[go: up one dir, main page]

JPS62158329A - Device for spraying fine particle - Google Patents

Device for spraying fine particle

Info

Publication number
JPS62158329A
JPS62158329A JP29881685A JP29881685A JPS62158329A JP S62158329 A JPS62158329 A JP S62158329A JP 29881685 A JP29881685 A JP 29881685A JP 29881685 A JP29881685 A JP 29881685A JP S62158329 A JPS62158329 A JP S62158329A
Authority
JP
Japan
Prior art keywords
potential difference
particles
flow
fine particles
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29881685A
Other languages
Japanese (ja)
Inventor
Masao Sugata
菅田 正夫
Hiroyuki Sugata
裕之 菅田
Toshiaki Kimura
木村 稔章
Noriko Kurihara
栗原 紀子
Toru Den
透 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP29881685A priority Critical patent/JPS62158329A/en
Publication of JPS62158329A publication Critical patent/JPS62158329A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating Apparatus (AREA)
  • Drying Of Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE:To realize spraying of a complicated pattern and that of constant distribution in a spraying amount without requiring masking process or the like, by applying a potential difference with regulated distribution between a base installed on the side downstream from an acceleration electrode and the acceleration electrode. CONSTITUTION:When fine particles are injected as a supersonic proper expansion flow through a reduction/enlargement nozzle 1, the flow of the fine particles advance directly, with a cross section of the injected flow nearly kept after the injection, becoming beams. When the fine particles are made to become ionic particles inside the reduction/enlargement nozzle 1 or so, they are sent as beam-shaped flow to an acceleration electrode 2, accelerated by potential difference between the acceleration electrode 2 and the base 4 to be sprayed at the base 4. Regulating a distribution of the potential difference between the acceleration electrode 2 and the base 4 enables the ionic particles to be sprayed according to the distribution of the potential difference at the base 4.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、微粒子を基体へ吹き付けることによる、例え
ば成膜加工、エツチング加工、複合素材の形成、ドープ
加工等に用いられる微粒子の吹き付け装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fine particle spraying device used for, for example, film forming, etching, forming composite materials, doping, etc., by spraying fine particles onto a substrate. .

[従来の技術] 従来、微粒子の吹き付け装置としては、微粒子の流路に
、活性化手段と加速電極と基体を順次設け、かつ加速電
極と基体間に電位差を付与する電源を接続したものが知
られている。この従来の装置は、微粒子を、上流側と下
流側の圧力差によって、活性化手段方向へと送ってまず
イオン粒子化した後更にこれを加速電極と基体間へと移
動させ、加速電極と基体間の電位差によって加速して、
イオン粒子を並進流として基体へ吹き付けるものである
[Prior Art] Conventionally, a device for spraying fine particles has been known in which an activation means, an accelerating electrode, and a base are sequentially provided in a flow path for fine particles, and a power source is connected to apply a potential difference between the accelerating electrode and the base. It is being This conventional device uses a pressure difference between the upstream and downstream sides to send the fine particles toward the activation means, first converting them into ion particles, and then moving them between the accelerating electrode and the substrate. Accelerated by the potential difference between
Ion particles are sprayed onto the substrate as a translational flow.

[発明が解決しようとする問題点] しかしながら、上記従来の装置では、微粒子が、上流側
と下流側の単なる差圧による不規則な流れとして活性化
手段から加速電極へと送られるため、加速電極による加
速はこれを規則的な並進流とすることしかできず、微粒
子の微妙な吹き付け領域の調整は不可能である。また、
基体への微粒子の吹き付け量に特定の分布を持たせるべ
く、微粒子流に特定の濃度分布を付けることも不可能で
ある。従って、基体の特定領域にのみ微粒子を吹き付け
るときにはマスキングを施さなければならず、また更に
吹き付け量に分布を付けるときには、マスクを交換しな
がらの回分操作となり、作業が著しく繁雑となる問題が
ある。
[Problems to be Solved by the Invention] However, in the conventional device described above, fine particles are sent from the activation means to the accelerating electrode as an irregular flow due to a mere differential pressure between the upstream and downstream sides. Acceleration due to this can only make this a regular translational flow, and delicate adjustment of the spray area of fine particles is impossible. Also,
It is also impossible to create a specific concentration distribution in the flow of particles in order to provide a specific distribution in the amount of particles sprayed onto the substrate. Therefore, when spraying fine particles only on a specific area of the substrate, masking must be applied, and when distributing the spray amount, the process must be performed in batches while replacing the mask, which makes the work extremely complicated.

[問題点を解決するための手段] 上記問題点を解決するために本発明において講じられた
手段を、本発明の一実施例に対応する第1図で説明する
と、本発明は、微粒子の流路に設けられた縮小拡大ノズ
ルlと、縮小拡大ノズル1より下流側に設けられた加速
電極2と、流過する微粒子を加速電極2より上流側でイ
オン粒子化する活性化手段3と、加速電極2より下流側
に設けた基体4と加速電極2間に調整された電位差分布
をもって電位差を付与する電源5とを有する微粒子の吹
き付け装置とすることによって上記問題点を解決したも
のである。
[Means for Solving the Problems] The means taken in the present invention to solve the above problems will be explained with reference to FIG. 1, which corresponds to an embodiment of the present invention. A contraction/expansion nozzle l provided in the path, an acceleration electrode 2 provided downstream of the contraction/expansion nozzle 1, an activation means 3 for converting flowing fine particles into ion particles upstream of the acceleration electrode 2, and an acceleration The above-mentioned problems are solved by providing a particle spraying device having a power source 5 that applies a potential difference with an adjusted potential difference distribution between the base 4 and the accelerating electrode 2, which are provided downstream of the electrode 2.

本発明において微粒子とは、原子、分子、クラスター、
超微粒子及び一般微粒子をいう、超微粒子とは、例えば
、気相反応を利用した、ガス中蒸発法、プラズマ蒸発法
、気相化学反応法、更には液相反応を利用した、コロイ
ド学的な沈殿法、溶液噴霧熱分解法等によって得られる
、超微細な(一般には0.5 p−m以下)粒子をいう
。一般微粒子とは、機械的粉砕や析出沈殿処理等の一般
的手法によって得られる微細粒子をいう。
In the present invention, fine particles include atoms, molecules, clusters,
Ultrafine particles refer to ultrafine particles and general fine particles.Ultrafine particles include, for example, evaporation in gas, plasma evaporation, and gas phase chemical reaction methods that utilize gas phase reactions, as well as colloidal methods that utilize liquid phase reactions. Refers to ultrafine particles (generally 0.5 p-m or less) obtained by precipitation methods, solution spray pyrolysis methods, etc. General fine particles refer to fine particles obtained by general methods such as mechanical crushing and precipitation treatment.

本発明における縮小拡大ノズルlとは、流入口1aから
中間部に向って徐々に開口面積が絞られてのど部1bと
なり、こののど部1bから流出口ICに向って徐々に開
口面積が拡大されているノズルをいう。
The contracting/expanding nozzle l in the present invention is a throat portion 1b in which the opening area is gradually narrowed from the inlet 1a toward the middle portion, and the opening area is gradually expanded from the throat portion 1b toward the outlet IC. This refers to the nozzle that is

また、イオン粒子とは、一般のイオン分子やクラスター
イオン等の他、イオンでなくとも極性を有する分子、高
分子、更には一部に電荷を有する分子、高分子等をも含
むものである。
In addition to general ionic molecules and cluster ions, ionic particles include molecules that are not ions but have polarity, polymers, and even partially charged molecules and polymers.

更に、電位差分布とは、電位差の強弱の分布並びに電位
差の分布領域の両者を意味する。
Further, the potential difference distribution refers to both the strength distribution of the potential difference and the distribution area of the potential difference.

[作 用] 縮小拡大ノズルlは、その上流側の圧力POと下流側の
圧力Pの圧力比P/Paと、のど部1bの開口面積A・
と流出口1cの開口面積Aとの比A/A”とを調節する
ことによって、噴出する微粒子の流れを超音速にまで高
速化できる。
[Function] The contraction/expansion nozzle l has a pressure ratio P/Pa between the pressure PO on its upstream side and the pressure P on its downstream side, and the opening area A of the throat portion 1b.
By adjusting the ratio A/A'' between the opening area A of the outflow port 1c and the opening area A of the outflow port 1c, the flow of ejected particles can be increased to supersonic speed.

ここで、微粒子流の速度をU、その点における音速をa
、微粒子流の比熱比をγとし、微粒子流を圧縮性の一次
元流で断熱膨張すると仮定すれば、微粒子流の到達マツ
ハ数Mは、上流側の圧力Poと下流側の圧力Pとから次
式で定まり、特にP/Poが臨界圧力比以下の場合、M
は1以上となる。
Here, the velocity of the particle flow is U, and the sound velocity at that point is a.
, the specific heat ratio of the particle flow is γ, and assuming that the particle flow is a compressible one-dimensional flow and expands adiabatically, the Matsuha number M reached by the particle flow is given by the following equation from the upstream pressure Po and the downstream pressure P. It is determined by the formula, especially when P/Po is less than the critical pressure ratio, M
is 1 or more.

尚、音速aは局所温度をT、気体定数をRとすると、次
式で求めることができる。
Note that the sound velocity a can be determined by the following equation, where T is the local temperature and R is the gas constant.

a=E711「 また、流出ロ1c開ロ面積A及びのど部1bの開口面積
A”と、マツハ数Mには次の関係がある。
a=E711 ``Furthermore, the opening area A of the outflow hole 1c and the opening area A of the throat portion 1b'' and the Matsuha number M have the following relationship.

従って、上流側の圧力P0と下流側の圧力Pの圧力比P
/Poによって(1)式から定まるマツ/\数Mに応じ
て開口面桔比A/A”を定めたり、A/A”によって(
2)式から定まるMに応じてP/PGを調整することに
よって、拡大縮小ノズル1から噴出する微粒子を超音速
の適正膨張流として噴出させることができる。このとき
の微粒子流の速度Uは、次の(3)式によって求めるこ
とができる。
Therefore, the pressure ratio P between the upstream pressure P0 and the downstream pressure P
/Po determines the opening surface ratio A/A'' according to the number M determined from equation (1), and A/A'' determines (
2) By adjusting P/PG according to M determined from the equation, fine particles ejected from the expansion/contraction nozzle 1 can be ejected as a properly expanded flow at supersonic speed. The velocity U of the particle flow at this time can be determined by the following equation (3).

上述のような超音速の適正膨張流として微粒子を縮小拡
大ノズルlから噴出させると、微粒子流は噴出後の噴流
断面をほぼ保ちながら直進し。
When fine particles are ejected from the contraction/expansion nozzle l as a properly expanded flow at supersonic speed as described above, the fine particle flow travels straight while almost maintaining the cross section of the jet after ejection.

ビーム化される。従って、縮小拡大ノズル1内を含むそ
の前後で微粒子をイオン粒子化してやれば、これをビー
ム状の流れとして加速電極2へと送ることができる。そ
して、ビーム状の流れとして送られて来たイオン粒子が
、加速電極2と基体4間の電位差によって加速され、基
体4へと吹き付けられることになる。
Beamed. Therefore, if fine particles are ionized before and after the contraction/expansion nozzle 1, the particles can be sent to the accelerating electrode 2 as a beam-like flow. Then, the ion particles sent as a beam-like flow are accelerated by the potential difference between the accelerating electrode 2 and the base body 4, and are blown onto the base body 4.

本発明では、上記のように、イオン粒子が規則的なビー
ム流として加速電極2へと送られて来るので、加速電極
2と基体4間の電位差分布を調整しておくことによって
、この電位差分布に応じてイオン粒子を基体4へ吹き付
けることができるものである。例えば、基体4上の小領
域に電圧を印加するようにすれば、当該小領域に集約し
てイオン粒子を吹き付けることができる。また、加速電
極2と基体4間の電位差に強弱の分布を付しておけば、
この強弱の分布に応じて、基体4に吹き付けられるイオ
ン粒子の量に分布を持たせることができる。
In the present invention, as described above, the ion particles are sent to the accelerating electrode 2 as a regular beam stream, so by adjusting the potential difference distribution between the accelerating electrode 2 and the substrate 4, this potential difference distribution can be adjusted. The ion particles can be sprayed onto the substrate 4 according to the conditions. For example, by applying a voltage to a small area on the base 4, ion particles can be sprayed in a concentrated manner onto the small area. Moreover, if a strength distribution is given to the potential difference between the accelerating electrode 2 and the base 4,
Depending on the strength distribution, the amount of ion particles sprayed onto the base 4 can be distributed.

[実施例] 第1図は1本発明に係る微粒子の吹き付け装置を成膜装
置として利用した場合の一実施例を示すもので、上流室
6と下流室7が縮小拡大ノズルlを介して連結されたも
のとなっている。
[Example] Fig. 1 shows an example in which the particle spraying device according to the present invention is used as a film forming device, in which an upstream chamber 6 and a downstream chamber 7 are connected via a contraction/expansion nozzle l. It has become something that has been done.

上流室6内には、縮小拡大ノズル1の流入口1aと対向
する位置には活性化手段が設けられている。この活性化
手段3は、供給される微粒子をイオン粒子化するもので
、例えばマイクロ波放電、直流や高周波放電等による気
相励起装置や、レーザー光、紫外光その他の波長の光を
照射するもの等を用いることができる。
In the upstream chamber 6, activation means is provided at a position facing the inlet 1a of the contraction/expansion nozzle 1. The activation means 3 is for converting the supplied fine particles into ion particles, such as a gas phase excitation device using microwave discharge, direct current or high frequency discharge, or irradiation with laser light, ultraviolet light or other wavelength light. etc. can be used.

上記微粒子のイオン粒子化は、縮小拡大ノズルl内又は
その下流側で行うこともできる。縮小拡大ノズルl内で
イオン粒子化を行う場合、例えば縮小拡大ノズル1を、
電気的絶縁体を挟んで一体化された上下二分割ノズルと
し、その上下片を各々電極として両者間で放電を行う活
性化手段3としたり、透光体や電気的絶縁体で縮小拡大
ノズル1を構成して、そこに光やマイクロ波を作用させ
る活性化手段3とすることが挙げられる。また、縮小拡
大ノズル1の下流側でイオン粒子化を行う場合、1i!
小拡大ノズルlから噴出される微粒子の流れにプラズマ
や光を作用させる活性化手段3とすることによって行う
ことができる。
The above-mentioned ionization of the fine particles can also be performed within the contraction/expansion nozzle l or on the downstream side thereof. When performing ion particle formation in the contraction/expansion nozzle l, for example, the contraction/expansion nozzle 1 is
An upper and lower nozzle can be integrated with an electrical insulator in between, and the upper and lower halves can be used as electrodes to act as activation means 3 for generating a discharge between the two, or a translucent material or an electrical insulator can be used to reduce and expand the nozzle 1. An example of this is to configure the activation means 3 to act on light or microwaves. Moreover, when performing ionization on the downstream side of the contraction/expansion nozzle 1, 1i!
This can be done by using the activation means 3 that causes plasma or light to act on the flow of fine particles ejected from the small enlarged nozzle l.

縮小拡大ノズル1は、その流入口1aを上流室6内に開
口させ、流出口ICを下流室7内に開口させて両室を連
通させている。この縮小拡大ノズルlは、第2図(a)
に拡大して示しであるように、流出口1c位置で内周面
が中心軸に対してほぼ平行になっていることが好ましい
、これは、噴出される微粒子の流れ方向が、ある程度流
出口1c内周面の方向によって影響を受けるので、でき
るだけ平行流にさせやすくするためである。しかし、第
2図(b)に示されるように、のど部1bから流出口1
cへ至る内周面の中心軸に対する角度αを、7°以下好
ましくは5°以下とすれば、剥離現象を生じにくく、噴
出する微粒子の流れはほぼ均一に維持されるので、この
場合はことさら上記のように平行にしなくともよい。平
行部の形成を省略することにより、縮小拡大ノズル1の
作製が容易となる。
The contraction/expansion nozzle 1 has its inlet port 1a opened into the upstream chamber 6, and its outlet IC opened into the downstream chamber 7, thereby communicating the two chambers. This contraction/expansion nozzle l is shown in Fig. 2(a).
As shown in the enlarged view, it is preferable that the inner circumferential surface is approximately parallel to the central axis at the position of the outlet 1c. This is to make parallel flow as easy as possible since it is affected by the direction of the inner circumferential surface. However, as shown in FIG. 2(b), from the throat part 1b to the outlet 1
If the angle α of the inner circumferential surface leading to point c with respect to the central axis is set to 7° or less, preferably 5° or less, the separation phenomenon will be less likely to occur and the flow of ejected fine particles will be maintained almost uniformly. They do not have to be parallel as described above. By omitting the formation of the parallel portion, the contraction/expansion nozzle 1 can be manufactured easily.

ここで、前記剥離現象とは縮小拡大ノズルlの内面に突
起物等があった場合に、縮小拡大ノズルlの内面と流過
流体間の境界層が大きくなって。
Here, the above-mentioned separation phenomenon means that when there is a protrusion or the like on the inner surface of the contraction/expansion nozzle 1, the boundary layer between the inner surface of the contraction/expansion nozzle 1 and the flowing fluid becomes large.

流れが不均一になる現象をいい、噴出流が高速になるほ
ど生じやすい。前述の角度αは、この剥離現象防止のた
めに、縮小拡大ノズル1の内面仕上げ精度が劣るものほ
ど小さくすることが好ましい、縮小拡大ノズル1の内面
は、JIS B OHIに定められる1表面仕上げ精度
を表わす逆三角形マークで三つ以上、最適には四つ以上
が好ましい。特に、縮小拡大ノズル1の拡大部における
剥離現象が、その後の微粒子の流れに大きく影響するの
で、上記仕上げ精度を、この拡大部を重点にして定める
ことによって、縮小拡大ノズル1の作製を容易にできる
。また、やはり剥離現象の発生防止のため、のど部1b
は滑らかな湾曲面とし、断面積変化率における微係数が
閃とならないようにする必要がある。
This is a phenomenon in which the flow becomes non-uniform, and the higher the speed of the jet flow, the more likely it is to occur. In order to prevent this peeling phenomenon, the above-mentioned angle α is preferably made smaller as the inner surface finishing accuracy of the reducing/expanding nozzle 1 is inferior. Three or more inverted triangle marks representing , preferably four or more. In particular, since the peeling phenomenon in the enlarged part of the contraction/expansion nozzle 1 greatly affects the subsequent flow of particles, by determining the finishing accuracy with emphasis on this enlarged part, the production of the contraction/expansion nozzle 1 can be made easier. can. In addition, in order to prevent the occurrence of peeling phenomenon, the throat part 1b
It is necessary to have a smooth curved surface so that the differential coefficient in the rate of change of cross-sectional area does not become a flash.

縮小拡大ノズルの材質としては、例えば鉄、ステンレス
スチールその他の金属の他、アクリル樹脂、ポリ塩化ビ
ニル、ポリエチレン、ポリスチレン、ポリプロピレン等
の合成樹脂、セラミック材料、石英、ガラス等、広く用
いることができる。
As the material for the contraction/expansion nozzle, a wide range of materials can be used, such as iron, stainless steel, and other metals, as well as acrylic resin, polyvinyl chloride, synthetic resins such as polyethylene, polystyrene, and polypropylene, ceramic materials, quartz, and glass.

この材質の選択は、微粒子との非反応性、加工性、真空
系内におけるガス放出性等を考慮して行えばよい。また
、縮小拡大ノズル1の内面に、微粒子の付着・反応を生
じにくい材料をメッキ又はコートすることもできる。具
体例としては、ポリフッ化エチレンのコート等を挙げる
ことができる。
This material may be selected by taking into consideration non-reactivity with fine particles, workability, gas release properties in a vacuum system, and the like. Furthermore, the inner surface of the contraction/expansion nozzle 1 can be plated or coated with a material that is less likely to cause adhesion or reaction of fine particles. Specific examples include polyfluoroethylene coating.

ところで、縮小拡大ノズルlを流過するときに、微粒子
は、保有する熱エネルギーが運動エネルギーに変換され
る。そして、特に超音速で噴出される場合、熱エネルギ
ーは著しく小さくなるので、これによって微粒子のエネ
ルギー準位をも固定化することが可能である。
By the way, when the fine particles flow through the contraction/expansion nozzle l, the thermal energy they possess is converted into kinetic energy. In particular, when the particles are ejected at supersonic speeds, the thermal energy becomes significantly smaller, which makes it possible to fix the energy level of the particles.

下流室7内を排気しつつ上流室6の活性化手段3へと微
粒子を供給すると、微粒子は活性化手段3でイオン粒子
化された後直に縮小拡大ノズル1から噴出される。そし
て、その上流側の圧力PGと下流側の圧力Pの圧力比P
/PGやのど部1bの開口面積A中と流出口1cの開口
面積の比A/A”を調整することによって、ビーム流と
して加速電極2へと流れることになる。
When the downstream chamber 7 is evacuated and fine particles are supplied to the activation means 3 in the upstream chamber 6, the fine particles are ionized by the activation means 3 and immediately ejected from the contraction/expansion nozzle 1. Then, the pressure ratio P between the upstream pressure PG and the downstream pressure P
By adjusting the ratio A/A'' of the opening area A of the /PG and throat portion 1b to the opening area of the outlet 1c, the beam flows to the accelerating electrode 2 as a beam stream.

加速電極2は、流路に沿った管状を成すものとなってい
る。また、加速電極2の更に下流側には基体4が設けら
れており、加速電極2と基体4間には、電源5によって
電位差が付与されている。
The accelerating electrode 2 has a tubular shape along the flow path. Further, a base body 4 is provided further downstream of the accelerating electrode 2, and a potential difference is applied between the accelerating electrode 2 and the base body 4 by a power source 5.

ビーム流として加速電極2内へと噴出されたイオン粒子
は、この加速電極2と基体4間の電位差の影響によって
更に加速されて基体4へ衝突することになる。即ち、イ
オン粒子が正のチャージを有する場合、加速電極2を正
、基体4を負に印加することによってイオン粒子を加速
することができる。イオン粒子が負のチャージを有する
ときは、加速電極2と基体4のチャージを逆にすればよ
い、このとき、イオン粒子は、単に速度のみではなく、
電位差分布によって進行方向も制御される。従って、流
れが更に並進流化されて断面方向の微粒子分布が均一化
されるだけでなく、電位差分布によって進行領域も制御
される。また、イオン粒子が1例えば、極性を有する分
子、高分子等であったり、細長い分子、高分子等の一端
に電荷を有するもの等の場合、加速電極2内を通過する
ときに各イオン粒子の向きを揃え、特定の配向性を持っ
て基体4へ吹き付けることが可能となる。
The ion particles ejected into the accelerating electrode 2 as a beam stream are further accelerated by the influence of the potential difference between the accelerating electrode 2 and the substrate 4, and collide with the substrate 4. That is, when the ion particles have a positive charge, the ion particles can be accelerated by applying a positive voltage to the accelerating electrode 2 and applying a negative voltage to the base 4. When the ion particles have a negative charge, the charges on the accelerating electrode 2 and the base body 4 may be reversed.
The direction of travel is also controlled by the potential difference distribution. Therefore, not only the flow is further made into a translational flow and the particle distribution in the cross-sectional direction is made uniform, but also the advancing area is controlled by the potential difference distribution. In addition, when the ion particles are 1, for example, polar molecules, polymers, etc., or elongated molecules, polymers, etc. that have an electric charge at one end, each ion particle is It becomes possible to align the directions and spray onto the substrate 4 with a specific orientation.

ところで、例えば加速電極2を正に印加した場合、正電
位のイオン粒子は基体4へと加速されて付着するが、負
電位のイオン粒子は加速電極2の内壁面へ付着しやすく
なる。このため、図中破線で示すように、管状の加速電
極2内にやはり管状の保護電極8を入れ、加速電極2を
イオン粒子の付着による汚損から保護す名ことが好まし
い、また、加速電極2の材質を、印加電圧を解除するこ
とによって付着イオン粒子が遊離しやすいものとしてお
けば、例え加速電極2の内壁面へイオン粒子が付着して
も、加速電極2と基体4に各々逆の電圧を印加すること
によって付着イオン粒子を除去できるので好ましい、こ
の場合、掃除用の基体4を別途用意しておいて、上記付
着イオン粒子の除去を行えばよい。
By the way, for example, when a positive voltage is applied to the accelerating electrode 2, ion particles with a positive potential are accelerated and adhere to the substrate 4, but ion particles with a negative potential tend to adhere to the inner wall surface of the accelerating electrode 2. For this reason, as shown by the broken line in the figure, it is preferable to insert a tubular protective electrode 8 inside the tubular accelerating electrode 2 to protect the accelerating electrode 2 from contamination due to adhesion of ion particles. If the material is made such that the attached ion particles are likely to be released by releasing the applied voltage, even if the ion particles adhere to the inner wall surface of the accelerating electrode 2, the voltages opposite to each other will be applied to the accelerating electrode 2 and the substrate 4. It is preferable that the attached ion particles can be removed by applying .

加速電極2と基体4間の電位差分布の調整は、例えば第
3図に示されるように、基体4に制御電極9を設けてこ
れを電源5(第1図参照)に接続しておくことによって
行うことができる。第3図(a)のように、イオン粒子
のビーム粒子の径に比して小径の制御電極9を設ければ
、イオン粒子を当該制御電極9へと集束させながら吹き
付けを行うことができる。第3図(b)のように、イオ
ン粒子のビーム流の径に比して大径の制御電極9を設け
れば、イオン粒子を当該制御電極9の大きさに合わせて
拡散させながら吹き付けを行うことができる。第3図(
C)のように、制御電極9を一定のパターンを持って配
置しておけば、このパターンに沿ってイオン粒子の吹き
付けを行うことができる。更に第3図(d)のように、
制御電極9,9゜9を設け、各制御電極9,9.9に印
加する電圧に強弱を付ければ、吹き付けられるイオン粒
子の両を制御電極9,9.9毎に相違したものに制御す
ることができる6 [発明の効果] 本発明によれば、微粒子の吹き付け時に、その吹き付け
領域を任意の大面積から小面端迄、幅広く制御できるば
かりか、その位置並びに吹き、付け量の分布も種々制御
できる。従って、ことさらマスキング等を施さなくても
、微細で複雑なパターンの吹き付けや吹き付け量に一定
の分布を持たせた吹き付けが可能であり、作業が著しく
簡略化できるものである。
The potential difference distribution between the accelerating electrode 2 and the substrate 4 can be adjusted by, for example, as shown in FIG. 3, by providing a control electrode 9 on the substrate 4 and connecting it to the power source 5 (see FIG. 1). It can be carried out. As shown in FIG. 3(a), if the control electrode 9 is provided with a diameter smaller than the diameter of the ion particle beam particles, the ion particles can be sprayed while being focused on the control electrode 9. As shown in FIG. 3(b), if a control electrode 9 with a diameter larger than the diameter of the beam flow of ion particles is provided, the ion particles can be sprayed while being diffused according to the size of the control electrode 9. It can be carried out. Figure 3 (
If the control electrodes 9 are arranged in a certain pattern as shown in C), ion particles can be sprayed along this pattern. Furthermore, as shown in Figure 3(d),
By providing control electrodes 9, 9.9 and adjusting the strength of the voltage applied to each control electrode 9, 9.9, the ion particles sprayed can be controlled to be different for each control electrode 9, 9.9. [Effects of the Invention] According to the present invention, when spraying fine particles, not only can the spray area be controlled over a wide range from an arbitrary large area to the edge of a small surface, but also the position and distribution of the spray and amount applied can be controlled. Can be controlled in various ways. Therefore, without special masking or the like, it is possible to spray in a fine and complicated pattern and spray with a constant distribution in the amount of spray, which greatly simplifies the work.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の説明図、第2図(a)、 
(b)は各々縮小拡大ノズルの説明図、第3図(a)〜
(d)は制御電極による電位差分布調整の説明図である
。 1:1ili小拡大ノズル、la:流入口、lb=のど
部、1c:流出口、2:加速電極、3:活性化手段、4
:基体、5:電源、6:上流室、7:下流室、8:保護
電極、9:制御電極。
FIG. 1 is an explanatory diagram of an embodiment of the present invention, FIG. 2(a),
(b) is an explanatory diagram of the reduction/enlargement nozzle, and Fig. 3(a) -
(d) is an explanatory diagram of potential difference distribution adjustment by the control electrode. 1: 1ili small expansion nozzle, la: inlet, lb = throat, 1c: outlet, 2: acceleration electrode, 3: activation means, 4
: Substrate, 5: Power source, 6: Upstream chamber, 7: Downstream chamber, 8: Protective electrode, 9: Control electrode.

Claims (1)

【特許請求の範囲】[Claims] 1)微粒子の流路に設けられた縮小拡大ノズルと、縮小
拡大ノズルより下流側に設けられた加速電極と、流過す
る微粒子を加速電極より上流側でイオン粒子化する活性
化手段と、加速電極より下流側に設けた基体と加速電極
間に調整された電位差分布をもって電位差を付与する電
源とを有することを特徴とする微粒子の吹き付け装置。
1) A contraction/expansion nozzle provided in a particle flow path, an acceleration electrode provided downstream of the contraction/expansion nozzle, an activation means for converting flowing particles into ion particles upstream of the acceleration electrode, and acceleration. A particulate spraying device comprising a power source that applies a potential difference with an adjusted potential difference distribution between a base body and an accelerating electrode provided downstream of the electrode.
JP29881685A 1985-12-28 1985-12-28 Device for spraying fine particle Pending JPS62158329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29881685A JPS62158329A (en) 1985-12-28 1985-12-28 Device for spraying fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29881685A JPS62158329A (en) 1985-12-28 1985-12-28 Device for spraying fine particle

Publications (1)

Publication Number Publication Date
JPS62158329A true JPS62158329A (en) 1987-07-14

Family

ID=17864587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29881685A Pending JPS62158329A (en) 1985-12-28 1985-12-28 Device for spraying fine particle

Country Status (1)

Country Link
JP (1) JPS62158329A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176848A (en) * 1999-12-14 2001-06-29 Chemitoronics Co Ltd Plasma etching system and etching method using the same
JP2001176849A (en) * 1999-12-14 2001-06-29 Chemitoronics Co Ltd Plasma etching system
JP2006275813A (en) * 2005-03-29 2006-10-12 National Institute Of Advanced Industrial & Technology Diaphragm type pressure sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176848A (en) * 1999-12-14 2001-06-29 Chemitoronics Co Ltd Plasma etching system and etching method using the same
JP2001176849A (en) * 1999-12-14 2001-06-29 Chemitoronics Co Ltd Plasma etching system
JP2006275813A (en) * 2005-03-29 2006-10-12 National Institute Of Advanced Industrial & Technology Diaphragm type pressure sensor

Similar Documents

Publication Publication Date Title
RU2213805C2 (en) Method of application of coats made from powder materials and device for realization of this method
US6348687B1 (en) Aerodynamic beam generator for large particles
JP3410096B2 (en) Electrostatic spray coating apparatus and method
US5989779A (en) Fabrication method employing and energy beam source
RU2371379C1 (en) Plating method of nano-coating and device for its implementation
US20190358708A1 (en) Method and apparatus for producing nanoscale materials
JPS62158329A (en) Device for spraying fine particle
US3853580A (en) Methods for electrogasdynamic coating
JPS6380842A (en) Reaction using fine particle
JPS62253772A (en) Film forming apparatus
JPS62120477A (en) Film forming device
JPS62158318A (en) Controlling device for flow
JP2003313656A (en) Device and method for producing ultrafine particle film
JPS6318002A (en) Surface working method for fine particle
EP0634575B1 (en) Device for distributing a gaseous component in ionization chambers, for space thrusters
JPS62155934A (en) Vapor phase exciter
JPS6393366A (en) Method and apparatus for applying ultrafine liquid particles
JPS6335779A (en) Film forming device
JPS61221377A (en) Plasma cvd device
JPS62131510A (en) Fine particle spraying device
JPS62116771A (en) Film forming device
JPS6381824A (en) Control of fine particle flow
JPH09209143A (en) Film forming device and method therefor
EP4364177A1 (en) Method for manufacturing an emitter for electrospray generators
JPS62115825A (en) Fine particle flow controller