JPS62294413A - Collecting device for fine particle - Google Patents
Collecting device for fine particleInfo
- Publication number
- JPS62294413A JPS62294413A JP13491386A JP13491386A JPS62294413A JP S62294413 A JPS62294413 A JP S62294413A JP 13491386 A JP13491386 A JP 13491386A JP 13491386 A JP13491386 A JP 13491386A JP S62294413 A JPS62294413 A JP S62294413A
- Authority
- JP
- Japan
- Prior art keywords
- nozzle
- fine particles
- molding device
- flow
- downstream chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010419 fine particle Substances 0.000 title abstract description 36
- 238000000465 moulding Methods 0.000 claims abstract description 26
- 239000012159 carrier gas Substances 0.000 claims abstract description 4
- 238000011144 upstream manufacturing Methods 0.000 abstract description 9
- 238000002347 injection Methods 0.000 abstract 1
- 239000007924 injection Substances 0.000 abstract 1
- 230000002093 peripheral effect Effects 0.000 abstract 1
- 230000008602 contraction Effects 0.000 description 11
- 239000002245 particle Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 239000011882 ultra-fine particle Substances 0.000 description 4
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B13/00—Feeding the unshaped material to moulds or apparatus for producing shaped articles; Discharging shaped articles from such moulds or apparatus
- B28B13/02—Feeding the unshaped material to moulds or apparatus for producing shaped articles
- B28B13/021—Feeding the unshaped material to moulds or apparatus for producing shaped articles by fluid pressure acting directly on the material, e.g. using vacuum, air pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/004—Filling molds with powder
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
[産業上の利用分野]
本発明は、飛散しやすい微粒子を捕集する装置に関する
。更に詳L〈は、例えばガス中蒸発法、プラズマ蒸発法
、気相化学反応法等の気相反応法や、コロイド学的な沈
殿法、溶液噴霧熱分解法等の液相反応法等によって生成
され、複合素材の形成やファインセラミック材料への応
用等が期待される、超微細な(一般には粒径0.5ルm
以下)微粒子(一般に「超微粒子」と呼ばれている)の
捕集に適した装置に関する。Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an apparatus for collecting fine particles that are easily scattered. Furthermore, L< can be produced by gas phase reaction methods such as in-gas evaporation method, plasma evaporation method, and gas phase chemical reaction method, and by liquid phase reaction methods such as colloidal precipitation method and solution spray pyrolysis method. Ultra-fine particles (generally 0.5 μm particle size) are expected to be applied to the formation of composite materials and fine ceramic materials.
The following) relates to a device suitable for collecting fine particles (generally referred to as "ultrafine particles").
[従来の技術]
従来、微粒子の捕集装置としては、浮遊微粒子をも捕集
すべく、サイクロンを利用したものや、分散媒をシャワ
ー状に吹き付けるもの等が知られている。[Prior Art] Conventionally, as particulate collecting devices, there are known devices that utilize a cyclone and devices that spray a dispersion medium in a shower in order to also collect floating particles.
[発明が解決しようとする問題点]
しかしながら、従来の捕集装置では、特に超微粒子のよ
うに小さな粒径のものとなると、捕集しきれずに系外へ
利用されてしまう微粒子の量が増大する問題がある。こ
の損出微粒子の増大は、単に微粒子の抽集取得量を減少
させるだけでなく、微粒子が空気中に漂うことにより、
人体への悪影響をもたらす。[Problems to be solved by the invention] However, with conventional collection devices, the amount of particles that cannot be completely collected and is used outside the system increases, especially when it comes to small particles such as ultrafine particles. There is a problem. This increase in lost particulates not only reduces the amount of collected particulates, but also causes the particulates to drift in the air.
Causes adverse effects on the human body.
超微粒子の場合、その粒径が極めて小さいことと同時に
、比較的歴史が浅いことから、効果的な捕集が確立され
ていないのが現状である。In the case of ultrafine particles, effective collection has not yet been established because their particle size is extremely small and their history is relatively short.
[問題点を解決するための手段]
上記問題点を解決するために購じられた手段を、本発明
の一実施例に対応する第1図で説明すると、ノズル1と
、該ノズル1の下流側に、このノズル1を介して搬送気
体と共に送り込まれる微粒子2を、フィルター3で分離
して所定形状に堆積させる成形器4を有する微粒子の捕
集装置とすることによって前記問題点を解決したもので
ある。[Means for Solving the Problems] The means purchased to solve the above problems will be explained with reference to FIG. 1, which corresponds to an embodiment of the present invention. The above-mentioned problem is solved by using a particulate collecting device having a molding device 4 on the side that separates the particulates 2 sent together with the carrier gas through the nozzle 1 with a filter 3 and deposits them in a predetermined shape. It is.
[作 用]
ノズル1を介して送り出される微粒子2は、ノズル1か
らの噴出によって、大きな拡散なく成形器4へと送り込
すれる。従って、ノズル1と成形器4の間で微粒子2が
拡散し、系外へ飛散しやすくなるのを防止することがで
きる。また、成形器4へ送り込まれた微粒子2は、成形
器4で成形されて取出されるので、成形器4から取出し
た後の取扱い性がよいと共に、成形器4からの取出し時
並びにその後の取扱い時の微粒子2の飛散も防止するこ
とができる。[Function] The fine particles 2 sent out through the nozzle 1 are ejected from the nozzle 1 and sent into the molding machine 4 without significant diffusion. Therefore, it is possible to prevent the fine particles 2 from diffusing between the nozzle 1 and the molding machine 4 and easily scattering out of the system. In addition, since the fine particles 2 fed into the molding machine 4 are molded by the molding machine 4 and then taken out, the handling properties after taking them out from the molding machine 4 are good, and the fine particles 2 are easy to handle when taken out from the molding machine 4 and afterward. It is also possible to prevent the fine particles 2 from scattering.
[実施例]
第1図に示されるように、L流室5と下流室6がノズル
1を介して連通されており、更に下流室6は、成形器4
に連通されている。[Example] As shown in FIG. 1, the L flow chamber 5 and the downstream chamber 6 are communicated through the nozzle 1, and the downstream chamber 6 is connected to the molding machine 4.
is communicated with.
成形器4は、バルブ7を介してポンプ8に連結されだ捕
集タンク9内に収容されており、捕集タンク9内で水1
1方向に回転されるものである。また、成形器40周側
はフィルター3となっており、ポンプ8で捕集タンク9
内を損気することによって、フィルター3を介して、成
形器4内、更には下流室6内の減圧を図ることができる
ようになっている。The molding machine 4 is connected to a pump 8 via a valve 7 and housed in a collection tank 9, and the water 1 is collected in the collection tank 9.
It is rotated in one direction. In addition, a filter 3 is provided around the molding machine 40, and a collection tank 9 is connected to the pump 8.
By eliminating air inside the molding machine 4, the pressure inside the molding machine 4 and further inside the downstream chamber 6 can be reduced through the filter 3.
上流室5は、上記ポンプ8の作動による下流室6側との
圧力差によって、lIk粒子2をノズル1を介して下流
室6側へと噴出させるものである。この上流室5は、微
粒子2の生成装置を兼ねるものでも、他の生成装置で生
成された微粒子2の供給を受けるものでもよい。The upstream chamber 5 is configured to eject the lIk particles 2 to the downstream chamber 6 side through the nozzle 1 due to a pressure difference between the upstream chamber 5 and the downstream chamber 6 side due to the operation of the pump 8 . This upstream chamber 5 may also serve as a generating device for the fine particles 2, or may receive the fine particles 2 generated by another generating device.
上流室5からノズルlを介してド流室6へと噴出された
微粒子は、ノズル1と相対向して下流室6に連通されて
いる成形器4に送り込まれ、成形器4の回転によってフ
ィルター3の内面に均一に堆積されると共に、微粒子2
と共に流れて来た搬送気体は、フィルター3を通過して
ポンプ8で排出される。このようにしてフィルター3の
内面に堆積され成形された微粒子2は、成形器4の蓋1
0を開いて取出されるものである。The fine particles ejected from the upstream chamber 5 to the downstream chamber 6 through the nozzle L are fed into the molding device 4 which faces the nozzle 1 and communicates with the downstream chamber 6, and is filtered by the rotation of the molding device 4. The fine particles 2 are uniformly deposited on the inner surface of the
The carrier gas that has flowed together passes through the filter 3 and is discharged by the pump 8. The fine particles 2 deposited and molded on the inner surface of the filter 3 in this way are transferred to the lid 1 of the molding machine 4.
It is taken out by opening 0.
成形器4のフィルター3としては、フッ化樹脂、アルミ
焼結材等を用いることができる。微粒子2の成形性を高
めるためには、下流室6に、流過する微粒子2と共に成
形器4内に送り込まれる凝集剤等のバインダーを噴出す
る、バインダー供給装置11を設けることが好ましい。As the filter 3 of the molding machine 4, fluoride resin, aluminum sintered material, etc. can be used. In order to improve the moldability of the fine particles 2, it is preferable to provide a binder supply device 11 in the downstream chamber 6, which jets out a binder such as a coagulant that is sent into the molding machine 4 together with the fine particles 2 flowing through.
バインダーは、霧状に供給したり、蒸気状に供給するこ
とが好ましい。また、ノズル1から噴出される微粒子2
の流路に対して進退可能なシャッター12を設けておく
と、微粒子2の成形器4への供給開始と停止を制御しや
すくなるので好ましい。The binder is preferably supplied in the form of mist or vapor. In addition, fine particles 2 ejected from the nozzle 1
It is preferable to provide a shutter 12 that can move forward and backward with respect to the flow path, since this makes it easier to control the start and stop of supply of the fine particles 2 to the molding device 4.
ノズル1としては、平行ノズルや先細ノズルでもよいが
、第2図に拡大して示しであるように、縮小拡大ノズル
であることが好ましい。この縮小拡大ノズルとは、流入
口1aから徐々に開口面積が絞られてのど部ICとなり
、再び開口面積が拡大して流出口1bとなっているもの
をいう。Although the nozzle 1 may be a parallel nozzle or a tapered nozzle, it is preferably a contracting/expanding nozzle as shown in an enlarged view in FIG. This contracting/expanding nozzle is one in which the opening area is gradually narrowed from the inlet 1a to become the throat IC, and the opening area is expanded again to become the outlet 1b.
縮小拡大ノズルは、上流室5の圧力P。と下流室6の圧
力Pの圧力比P/POと、のど部3cの開口面積A゛と
流出口1bの開口面積Aとの比A/A”とを調節するこ
とによって、噴出する微粒子2の流れを高速化できる。The contraction/expansion nozzle controls the pressure P of the upstream chamber 5. By adjusting the pressure ratio P/PO of the pressure P of the downstream chamber 6 and the ratio A/A'' of the opening area A' of the throat portion 3c and the opening area A of the outlet 1b, the amount of fine particles 2 ejected can be adjusted. The flow can be sped up.
そして、上流室5と下流室6内の圧力比P/POが臨界
圧力比より大きければ、縮小拡大ノズルの出口流速が亜
音速以下の流れとなり、微粒子2は減速噴出される。ま
た、上記圧力比が臨界圧力比以下であれば、縮小拡大ノ
ズルの出口流速は超音速となり、微粒子2を超音速にて
噴出させることができる。If the pressure ratio P/PO in the upstream chamber 5 and the downstream chamber 6 is greater than the critical pressure ratio, the outlet flow velocity of the contraction-expansion nozzle becomes subsonic flow or less, and the fine particles 2 are decelerated and ejected. Further, if the pressure ratio is equal to or lower than the critical pressure ratio, the outlet flow velocity of the contraction/expansion nozzle becomes supersonic, and the fine particles 2 can be ejected at supersonic speed.
ここで、流れの速度をU、その点における音速をa、流
れの比熱比をγとし、流れを圧縮性の一次元流で断熱膨
張すると仮定すれば、流れの到達マツハ数Mは、(二流
室5の圧力Poと下流室6の圧力Pとから次式で定まり
、特にP/POが臨界圧力比以下の場合、Mはl以−4
二となる。Here, if we assume that the velocity of the flow is U, the sound velocity at that point is a, the specific heat ratio of the flow is γ, and the flow is a compressible one-dimensional flow with adiabatic expansion, the Matsuha number M reached by the flow is It is determined by the following formula from the pressure Po in the chamber 5 and the pressure P in the downstream chamber 6. In particular, when P/PO is less than the critical pressure ratio, M is less than l-4.
It becomes two.
尚、音速aは局所温度を’ro、気体定数をRとすると
、次式で求めることができる。Note that the speed of sound a can be determined by the following equation, where 'ro is the local temperature and R is the gas constant.
、r〒11爵
また、流出口1bの開口面viA及びのど部1cの開口
面tiA’とマツハ数Mには次の関係がある。, r〒11 Also, the following relationship exists between the opening surface viA of the outflow port 1b, the opening surface tiA' of the throat portion 1c, and the Matsuha number M.
従って、上流室5の圧力P。と下流室6の圧力Pの圧力
比P/Poによって(1)式から定まるマツハ数Mに応
じて開口面積比A/A”を定めたり、A/A◆によって
(2)式から定まるMK応じてP/POt−調整するこ
とによって、拡大縮小ノズルから噴出する流れを適正膨
張流として噴出させることができる。このときの流れの
速度Uは、次の(3)式によって求めることができる。Therefore, the pressure P in the upstream chamber 5. The opening area ratio A/A'' is determined according to the Matsuha number M determined from equation (1) by the pressure ratio P/Po of the pressure P of the downstream chamber 6, and MK determined from equation (2) by A/A◆. By adjusting P/POt-, the flow ejected from the enlargement/reduction nozzle can be ejected as a properly expanded flow.The speed U of the flow at this time can be determined by the following equation (3).
上述のような超音速の適正膨張流として微粒子2を一定
方向へ噴出させると、微粒子2は噴出直後の噴流断面を
ほぼ保ちながら直進し、ビーム化される。これによって
微粒子2は、最小限の拡散でド流室6内の空間中を、下
流室6の壁面との干渉のない空間的に独立状態で、かつ
超音速で噴出されることになる。従って、F流室6内壁
に微粒−r−2が付着すること等による無駄も確実に防
止できる。When the fine particles 2 are ejected in a fixed direction as a properly expanded flow of supersonic speed as described above, the fine particles 2 travel straight while maintaining almost the jet cross section immediately after being ejected, and are formed into a beam. As a result, the fine particles 2 are ejected through the space within the downstream chamber 6 with minimal diffusion, in a spatially independent state without interference with the wall surface of the downstream chamber 6, and at supersonic speed. Therefore, waste caused by fine particles -r-2 adhering to the inner wall of the F flow chamber 6 can be reliably prevented.
ノズル1として縮小拡大ノズルを用いる場合、第2図(
a)に示されるように、流出口1b位置で内周面が中心
軸に対してほぼ平行になっていることが好ましい。これ
は、噴出される微粒子2の流れ方向が、流出rllb内
周面の方向によって影響を受けるので、できるだけ平行
流にさせやすくするためである。しかし、第2図(b)
に示されるように、のど部ICから流出口1bへ至る内
周面の中心軸に対する角度αを、7°以下好ましくは5
°以下とすれば、剥離現象を生じにくく、噴出する微粒
子の流れはほぼ均一に維持されるので、この場合はこと
さら1−記のように平行にしなくともよい。When using a contraction/expansion nozzle as the nozzle 1, as shown in Fig. 2 (
As shown in a), it is preferable that the inner circumferential surface is substantially parallel to the central axis at the position of the outlet 1b. This is because the flow direction of the ejected fine particles 2 is influenced by the direction of the inner circumferential surface of the outflow rllb, so the purpose is to make parallel flow as easy as possible. However, Fig. 2(b)
As shown in FIG.
If the angle is less than 1°, the separation phenomenon will hardly occur and the flow of ejected particles will be maintained almost uniformly, so in this case, it is not necessary to make them parallel as in 1- above.
平行部の形成を省略することにより、縮小拡大ノズルの
作製が容易となる。By omitting the formation of the parallel portion, it becomes easy to manufacture the contraction/expansion nozzle.
ここで、前記剥離現象とは縮小拡大ノズルの内面に突起
物等があった場合に、縮小拡大ノズルの内面と流過流体
間の境界層が大きくなって、流れが不均一になる現象を
いい、噴出流が高速になるほど生じやすい。前述の角度
αは、この剥離現象防止のために、縮小拡大ノズルの内
面仕上げ精度が劣るものほど小さくすることが好ましい
。縮小拡大ノズルの内面は、JIS B 0801に定
められる、表面仕上げ精度を表わす逆三角形マークで三
つ以上、最適には四つ以」−が好ましい。特に、縮小拡
大ノズルの拡大部における剥離現象が、その後の成膜ガ
スの流れに大きく影響するので、上記仕上げ精度を、こ
の拡大部を重点にして定めることによって、縮小拡大ノ
ズルの作製を容易にできる。Here, the separation phenomenon refers to a phenomenon in which when there is a protrusion etc. on the inner surface of the contraction/expansion nozzle, the boundary layer between the inside of the contraction/expansion nozzle and the flowing fluid becomes large and the flow becomes non-uniform. , the higher the speed of the jet flow, the more likely it is to occur. In order to prevent this peeling phenomenon, it is preferable that the above-mentioned angle α is made smaller as the inner surface finishing precision of the contraction/expansion nozzle is inferior. The inner surface of the contraction/expansion nozzle preferably has three or more, most preferably four or more, inverted triangular marks indicating surface finish accuracy as defined in JIS B 0801. In particular, the peeling phenomenon at the enlarged part of the condensing/expanding nozzle greatly affects the subsequent flow of the film-forming gas, so by determining the finishing accuracy above with emphasis on this enlarged part, the fabrication of the constricting/expanding nozzle can be made easier. can.
また、やはり剥離現象の発生防止のため、のど部1cは
滑らかな湾曲面とし、断面積変化率における微係数が■
とならないようにする必要がある。In addition, in order to prevent the occurrence of peeling phenomenon, the throat portion 1c is made a smooth curved surface, and the differential coefficient of the cross-sectional area change rate is
It is necessary to make sure that this does not happen.
縮小拡大ノズルの材質としては、例えば鉄、ステンレス
スチールその他の金属の他、テトラフロロエチレン、ア
クリル樹脂、ポリ塩化ビニル、ポリエチレン、ポリスチ
レン、ポリプロピレン等の合成樹脂、セラミック材お1
、石英、ガラス等、広く用いることができる。この材質
の選釈は、微粒−f−2との非反応性、加工性、真空系
内におけるガス放出性等を考慮して行えばよい。また、
縮小拡大ノズルの内面に、微粒子2の伺着・反応を生じ
にくい材料をメッキ又はコートすることもできる。具体
例としては、ポリフッ化エチレン、セラミックス材のコ
ート等を挙げることができる。Materials for the contraction/expansion nozzle include iron, stainless steel, and other metals, as well as synthetic resins such as tetrafluoroethylene, acrylic resin, polyvinyl chloride, polyethylene, polystyrene, and polypropylene, and ceramic materials.
, quartz, glass, etc. can be widely used. The material may be selected in consideration of non-reactivity with the fine particles -f-2, workability, gas release properties in a vacuum system, and the like. Also,
The inner surface of the contraction/expansion nozzle may be plated or coated with a material that is less likely to cause adhesion and reaction of the fine particles 2. Specific examples include coatings of polyfluoroethylene and ceramic materials.
[発明の効果]
本発明によれば、飛散しやすい微粒子を、一連の系内で
成形した後に取出すことができ、系外への微粒子の飛散
を防止できるので、飛散による捕集効率の低下、周囲の
環境悪化を防止できる。また、成形して取出されるので
、その後の取扱いがしやすいと共にその時の飛散をも防
止できるものである。また、ノズルとして縮小拡大ノズ
ルを用いることにより、微粒子流の拡散を最小限にとど
めることができ、捕集効率及び時間を大幅に改善するこ
とができる。[Effects of the Invention] According to the present invention, fine particles that are easily scattered can be taken out after being molded in a series of systems, and scattering of the fine particles outside the system can be prevented, thereby reducing collection efficiency due to scattering. It can prevent deterioration of the surrounding environment. Moreover, since it is molded and taken out, it is easy to handle it afterwards and it can also prevent it from scattering at that time. Further, by using a contraction/expansion nozzle as a nozzle, the diffusion of the particle flow can be minimized, and the collection efficiency and time can be significantly improved.
以上より、本発明は微粒子の捕集効率を上げ、取扱いを
簡便にしてセラミックス技術へ応用するだけでなく、新
規材料の製造に関しての可能性も考えられる。From the above, the present invention not only improves the collection efficiency of fine particles and facilitates handling, and can be applied to ceramic technology, but also has the potential to be used in the production of new materials.
第1図は本発明の一実施例の説明図、第2図(a)、
(b)は各々ノズルの例を示す断面図である。
1:ノズル、2:微粒子、3:フィルター。
4:成形器、5:上流室、6:ド流室、7:バルブ、8
:ポンプ、9:捕集タンク、10:蓋、11:バインダ
ー供給装置、12:シャッター。FIG. 1 is an explanatory diagram of an embodiment of the present invention, FIG. 2(a),
(b) is a sectional view showing an example of each nozzle. 1: nozzle, 2: fine particles, 3: filter. 4: Forming machine, 5: Upstream chamber, 6: Downstream chamber, 7: Valve, 8
: Pump, 9: Collection tank, 10: Lid, 11: Binder supply device, 12: Shutter.
Claims (1)
て搬送気体と共に送り込まれる微粒子を、フィルターで
分離して所定形状に堆積させる成形器を有することを特
徴とする微粒子の捕集装置。1) A particulate collection device comprising a nozzle and a molding machine downstream of the nozzle that separates the particulates sent together with the carrier gas through the nozzle with a filter and deposits them in a predetermined shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13491386A JPS62294413A (en) | 1986-06-12 | 1986-06-12 | Collecting device for fine particle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13491386A JPS62294413A (en) | 1986-06-12 | 1986-06-12 | Collecting device for fine particle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62294413A true JPS62294413A (en) | 1987-12-21 |
Family
ID=15139460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13491386A Pending JPS62294413A (en) | 1986-06-12 | 1986-06-12 | Collecting device for fine particle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62294413A (en) |
-
1986
- 1986-06-12 JP JP13491386A patent/JPS62294413A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0120506A3 (en) | Metal powder and process for producing the same | |
JPS6380843A (en) | Reaction apparatus | |
JPS62294413A (en) | Collecting device for fine particle | |
JPS6380817A (en) | Apparatus for collecting fine particles | |
JPS62253772A (en) | Film forming apparatus | |
JP2001510731A (en) | Ultrasonic atomizer with liquid circulation line | |
JPS6316043A (en) | Collection of fine particle | |
JPS6318002A (en) | Surface working method for fine particle | |
JPS6380842A (en) | Reaction using fine particle | |
JPS62221442A (en) | Flow controller | |
JPS62115700A (en) | Vapor phase exciter | |
JPS62158329A (en) | Device for spraying fine particle | |
JPH0316188B2 (en) | ||
JPS61223307A (en) | Minute particle flow controller | |
JPS62120477A (en) | Film forming device | |
JPH0419070A (en) | Powder beam etching/deposition method and device therefor | |
JPS62115827A (en) | Fine particle flow controller | |
JPS61223309A (en) | Minute particle flow controller | |
JPS62131510A (en) | Fine particle spraying device | |
JPS6291233A (en) | Flow control device for flow of fine particles | |
JPS61218813A (en) | Minute particle flow control apparatus | |
JPS62250945A (en) | Gaseous phase treatment apparatus | |
JPS6241410A (en) | Corpuscular stream controller | |
JPS6335779A (en) | Film forming device | |
JPH0342010A (en) | Fine particle trap for vacuum evacuation system |