shaped material, is wound around the roller 4.
The PET tape base material a was rotated around the circumferential surface of the cooling can 2 along with the rotation of the cooling can 2 so as to be wound around the roller 5. According to the invention, a supply pipe 6 for introducing oxygen into the container 1 is provided. In the illustrated example, this is a long one that opens near the a side of the running tape. 7 shows a rod-mounted plate placed horizontally leaving the bottom surface of the cooling can 2 facing directly above the evaporation source, thereby preventing the evaporation of Co from the evaporation source 3.
The atoms and Ni atoms were incidentally deposited substantially perpendicularly to the a-plane of the tape substrate.

本装置を使用し、先ず1×10-5トール以下まで
容器1内を排気した後、蒸発材料b即ちCo−Ni
合金又はCoとNiの所定割合で混ぜた金属を、電
子ビーム加熱により一定速度で蒸発させ、一方、
該供給管6よりO2ガスを導入させて一定速度で
走行するテープ基材a面に垂直蒸着を行ない、
Co−Ni−Oの組成から成る蒸着膜を得るが、こ
の場合、O2ガスの導入を種々の分圧になるよう
に、O2ガス導入量を種々変化させて、或は、蒸
発すべきCoとNiの割合を色々に変化させて、各
種組成割合のCo−Ni−Oの蒸着膜をもつ磁気記
録体を製造した。その膜厚は、テープ基材の走行
速度を変化させる等で1000Å〜10000Åの範囲と
した。かくして得られたCo−Ni−Oの三元成分
の組成割合を異にする各種の磁性膜とこれらの磁
気特性との関係を検べた。その結果は、第2図、
第3図、第4図に示す通りであつた。第2図から
明らかなように、O成分が増加するとともに垂直
方向の保磁力Hc⊥と平行方向の保磁力Hcとの
比Hc⊥/Hcが増加し、O成分15at%以上の図
中斜線で囲まれた領域でHc⊥/Hc>1とな
る。残留磁束密度についても、第3図に示すよう
に、O成分の増大とともに増大し、O成分15at%
以上の図中斜線で囲まれた領域でBr⊥/Br>
1となる。しかし、O成分が50at%以上では、第
4図に見られるように、すべて飽和磁化が零とな
る。以上の結果から、CoxNiyOz(茲でx、y、z
はat%で、0<y<40、15<z<50、x+y+z
=100)の領域において垂直磁化膜が得られるこ
とが分かる。第5図は、Co63Ni7O30の組成から
成る本発明の代表的な垂直磁化膜のヒステリシス
曲線であり、完全な垂直磁化膜になつていること
が分かる。この第5図示の場合、真空溶解により
CoとNiの組成比を9:1に作成したCo−Ni合金
を蒸発材料として使用し、真空に排気した容器内
にO2ガスを150SCCM流してO2導入分圧を6×
10-5Torrに調整したのち、該蒸発材料を12KWの
電子ビーム蒸発源で45000Å/minの蒸発速度で
蒸発させ、送り速度1.0m/minの送り速度で送
られる水冷した12μm厚のPETフイルムの基材に
1800Åで実質上垂直に蒸発物を入射蒸着させて垂
直磁化膜を作成した。このように、O組成zは15
〜50at%の範囲でなくてはならず、Ni組成yが
0〜40at%、Co組成xが残りの範囲で垂直磁化
膜が得られる。Ni組成yが40at%以上では、析
出金属粒子の結晶構造がFCC構造となつてしま
い、結晶磁気異方性が極めて低下し、垂直磁化膜
が得られなくなる。又、Niを添加した本発明垂
直磁化膜は、耐蝕性がすぐれるという特徴が付加
される。又、かかる本発明の垂直磁化膜では、垂
直方向の保磁力Hc⊥の値は400〜1000Oe程度で、
垂直磁気記録体としては最も良好な値である。
Using this device, first evacuate the inside of the container 1 to below 1×10 -5 Torr, and then
An alloy or a metal mixed with a predetermined ratio of Co and Ni is evaporated at a constant rate by electron beam heating, while
By introducing O 2 gas through the supply pipe 6, vertical vapor deposition is performed on the a side of the tape base material running at a constant speed,
A deposited film having a composition of Co-Ni-O is obtained, but in this case, the amount of O 2 gas introduced is varied so as to have various partial pressures, or the amount of O 2 gas to be evaporated is changed. Magnetic recording bodies having deposited Co--Ni--O films with various composition ratios were manufactured by varying the ratio of Co and Ni. The film thickness was set in the range of 1000 Å to 10000 Å by varying the running speed of the tape base material. The relationship between various magnetic films having different composition ratios of the Co--Ni--O ternary components obtained in this manner and their magnetic properties was examined. The results are shown in Figure 2.
It was as shown in FIGS. 3 and 4. As is clear from Figure 2, as the O component increases, the ratio Hc⊥/Hc of the coercive force Hc⊥ in the vertical direction to the coercive force Hc in the parallel direction increases, and the diagonal lines in the figure indicate the O content of 15 at% or more. In the enclosed area, Hc⊥/Hc>1. The residual magnetic flux density also increases as the O component increases, as shown in Figure 3.
In the area surrounded by diagonal lines in the above figure, Br⊥/Br>
It becomes 1. However, when the O component is 50 at% or more, the saturation magnetization becomes zero in all cases, as shown in FIG. From the above results, Co x Ni y O z (x, y, z
is at%, 0<y<40, 15<z<50, x+y+z
It can be seen that a perpendicularly magnetized film can be obtained in the region of =100). FIG. 5 shows a hysteresis curve of a typical perpendicular magnetization film of the present invention having a composition of Co 63 Ni 7 O 30 , and it can be seen that the film is a perfect perpendicular magnetization film. In the case shown in Figure 5, by vacuum melting
A Co-Ni alloy made with a composition ratio of Co and Ni of 9:1 was used as the evaporation material, and 150 SCCM of O 2 gas was flowed into the evacuated container to increase the O 2 introduction partial pressure to 6 ×
After adjusting the temperature to 10 -5 Torr, the evaporated material was evaporated at an evaporation rate of 45000 Å/min using a 12 KW electron beam evaporation source, and a water-cooled 12 μm thick PET film was fed at a feed rate of 1.0 m/min. to the base material
A perpendicularly magnetized film was fabricated by substantially vertically incident evaporation deposition at 1800 Å. Thus, the O composition z is 15
It must be in the range of ~50 at%, and a perpendicular magnetization film can be obtained when the Ni composition y is in the range of 0 to 40 at% and the Co composition x is in the remaining range. If the Ni composition y is 40 at% or more, the crystal structure of the precipitated metal particles becomes an FCC structure, the crystal magnetic anisotropy is extremely reduced, and a perpendicularly magnetized film cannot be obtained. Further, the perpendicular magnetization film of the present invention to which Ni is added has an additional feature of excellent corrosion resistance. Further, in the perpendicularly magnetized film of the present invention, the value of the perpendicular coercive force Hc⊥ is about 400 to 1000 Oe,
This is the best value for a perpendicular magnetic recording medium.

尚、Co−Niの蒸発速度を変化させるときは、
上記した組成領域の膜を得るには、O2ガス導入
量も変化させるを要する。この関係は、基材への
Co及びNi原子とO原子の入射頻度にほぼ比例し
ているので、Co−Niの蒸発量が増加するとO2
圧も増加させる必要がある。
In addition, when changing the evaporation rate of Co-Ni,
In order to obtain a film having the composition range described above, it is necessary to change the amount of O 2 gas introduced. This relationship is based on
Since it is approximately proportional to the incidence frequency of Co and Ni atoms and O atoms, when the amount of evaporation of Co-Ni increases, it is necessary to increase the O 2 partial pressure as well.

本発明によれば、基材を加熱する必要がなく、
水冷キヤンで積極的に冷却し或は常温で未加熱の
ままでも、垂直磁化膜が得られ、従来のCo−Cr
と垂直磁化膜の製法のように、基材を200〜300℃
に加熱する必要があるものに比し、有利であり、
基材として耐熱性の高価なポリイミドフイルム等
の材料を使用する必要がなく、安価なPETテー
プなどのプラスチツクフイルムの使用が可能とな
る等、器材の材料は自由に選択使用できる。又、
基材を加熱しても目的とする本発明垂直磁化膜が
得られる。
According to the present invention, there is no need to heat the base material,
A perpendicularly magnetized film can be obtained by actively cooling with a water-cooling can or by leaving it unheated at room temperature.
As in the manufacturing method of perpendicular magnetization film, the base material is heated to 200 to 300℃.
This is advantageous compared to those that require heating to
There is no need to use expensive heat-resistant materials such as polyimide film as the base material, and it is possible to use inexpensive plastic films such as PET tape, so the materials for the equipment can be freely selected. or,
Even if the base material is heated, the desired perpendicularly magnetized film of the present invention can be obtained.

又、本発明によれば、CoとNiの蒸気圧が殆ど
等しいため、予め所望の成分のCo−Ni合金にし
ておいて、一つの蒸発源から蒸発させても、蒸着
膜の成分は殆ど変化しないで所定の割合のCo−
Ni蒸着が得られるので、O2ガス導入量を所定の
一定量に保てば、極めて長時間に亘り所定の均一
な本発明垂直磁化膜を製造でき、従来のCo−Cr
の蒸気圧の著しく異なる成分を蒸発させるその垂
直磁化膜の製造のように、不均一な成分組成の膜
が生ずる欠点が解消される。又、本発明の垂直磁
化膜は、PCT基板上やフロツピーデイスク基板
上に形成しても、カーリングを起こさないので、
カーリングが非常に激しく生成するCo−Cr系垂
直磁気記録体に比し極めてその製造が容易で且つ
良好な製品が得られる。
Furthermore, according to the present invention, since the vapor pressures of Co and Ni are almost equal, even if a Co-Ni alloy with the desired composition is made in advance and evaporated from a single evaporation source, the composition of the deposited film will hardly change. A predetermined percentage of Co−
Since Ni vapor deposition can be obtained, if the amount of O 2 gas introduced is kept at a predetermined constant amount, a perpendicularly magnetized film of the present invention with a predetermined uniformity can be produced for an extremely long time, and compared to the conventional Co-Cr
The drawbacks of producing films with non-uniform component compositions, such as the production of perpendicularly magnetized films that evaporate components with significantly different vapor pressures, are eliminated. Furthermore, the perpendicular magnetization film of the present invention does not cause curling even when formed on a PCT substrate or a floppy disk substrate.
Compared to Co--Cr based perpendicular magnetic recording bodies, which cause very severe curling, this method is extremely easy to manufacture and provides a good product.

本発明のCo−Ni−O薄膜が垂直磁化特性を発
生する原因は充分明らかでないが次のように考え
られる。
The reason why the Co--Ni--O thin film of the present invention exhibits perpendicular magnetization characteristics is not fully clear, but it is thought to be as follows.

即ち、基材に対して垂直にCo及びNi原子を入
射させて蒸着すると、前述したように、垂直方向
にHCP構造のC軸を配向した柱状粒子構造の薄
膜が作成される。この時、真空容器内に同時に
O2ガスを導入すると、蒸着Co及びNi原子の一部
が酸化されてCoO、NiO或はこれに近い酸化物を
同時に析出し、Co−Ni粒子の周囲を、その非強
磁性酸化物で覆つた膜構造になつていると考えら
れる。従つて、このCo−Ni柱状粒子は、結晶磁
気異方性の他に形状磁気異方性も加わつており、
垂直磁気異方性を向上させている。以上のような
一部酸化の膜構造になると、膜全体の平均の飽和
酸化の値は低下するので、Ku⊥≧2πMs2という
条件が満足され、垂直磁化特性が得られていると
考えられる。又、Co−Ni柱状粒子の粒径は、数
百Å〜数千Å程度と考えられ、金属粒子状になつ
ているので高い保磁力も得られる。
That is, when Co and Ni atoms are incident perpendicularly to the base material and deposited, a thin film having a columnar grain structure in which the C axis of the HCP structure is oriented in the vertical direction is created, as described above. At this time, simultaneously inside the vacuum container
When O 2 gas is introduced, some of the deposited Co and Ni atoms are oxidized and CoO, NiO, or similar oxides are precipitated simultaneously, and the surroundings of the Co-Ni particles are covered with the non-ferromagnetic oxide. It is thought that it has an ivy membrane structure. Therefore, this Co-Ni columnar particle has shape magnetic anisotropy in addition to crystal magnetic anisotropy.
Improved perpendicular magnetic anisotropy. When the film structure is partially oxidized as described above, the average saturation oxidation value of the entire film decreases, so it is thought that the condition Ku⊥≧2πMs 2 is satisfied and perpendicular magnetization characteristics are obtained. Further, the particle size of the Co--Ni columnar particles is thought to be approximately several hundred Å to several thousand Å, and since they are in the form of metal particles, a high coercive force can be obtained.

本発明の上記所定のCo−Ni−O垂直磁化膜に
は、他の元素を微量に混入することは差支えな
い。又、Coに固溶する元素でHCP構造に害を与
えない元素、例えばCr、V、Mo、W、Rh、Ti、
Re等の微量の混入も差支えない。
A trace amount of other elements may be mixed into the above-mentioned predetermined Co--Ni--O perpendicular magnetization film of the present invention. In addition, elements that dissolve in Co and do not harm the HCP structure, such as Cr, V, Mo, W, Rh, Ti,
There is no problem with the inclusion of trace amounts of Re, etc.

又、垂直磁気記録方式においては、垂直磁化膜
と非磁性基材面との間にパーマロイ、Fe、Co、
Co−Zr非晶質膜等の比較的軟質磁性を示し、飽
和磁化の大きい磁性体の薄膜を介在させると、記
録電流を小さくでき、また再生出力を増大できる
ので、本発明によれば、予め、非磁性基材面に軟
磁性薄膜層を形成した後、その薄膜層の上面に、
例えば上記の実施例に従い、所定のCo−Ni−O
組成の垂直磁化膜を形成することにより、該軟磁
性薄膜層を介入した本発明垂直磁気記録体を製造
することができる。
In the perpendicular magnetic recording method, permalloy, Fe, Co,
According to the present invention, if a thin film of a magnetic material exhibiting relatively soft magnetism and high saturation magnetization such as a Co-Zr amorphous film is interposed, the recording current can be reduced and the reproduction output can be increased. , after forming a soft magnetic thin film layer on the non-magnetic base material surface, on the top surface of the thin film layer,
For example, according to the example above, a given Co-Ni-O
By forming a perpendicularly magnetized film having the same composition, the perpendicular magnetic recording body of the present invention including the soft magnetic thin film layer can be manufactured.

又、本発明は、フロツピーデイスクに応用する
場合、その基材の片面又は両面に、直接又は該軟
磁性薄膜層の介在した前記所定のCo−Ni−O組
成の垂直磁化膜を形成した本発明の垂直磁気記録
体を製造するようにしてもよい。
When applied to a floppy disk, the present invention also provides a perpendicular magnetization film having the predetermined Co-Ni-O composition formed on one or both sides of the base material, either directly or with the soft magnetic thin film layer interposed therebetween. The perpendicular magnetic recording body of the invention may also be manufactured.

このように、本発明によるときは、CoxNiyOz
(茲でx、y、zはat%で、0<y<40、15<z
<50、x+y+z=100)で表わされるCo−Ni−
0組成で、結晶構造が垂直方向にHCP構造のC
軸を配向した柱状粒子構造で且つ結晶磁気異方性
ku⊥が垂直方向の反磁界2πMs2以上に大きい膜
を形成したので、良好な垂直磁化膜をもつ垂直磁
気記録体が得られ、その製造法は、非磁性基材面
に、又は予めその面に形成した軟磁性薄膜層の面
に、実質上垂直に入射するようにCo及びNi原子
を蒸着させると同時にO2ガスを導入して上記所
定のCoxNiyOz組成で、結晶構造が垂直方向に
HCP構造のC軸を配向した柱状粒子構造で且つ
結晶磁気異方性Ku⊥が垂直方向の反磁界2πMs2
以上に大きい膜を形成するようにしたので、従来
のCo−Cr垂直磁化膜の製造と異なり、均一な垂
直磁化膜を長時間に亘り作成でき能率良く大量生
産ができ、又、基材を加熱する必要がなく、常温
で安価な基材を使用しても良好な垂直磁化膜が得
られる等の効果を有する。
Thus, according to the present invention, Co x Ni y O z
(x, y, z are at%, 0<y<40, 15<z
<50, x+y+z=100)
0 composition, the crystal structure is vertically HCP structure C
Columnar grain structure with oriented axis and crystal magnetic anisotropy
Since we have formed a film with ku⊥ larger than the perpendicular demagnetizing field 2πMs 2 , we can obtain a perpendicular magnetic recording medium with a good perpendicular magnetization film. Co and Ni atoms are deposited substantially perpendicularly onto the surface of the soft magnetic thin film layer formed on the surface of the soft magnetic thin film layer. vertically
It has a columnar grain structure with the C axis of the HCP structure oriented, and the magnetocrystalline anisotropy Ku⊥ is perpendicular to the demagnetizing field 2πMs 2
Unlike the conventional production of Co-Cr perpendicularly magnetized films, we have formed a film that is larger than the above, so a uniform perpendicularly magnetized film can be produced over a long period of time, allowing efficient mass production, and also by heating the base material. There is no need to do this, and there is an effect that a good perpendicular magnetization film can be obtained even if an inexpensive base material is used at room temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の製造法を実施する装置の1
例の截断側面図、第2図、第3図及び第4図は
夫々各種Co−Ni−O組成と磁気特性との関係を
示す図で、第2図はHc⊥/Hcの値を表わす
図、第3図はBr⊥/Brの値を表わす図、第4
図は飽和磁化Msの値を表わす図、第5図は本発
明の垂直磁化膜の1例のヒステリシス曲線図を示
す。 1……容器、a……テープ基材、3……蒸発
源、b……蒸発材料Co、Ni、4,5……ローラ
ー、6……酸素ガス供給管、7……防着板。
FIG. 1 shows one of the apparatuses for carrying out the manufacturing method of the present invention.
The cross-sectional side view of the example, Figures 2, 3, and 4 are diagrams showing the relationship between various Co-Ni-O compositions and magnetic properties, respectively, and Figure 2 is a diagram showing the value of Hc⊥/Hc. , Figure 3 shows the value of Br⊥/Br, Figure 4 shows the value of Br⊥/Br.
The figure shows the value of saturation magnetization Ms, and FIG. 5 shows a hysteresis curve diagram of an example of the perpendicular magnetization film of the present invention. DESCRIPTION OF SYMBOLS 1... Container, a... Tape base material, 3... Evaporation source, b... Evaporation material Co, Ni, 4, 5... Roller, 6... Oxygen gas supply pipe, 7... Anti-adhesion plate.

Claims (1)

【特許請求の範囲】 1 非磁性基材面に、直接、又は軟磁性薄膜層を
介してCoxNiyOz(茲でx、y、zはat%で、0<
y<40、15<z<50、x+y+z=100)で表わ
されるCo−Ni−0組成で、結晶構造が垂直方向
にHCP構造のC軸を配向した柱状粒子構造で且
つ結晶磁気異方性ku⊥が垂直方向の反磁界
2πMs2以上に大きい膜を形成して成る垂直磁気記
録体。 2 非磁性基材面に、又は予めその面に形成した
軟磁性薄膜層の面に、実質上垂直に入射するよう
にCo及びNi原子を蒸着させると同時にO2ガスを
導入してCoxNiyOz(茲でx、y、zはat%で、0
<y<40、15<z<50、x+y+z=100)で表
わされるCo−Ni−0組成で、結晶構造が垂直方
向にHCP構造のC軸を配向した柱状粒子構造で
且つ結晶磁気異方性ku⊥が垂直方向の反磁界
2πMs2以上に大きい膜を形成することを特徴とす
る垂直磁気記録体の製造法。
[Claims] 1 Co x Ni y O z (where x, y, and z are at%, 0<
y<40, 15<z<50, x+y+z=100), the crystal structure has a columnar grain structure with the C axis of the HCP structure oriented in the vertical direction, and the crystalline magnetic anisotropy ku ⊥ is the vertical diamagnetic field
A perpendicular magnetic recording medium formed by forming a film larger than 2πMs 2 . 2 Co and Ni atoms are deposited substantially perpendicularly on the surface of the nonmagnetic base material or on the surface of a soft magnetic thin film layer previously formed on that surface, and at the same time O 2 gas is introduced to form Co x Ni y O z (x, y, z are at%, 0
<y<40, 15<z<50, x+y+z=100), the crystal structure has a columnar grain structure with the C-axis of the HCP structure oriented in the vertical direction, and has magnetic crystalline anisotropy. ku⊥ is the vertical diamagnetic field
A method for manufacturing a perpendicular magnetic recording medium, characterized by forming a film larger than 2πMs 2 .
JP3665283A 1983-03-08 1983-03-08 Vertical magnetic recording means and manufacture of the same Granted JPS59163810A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3665283A JPS59163810A (en) 1983-03-08 1983-03-08 Vertical magnetic recording means and manufacture of the same
DE8484301530T DE3465647D1 (en) 1983-03-08 1984-03-08 A magnetic recording member and a manufacturing method for such a member
EP84301530A EP0122030B1 (en) 1983-03-08 1984-03-08 A magnetic recording member and a manufacturing method for such a member
US07/412,535 US5024854A (en) 1983-03-08 1989-09-22 Method of manufacturing perpendicular type magnetic recording member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3665283A JPS59163810A (en) 1983-03-08 1983-03-08 Vertical magnetic recording means and manufacture of the same

Publications (2)

Publication Number Publication Date
JPS59163810A JPS59163810A (en) 1984-09-14
JPH0311531B2 true JPH0311531B2 (en) 1991-02-18

Family

ID=12475782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3665283A Granted JPS59163810A (en) 1983-03-08 1983-03-08 Vertical magnetic recording means and manufacture of the same

Country Status (1)

Country Link
JP (1) JPS59163810A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59198707A (en) * 1983-04-26 1984-11-10 Ulvac Corp Perpendicularly magnetic recording material and manufacture thereof
JPH0648533B2 (en) * 1984-09-27 1994-06-22 日本真空技術株式会社 Method of manufacturing perpendicular magnetic recording body
JPS6199924A (en) * 1984-10-19 1986-05-19 Matsushita Electric Ind Co Ltd Magnetic recording medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615014A (en) * 1979-07-18 1981-02-13 Matsushita Electric Ind Co Ltd Metallic thin film type magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615014A (en) * 1979-07-18 1981-02-13 Matsushita Electric Ind Co Ltd Metallic thin film type magnetic recording medium

Also Published As

Publication number Publication date
JPS59163810A (en) 1984-09-14

Similar Documents

Publication Publication Date Title
JPH056738B2 (en)
JPH0311531B2 (en)
JPS6255207B2 (en)
JP2579184B2 (en) Magnetic recording media
JPH0337724B2 (en)
JPH0475577B2 (en)
JPS60195737A (en) Magnetic recording body and its manufacture
JPH0513323B2 (en)
JPH0315245B2 (en)
JPH01248312A (en) Perpendicular magnetic recording medium
JPH0380445A (en) Magneto-optical recording medium
JPS61110328A (en) Perpendicular magnetic recording medium and its manufacturing method
JPH0656650B2 (en) Magnetic recording medium
JPH0512765B2 (en)
JPS63124213A (en) Perpendicular magnetic recording medium
JPH071535B2 (en) Magnetic recording medium
JPH0316690B2 (en)
JPH04155618A (en) Perpendicular magnetic recording medium
JPH056256B2 (en)
JPH0315244B2 (en)
JPS63306515A (en) Magnetic recording medium
JPS635505A (en) Vertically magnetized film and manufacture thereof
JPH07122931B2 (en) Perpendicular magnetic recording medium
JPH08129741A (en) Magnetic recording medium
JPS60254423A (en) Production of vertically magnetizable recording medium