[go: up one dir, main page]

JPS62290861A - Titanium compound coated material having superior film adhesion and wear resistance - Google Patents

Titanium compound coated material having superior film adhesion and wear resistance

Info

Publication number
JPS62290861A
JPS62290861A JP13107986A JP13107986A JPS62290861A JP S62290861 A JPS62290861 A JP S62290861A JP 13107986 A JP13107986 A JP 13107986A JP 13107986 A JP13107986 A JP 13107986A JP S62290861 A JPS62290861 A JP S62290861A
Authority
JP
Japan
Prior art keywords
coating
adhesion
layer
wear resistance
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13107986A
Other languages
Japanese (ja)
Inventor
Kazuhiro Suzuki
一弘 鈴木
Masao Iguchi
征夫 井口
Ujihiro Nishiike
西池 氏裕
Yasuhiro Kobayashi
康宏 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13107986A priority Critical patent/JPS62290861A/en
Publication of JPS62290861A publication Critical patent/JPS62290861A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To obtain a Ti compound coated material having superior wear resistance and film adhesion by forming an inner layer of metallic Ti having a prescribed thickness and an outer layer of a specified Ti compound on the surface of substrate. CONSTITUTION:Ti is evaporated and a metallic Ti layer having >=0.05mum thickness is formed as an inner layer on the surface of a substrate of high-speed steel or the like by a reactive ion plating method utilizing hollow cathode discharge. A coating layer of one or more kinds of Ti compounds selected among TiN, TiC and Ti (C, N) is then formed as an outer layer with gaseous N2, gaseous C2H2 or a gaseous C2H2-N2 mixture as a reactive gas. Thus, the adhesion of the resulting film can be improve without lowering the hardness or deteriorating the wear resistance. The Ti compound coated material is especially suitable for a cutting tool or a metallic mold.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) この発明(ま、被膜密着性および耐摩耗性に侵れたチタ
ン化合物被覆材に関し、とくにスローアウェイチップや
金型などの工具にチタン化合物を密着性良く被覆させる
ことによって耐摩耗性の向上を図ったものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) This invention relates to a titanium compound coating material that has poor film adhesion and wear resistance, and is particularly applicable to indexable chips and molds. The abrasion resistance of the tool is improved by coating the tool with a titanium compound with good adhesion.

(従来の技術) 従来から、金属材料に耐食性や耐摩耗性などの性質を付
与するために、窒化チタン、炭化チタンなどのセラミッ
ク膜を物理蒸着法や化学蒸着法によって被覆することが
行われている。
(Prior art) Conventionally, in order to impart properties such as corrosion resistance and wear resistance to metal materials, ceramic films such as titanium nitride and titanium carbide have been coated using physical vapor deposition or chemical vapor deposition. There is.

しかしながら、従来法で得られた被膜は、基材との密着
性が不充分で、特に膜厚が5μm以上の厚膜になると、
基材との熱膨張率の差によって生じる熱的応力や薄膜内
の結晶のひずみによる残留応力が犬となって、膜のは(
離が生じ易くなる欠点があった。
However, the films obtained by conventional methods have insufficient adhesion to the substrate, especially when the film thickness is 5 μm or more.
Thermal stress caused by the difference in thermal expansion coefficient with the base material and residual stress caused by crystal distortion within the thin film act as a dog, causing the film to become (
There was a drawback that separation was likely to occur.

この点を解決するものとして、基材への印加電圧を堆積
される膜厚に応じて制御する方法(特開昭60−967
54号公報)や、同様に膜厚に応じて基板温度を制御す
る方法(特開昭57−104661号公報)などが提案
されている。
To solve this problem, a method of controlling the voltage applied to the base material according to the thickness of the deposited film (Japanese Patent Laid-Open No. 60-967
54) and a method of similarly controlling the substrate temperature according to the film thickness (Japanese Unexamined Patent Publication No. 104661/1983).

上述の方法によれば密着性が向上し、30μm程度の厚
膜被覆が可能となったが、いずれの手法においても通常
法と比較すると、被膜の表面近傍の結晶組織が緻密でな
くなるために硬度が低下し、耐摩耗性の点で問題があっ
た。
The above-mentioned method improves adhesion and makes it possible to coat a thick film of approximately 30 μm. However, in both methods, when compared with the conventional method, the crystal structure near the surface of the film becomes less dense, resulting in a decrease in hardness. There was a problem in terms of wear resistance.

その池基材に予め高融点金属めっきを行ってからPVD
を行う手法も公開されている(特開昭59−17812
2号公報)。しかしながらこの手法では中間層の形成手
段として湿式めっきという工程が新たに加わるために、
経済的な面や廃液処理等の環境(IF生上の面で著しく
不利となるだけでなく、新たな工程の増加のほどには密
着性向上の実効は得られないところに問題を残していた
The pond base material is plated with a high melting point metal in advance and then PVD is applied.
A method for doing this has also been published (Japanese Patent Application Laid-Open No. 59-17812
Publication No. 2). However, this method adds a new process called wet plating as a means of forming the intermediate layer.
Not only was it extremely disadvantageous in terms of economics and the environment such as waste liquid treatment (IF production), but it also left a problem in that it was not as effective in improving adhesion as the number of new processes increased. .

(発明が解決しようとする問題点) 上述したように、現在までのところ、被膜密着性および
耐摩耗性とも充分に満足のいく程のセラミック被覆工具
は存在せず、その開発が要望されていた。
(Problems to be Solved by the Invention) As mentioned above, to date, there has been no ceramic-coated tool that is fully satisfactory in both film adhesion and wear resistance, and there has been a demand for the development of such a tool. .

この発明は、上述した現状に鑑みて開発されたもので、
被膜硬度の低下ひいては耐摩耗性の劣化を招く不利なし
に、被膜密着性を向上させた新規なセラミック被覆材を
提案することを目的とする。
This invention was developed in view of the above-mentioned current situation.
The object of the present invention is to propose a new ceramic coating material with improved coating adhesion without the disadvantage of decreasing coating hardness and thus deteriorating wear resistance.

(問題点を解決するための手段) すなわちこの発明は、基体表面に、内層として厚み: 
0.05μm以上の金属チタン層と、外層として該金属
チタン層に重ねて被成したTiN、 TiCないしTi
(C,N)の少なくとも一種よりなるチタン化合物の被
覆層とをそなえることを特(敦とする、被膜密着性およ
び耐摩耗性に浸れたチタン化合物被覆相である。
(Means for Solving the Problems) That is, the present invention provides an inner layer with a thickness of:
A metal titanium layer of 0.05 μm or more, and a TiN, TiC or Ti layer formed over the metal titanium layer as an outer layer.
It is a titanium compound coating phase that is characterized by having a coating layer of a titanium compound made of at least one of (C,N), and has excellent coating adhesion and wear resistance.

この発明において、内層の金属チタンの層の厚みが0.
05μmに満たないとこの発明で所期した程の良好な被
覆密着性が得られないので、金属チタン被膜厚は0.0
5μm以上より好ましくは0.2 μm以上の範囲量こ
限定した。なおその上限は2μm程度とするのが好まし
い。
In this invention, the thickness of the inner metallic titanium layer is 0.
If the thickness is less than 0.05 μm, good coating adhesion as expected in this invention cannot be obtained, so the metallic titanium coating thickness should be 0.0 μm.
The amount is limited to a range of 5 μm or more, preferably 0.2 μm or more. Note that the upper limit is preferably about 2 μm.

また、外層であるチタン化合物被膜の膜厚は、1.0〜
20μm程度が好適である。
In addition, the thickness of the titanium compound coating that is the outer layer is 1.0~
Approximately 20 μm is suitable.

さて薄膜の密着性は、薄膜と基材との結晶整合性や、薄
膜内の内部応力、そして被覆時の基材への印加電圧に依
存すると考えられるが、内層として金属チタン(以下T
1で示す)を利用した場合、このT1被膜は、基材並び
に外層のチタン化合物それぞれに対し結晶整合性が良く
チタン原子はそれぞれに拡散し、しかも密着性を劣化さ
せる金属間化合物を生成することもない。さらに外層の
チタン化合物内の内部応力を緩和させる段溝も併せもつ
ことが判明した。
The adhesion of a thin film is thought to depend on the crystal consistency between the thin film and the base material, the internal stress within the thin film, and the voltage applied to the base material during coating.
1), this T1 coating has good crystal consistency with the titanium compounds of the base material and the outer layer, and the titanium atoms diffuse to each, and moreover, it generates intermetallic compounds that deteriorate adhesion. Nor. It was also discovered that the material also has grooves that relieve internal stress within the titanium compound of the outer layer.

また、一般に基材への印加電圧が高いほど、薄膜の基は
への付着力は向上し、硬度も増加する。
In addition, generally, the higher the voltage applied to the base material, the better the adhesion of the thin film to the base material and the higher the hardness.

しかし同時に薄膜内の結晶格子歪が増大して内部応力が
増し、はく離し易くなる。そのため基材への印加電圧に
は、それぞれの膜厚、膜質に応じた適正電圧が存在する
However, at the same time, crystal lattice strain within the thin film increases, internal stress increases, and peeling becomes easier. Therefore, for the voltage applied to the base material, there is an appropriate voltage depending on the respective film thickness and film quality.

以下、この発明を由来するに至った実験結果について説
明する。実験は、イオンブレーティング法として、ホロ
ーカソード放電を利用した反応性イオンブレーティング
法を代表例として採用し、5US304鋼を基材として
内層にTi並びに外層に、窒化チタン(TiN)を被覆
することによって行った。
Below, the experimental results that led to this invention will be explained. In the experiment, a reactive ion brating method using hollow cathode discharge was adopted as a representative example of the ion blating method, and 5US304 steel was used as the base material, and the inner layer was coated with Ti and the outer layer was coated with titanium nitride (TiN). It was done by

まずアルゴンガスを導入してホローカソード放電を生じ
させ、ホローカソードから低電圧大電流の電子ビームを
蒸発源に導入してT1を蒸発させた。
First, argon gas was introduced to generate a hollow cathode discharge, and a low voltage and large current electron beam was introduced from the hollow cathode into the evaporation source to evaporate T1.

その時に不活性ガスあるいは反応性窒素ガスを導入して
ガスや蒸気をイオン化して基材にT1やT + Nを析
出させた。
At that time, an inert gas or reactive nitrogen gas was introduced to ionize the gas or vapor to deposit T1 or T + N on the substrate.

第1図に、基材印加電圧:マイナス100vにて内層T
iを被覆し、引き続いて反応性窒素ガスを導入し、印加
電圧:マイナス20VにてTiNを10μm厚に被覆し
た際の、内層T1の膜厚と被膜密着性との関係について
調べた結果を示す。なお内層Ti被膜厚並びに外層Ti
N被膜厚は予め較正された膜厚モニターによって被覆処
理中に測定した。また密着性は、液体窒素中に5分間浸
漬し、その時の表面の単位面積当たりのはく離数によっ
て評価した。
In Figure 1, the inner layer T is
The results of investigating the relationship between the film thickness of the inner layer T1 and film adhesion when coating TiN with a thickness of 10 μm by introducing reactive nitrogen gas and applying a voltage of -20 V are shown. . Note that the inner layer Ti coating thickness and outer layer Ti
N coating thickness was measured during the coating process by a pre-calibrated coating thickness monitor. Adhesion was evaluated by immersing the film in liquid nitrogen for 5 minutes and determining the number of peels per unit area of the surface at that time.

同図より明らかなように、内層T1被膜厚が0.05μ
m以上の場合に良好な密着性が得られた。
As is clear from the figure, the inner layer T1 coating thickness is 0.05μ
Good adhesion was obtained when the thickness was m or more.

第2図に、内層T1を0.5 μm厚に被覆し、引続い
てTiNを印加電圧マイナス20で10μm厚に被覆し
た際の、内層TI被被覆−おける印加電圧と密着性との
関係について調べた結果を示す。
Figure 2 shows the relationship between the applied voltage and adhesion in the inner layer T1 when the inner layer T1 is coated with a thickness of 0.5 μm and then TiN is coated with an applied voltage of minus 20 μm to a thickness of 10 μm. The results of the investigation are shown below.

同図より明らかなように印加電圧がマイナス20■から
マイナス1000 Vの範囲において良好な被膜密着性
が得られた。
As is clear from the figure, good film adhesion was obtained when the applied voltage was in the range of -20 V to -1000 V.

次に第3図に、印加電圧をマイナス100■にして内層
Tiを0.5 μm厚に被覆し、引続き種々の印加電圧
で外層TiNを10μm厚に被覆した際の、外層TiN
被覆時における印加電圧と密着性および被膜硬度との関
係について調べた結果を示す。
Next, Figure 3 shows how the outer layer TiN was coated with the inner layer Ti to a thickness of 0.5 μm at an applied voltage of -100μ, followed by the outer layer TiN coated with a thickness of 10 μm at various applied voltages.
The results of an investigation into the relationship between the applied voltage during coating, adhesion, and film hardness are shown.

被膜硬度はヌープ圧子(荷重25g)を用い測定した。The film hardness was measured using a Knoop indenter (load: 25 g).

同図より明らかなように、印加電圧の絶対値が大になる
につれて、密着性は劣化する。一方被膜硬度は印加電圧
の絶対値が大きいほど大である。
As is clear from the figure, as the absolute value of the applied voltage increases, the adhesion deteriorates. On the other hand, the coating hardness increases as the absolute value of the applied voltage increases.

この理由は、印加電圧が大になるにつれて被膜内圧縮内
部応力が増加するためと考えろれる。従って印加電圧は
マイナス5■からマイナス500■までの間より好まし
くはマイナスIOVからマイナス30Vまで程度とする
のが好適である。
The reason for this is thought to be that as the applied voltage increases, the compressive internal stress within the film increases. Therefore, it is preferable that the applied voltage be between -5 cm and -500 cm, more preferably between -IOV and -30 V.

以上の実験より、この発明に従って基材表面にTIつい
でTiNを被覆する場合、まず内層Ti被膜の被覆に際
しては、その膜厚は0.05μm以上望ましくは0.2
μm以上で、印加電圧が−20Vから−1000■望ま
しくは−90Vから一130■までの間、一方外層Ti
Nの被覆に際しては、印加電圧は一5Vから−500V
望ましくは−10Vから−30Vまでの範囲で行うこと
がとりわけ有利であることが判明した。
From the above experiments, when coating the substrate surface with Ti and then TiN according to the present invention, firstly, when coating the inner layer Ti coating, the film thickness is 0.05 μm or more, preferably 0.2 μm or more.
μm or more, the applied voltage is between -20V and -1000cm, preferably between -90V and -1130cm, while the outer layer Ti
When coating with N, the applied voltage ranges from -5V to -500V.
It has proven particularly advantageous to operate preferably in the range -10V to -30V.

なお上記の実験では、T1被膜を被覆後、反応性N2ガ
スのみを導入してTiNの被覆を施す場合について主に
説明したが、反応ガスとしては、C2H2ガスやC2H
2とN2との混合ガスを用いることもてき、かくして外
層被膜としては、TiNの他炭化チタン(TiC)や、
炭窒化チタン〔Ti (C,N> Eを1吏用すること
もできる。その際の内NT1の好適膜厚や、内層T11
外層チタン化合物蒸着時の印加電圧の好適範囲は上記の
TiNの場合とほぼ同様である。
In the above experiment, we mainly explained the case where TiN coating is applied by introducing only reactive N2 gas after coating with T1 film, but as the reactive gas, C2H2 gas or C2H gas
It is also possible to use a mixed gas of 2 and N2, and thus the outer coating can be made of TiN, titanium carbide (TiC),
Titanium carbonitride [Ti (C, N> E) can also be used. In this case, the preferred film thickness of the inner layer T11 and
The preferred range of the applied voltage during vapor deposition of the outer layer titanium compound is almost the same as in the case of TiN described above.

さらに上記の実験では、イオンブレーティング法として
、ホローカソード放電を利用した反応性イオンブレーテ
ィング法(H9C,D、  法)を用いた場合について
主に説明したが、内層T1被膜および外層チタン化合物
被膜の被覆法は、H,C,D、法に限られるものではな
く、たとえば高周波励起イオンブレーティング法やフル
ティアーク法などを利用することもてきる。
Furthermore, in the above experiment, we mainly explained the case where the reactive ion blating method (H9C, D, method) using hollow cathode discharge was used as the ion blating method, but the inner layer T1 coating and the outer layer titanium compound coating were The coating method is not limited to the H, C, and D methods, and for example, a high frequency excited ion blating method, a flute arc method, etc. can also be used.

ちなみに高周波イオンブレーティング法を利用したとき
の、内層T1被被膜覆時における印加電圧の好適範囲は
−500〜−1000V、まだ外層膜被覆時における好
適印加電圧は−200〜−500(7度である。
By the way, when using the high frequency ion blating method, the preferred range of applied voltage when coating the inner layer T1 is -500 to -1000V, and the preferred range of applied voltage when coating the outer layer is -200 to -500 (at 7 degrees). be.

(作 用) この発明に従いチタン化合物の被覆に先立って、T1被
膜を被成することによって、耐摩耗性を劣化させること
なしに密着性の向上が達成できるのに次の理由によるも
のと推察される。
(Function) Although it is possible to improve adhesion without deteriorating wear resistance by forming a T1 film prior to coating with a titanium compound according to the present invention, it is presumed that this is due to the following reasons. Ru.

それは、T1の下地被++qが通常の硬度を有する外層
のチタン化合物(tlv・3000以上)及び母財にそ
れぞれ密着性良く接合し、しかも外型の被膜内内祁応力
を緩和させる機構をもつことによるものと推察される。
The reason is that the T1 base coating ++q has a mechanism that adheres well to the outer layer titanium compound (tlv 3000 or more) having normal hardness and the base material, and also relieves internal stress within the outer mold coating. It is assumed that this is due to the following.

(実施例) 実施例1 ホローカソード放電を用いた活性化反応イオンブレーテ
ィング法により、高速度鋼5KII−llのスローアウ
ェイチップの表面にTIついでTiNを被覆した。被覆
条件は表1に示したとおりである。
(Example) Example 1 The surface of an indexable tip made of high speed steel 5KII-ll was coated with TI and then TiN by an activated reaction ion blating method using hollow cathode discharge. The coating conditions are as shown in Table 1.

得られた各スローアウェイチップを用いて、直径?On
+mの545C焼ならし材(Hvl、67)を被切削財
として、切り込み:1.5mm、送り: 0.15m1
Tl/rev、切削速度: 30m/minの条件で切
削試験を行った。
Diameter using each indexable tip obtained? On
+m 545C normalized material (Hvl, 67) as the material to be cut, depth of cut: 1.5 mm, feed: 0.15 m1
A cutting test was conducted under conditions of Tl/rev and cutting speed: 30 m/min.

かような連続切削試験を行った時の横逃げ面摩耗幅およ
びクレータ−摩耗深さについて調べた結果を、第4図お
よび第5図に示す。
The results of investigating the side flank wear width and crater wear depth when such a continuous cutting test was conducted are shown in FIGS. 4 and 5.

第4.5図より明らかなように、この発明に従うチタン
化合物被覆材(記号Δ〜D)はいずれも、比較例と比べ
て大きな耐摩耗性を呈し、また無処理材と比較すると同
じ摩耗量では2〜3倍の寿命時間を示した。
As is clear from Figure 4.5, all the titanium compound coating materials (symbols Δ to D) according to the present invention exhibit greater wear resistance than the comparative examples, and have the same amount of wear when compared to the untreated material. The lifespan was 2 to 3 times longer.

さらに表1に示したように摩耗状態もすべて正常摩耗で
比較例に見られるようなはく離は認められなかった。
Further, as shown in Table 1, all wear conditions were normal and no peeling was observed as seen in the comparative example.

実施例2 高周波励起イオンブレーティング法により、表2に示し
た条件で、P40グレードの切削用スローアウェイチッ
プにTiついでTi(C,N) (TicO,sNo、
 4)の被覆を刃径した。
Example 2 A P40 grade cutting indexable tip was coated with Ti and then Ti(C,N) (TicO, sNo,
4) The coating was applied to the blade diameter.

かくして得られた各被膜付きスローアウェイチップを用
いて、被切削は:JIS  −Fe12 (硬さ H3
:180) 、切削速度: 200m/min、切り込
み:2mm、送り:45mm/rev、チップ形状: 
SNMN432の条件下に切削試験を行い、その寿命時
間を測定した。その結果を表2に併せて示す。
Using each coated indexable tip obtained in this way, the workpiece to be cut is: JIS-Fe12 (hardness H3
:180), Cutting speed: 200m/min, Depth of cut: 2mm, Feed: 45mm/rev, Chip shape:
A cutting test was conducted under the conditions of SNMN432, and the life time was measured. The results are also shown in Table 2.

この発明に従う被覆チップ(記号A−D)はいずれも、
比較材X−Zに比べて長寿命を示し、かつはく離は認め
られずすべて正常摩耗であった。
The coated chips (symbols A-D) according to the invention all have
It exhibited a longer service life than Comparative Material X-Z, and no peeling was observed, indicating normal wear in all cases.

(発明の効果) かくしてこの発明によれば、耐摩耗性および被膜密着性
とも浸れたチタン化合物被覆材をfGることができ、と
くに切削工具や金型などの用途に適用して偉効を奏する
(Effects of the Invention) Thus, according to the present invention, it is possible to fG a titanium compound coating material that has both wear resistance and film adhesion, and is particularly effective when applied to cutting tools, molds, etc. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、内層Ti被膜厚と密着性との関係を示したグ
ラフ、 第2図は、内層Ti被膜被覆時における印加電圧と密着
性との関係を示したグラフ、 第3図は、外層TAN被膜被覆時における印加電圧と密
着性および被膜硬度との関係を示したグラフ、 第4図は、切削時間とフランク摩耗との関係を示したグ
ラフ、 第5図は、切削時間とクレータ−摩耗との関係を示した
グラフである。 特許出願人 川崎・製鉄株式会社 1よ<離数(個/crn’) 纏            昶 〜                 If<  lk
敦(肴1/とm′)           −碇 6口 瑛 ≧
Figure 1 is a graph showing the relationship between the inner layer Ti film thickness and adhesion. Figure 2 is a graph showing the relationship between the applied voltage and adhesion when coating the inner layer Ti film. Figure 3 is the outer layer Ti film thickness. A graph showing the relationship between applied voltage, adhesion, and film hardness during TAN coating. Figure 4 is a graph showing the relationship between cutting time and flank wear. Figure 5 is a graph showing the relationship between cutting time and crater wear. This is a graph showing the relationship between Patent Applicant Kawasaki Steel Corporation 1<Return Number (pcs/crn') If<lk
Atsushi (appetizer 1/ and m') - Ikari 6 kuchei ≧

Claims (1)

【特許請求の範囲】[Claims] 1、基体表面に、内層として厚み:0.05μm以上の
金属チタン層と、外層として該金属チタン層に重ねて被
成したTiN、TiCないしTi(C、N)の少なくと
も一種よりなるチタン化合物の被覆層とをそなえること
を特徴とする、被膜密着性および耐摩耗性に優れたチタ
ン化合物被覆材。
1. A titanium compound consisting of a metallic titanium layer with a thickness of 0.05 μm or more as an inner layer and at least one of TiN, TiC or Ti (C, N) formed on the surface of the substrate, overlapping the metallic titanium layer as an outer layer. A titanium compound coating material with excellent film adhesion and wear resistance, characterized by comprising a coating layer.
JP13107986A 1986-06-07 1986-06-07 Titanium compound coated material having superior film adhesion and wear resistance Pending JPS62290861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13107986A JPS62290861A (en) 1986-06-07 1986-06-07 Titanium compound coated material having superior film adhesion and wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13107986A JPS62290861A (en) 1986-06-07 1986-06-07 Titanium compound coated material having superior film adhesion and wear resistance

Publications (1)

Publication Number Publication Date
JPS62290861A true JPS62290861A (en) 1987-12-17

Family

ID=15049495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13107986A Pending JPS62290861A (en) 1986-06-07 1986-06-07 Titanium compound coated material having superior film adhesion and wear resistance

Country Status (1)

Country Link
JP (1) JPS62290861A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020104224A (en) * 2018-12-27 2020-07-09 三菱マテリアル株式会社 Surface-coated cutting tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020104224A (en) * 2018-12-27 2020-07-09 三菱マテリアル株式会社 Surface-coated cutting tool

Similar Documents

Publication Publication Date Title
US6210726B1 (en) PVD Al2O3 coated cutting tool
US5679448A (en) Method of coating the surface of a substrate and a coating material
US5310607A (en) Hard coating; a workpiece coated by such hard coating and a method of coating such workpiece by such hard coating
JP2644710B2 (en) Abrasion resistant coating
EP2276874B1 (en) A coated cutting tool and a method of making thereof
JP5416206B2 (en) Tool with metal oxide coating
EP2201154B1 (en) Method of producing a layer by arc-evaporation from ceramic cathodes
KR930010710B1 (en) Surface-coated hard member for cutting tools or wear-resistant tools
CN110945156A (en) Coated cutting tool and method of making same
EP3394312B1 (en) A coated cutting tool and method
JP4155641B2 (en) Abrasion resistant coating, method for producing the same, and abrasion resistant member
KR20100034013A (en) Tool with multilayered metal oxide coating and method for producing the coated tool
JP4171099B2 (en) Hard film with excellent wear resistance
JP3572728B2 (en) Hard layer coated cutting tool
CN114945708B (en) PVD coated cemented carbide cutting tool with improved coating adhesion
JPH04297568A (en) Surface coated member excellent in wear resistance and formation of film
JPS62290861A (en) Titanium compound coated material having superior film adhesion and wear resistance
KR930010709B1 (en) Surface-coated hard member having excellent abrasion resistance
JP3572732B2 (en) Hard layer coated cutting tool
JPH08281502A (en) Crystal orientating coated tool
CN116583618A (en) Wear resistant coating made from at least two different AlCr-based targets
JPH11246961A (en) Coated tool with laminated film and its production
KR960006051B1 (en) Diamond film coating method of cutting tool
JPH0250948A (en) Conjugated super hard material
JP2001322004A (en) Surface coated cemented carbide cutting tool with excellent wear resistance