JPS62288460A - Heat pump - Google Patents
Heat pumpInfo
- Publication number
- JPS62288460A JPS62288460A JP13174686A JP13174686A JPS62288460A JP S62288460 A JPS62288460 A JP S62288460A JP 13174686 A JP13174686 A JP 13174686A JP 13174686 A JP13174686 A JP 13174686A JP S62288460 A JPS62288460 A JP S62288460A
- Authority
- JP
- Japan
- Prior art keywords
- heat source
- source water
- temperature
- heat
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat-Pump Type And Storage Water Heaters (AREA)
- Central Heating Systems (AREA)
- Control Of The Air-Fuel Ratio Of Carburetors (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
3、発明の詳細な説明
〔産業上の利用分野〕
本発明は、熱源水を多量かつ長距離にわたって移送する
場合、熱源水ポンプ動力がヒートポンプ動力に比べ無視
できないヒートポンプや限られた量の自然水を、熱源水
として利用するヒートポンプに関するものである。Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention is directed to a heat pump or a heat pump in which the power of the heat source water pump is not negligible compared to the heat pump power when a large amount of heat source water is transferred over a long distance. This invention relates to a heat pump that uses a limited amount of natural water as a heat source.
従来、このような自然水を利用したヒートポンプにより
冷水および温水を製造する場合、部分負荷や暖房時の熱
源水水温の上昇または、冷房時の熱源水の低下などに対
しては圧縮機のサクションベーン調節などの適当な容量
制御機構を作動せしめて負荷側からの要求に対応するが
、凝縮器および蒸発器に対する熱源水の供給量は全負荷
時の流量と同じとしていた。Conventionally, when producing cold water and hot water using heat pumps that use natural water, the suction vanes of the compressor are used to deal with increases in heat source water temperature during partial loads or heating, or decreases in heat source water during cooling. Appropriate capacity control mechanisms such as adjustments were activated to respond to demands from the load side, but the amount of heat source water supplied to the condenser and evaporator was the same as the flow rate at full load.
しかしながら、上記の如き従来のものにおいては、負荷
の大きさや熱源水水温の変化に拘らず熱源水の取水量が
一定であるため、熱源水ポンプ動力を低減することがで
きず、また熱源水水量に限度がある場合には、部分負荷
や熱源水水温が変化する時には貴重な熱源水エネルギを
無駄に放流することとなり、エネルギの有効利用をはか
ることができなかった。However, in the conventional systems as described above, the amount of heat source water taken in is constant regardless of the size of the load or changes in the heat source water temperature, so it is not possible to reduce the power of the heat source water pump, and the amount of heat source water is If there is a limit to the amount of heat source water, valuable heat source water energy is wasted when the partial load or heat source water temperature changes, making it impossible to use energy effectively.
本発明は、従来のものの上記の問題点を解決し、熱源水
ポンプ動力の低減をはかり、かつ熱源水の有する有効な
熱を未利用のまま放出することを防ぐことにより、エネ
ルギのを効利用をはかることができるヒートポンプを提
供することを目的とするものである。The present invention solves the above-mentioned problems of the conventional ones, reduces the power of the heat source water pump, and prevents the effective heat of the heat source water from being released unused, thereby making effective use of energy. The purpose is to provide a heat pump that can measure the
本発明は、従来のものの上記の問題点を解決するための
手段として、自然水を冷熱および?A熱用の熱源水とす
るヒートポンプにおいて、前記熱源水の取水量を調節す
る流量調節機構と、前記熱源水の放流温度を検出し、該
放流温度が前記ヒートポンプに利用し得る所定の温度に
なるよう前記流N調節機構を操作して取水量を調節する
温度制御機構を備えたことを特徴とするヒートポンプを
提供せんとするものである。The present invention is a means for solving the above-mentioned problems of the conventional ones by using natural water for cooling and heating. In a heat pump that uses heat source water for heat A, a flow rate adjustment mechanism that adjusts the intake amount of the heat source water and a discharge temperature of the heat source water are detected, and the discharge temperature becomes a predetermined temperature that can be used by the heat pump. It is an object of the present invention to provide a heat pump characterized in that it is equipped with a temperature control mechanism that adjusts the amount of water intake by operating the flow N adjustment mechanism.
本発明は、上記の如く構成することにより、負荷が減少
した場合はそれに応じて取水量を減少せしめ、ヒートポ
ンプとして利用できる所定温度に熱源水温度が達するま
で熱源水の有する熱を利用し尽すようにするので、熱源
水ポンプ動力の低減と熱源水の消費量を最小限とするこ
とにより、有限な量のエネルギを有効に利用することが
できる。By configuring the present invention as described above, when the load decreases, the amount of water intake is reduced accordingly, and the heat possessed by the heat source water is fully utilized until the temperature of the heat source water reaches a predetermined temperature that can be used as a heat pump. Therefore, by reducing the power of the heat source water pump and minimizing the consumption of heat source water, a limited amount of energy can be used effectively.
本発明の実施例につき、温水を製造する場合、即ち温熱
源として熱源水を利用する場合の例を、図面を用いて説
明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Regarding embodiments of the present invention, an example of producing hot water, that is, using heat source water as a heat source, will be described with reference to the drawings.
第1図において1は圧縮機、2はその駆動機、3は凝縮
機、4は蒸発器、5はレシーバ、6は減圧弁、7は凝縮
器チューブ、8は温水入口管、9は温水出口管、10は
蒸発器チューブ、11は熱源水入口管、12は熱源水出
口管、13は熱源水ポンプであり、蒸発器4において熱
源水から得た熱を汲み上げて凝縮器3において温水に与
えるようになっている。In Fig. 1, 1 is a compressor, 2 is its driver, 3 is a condenser, 4 is an evaporator, 5 is a receiver, 6 is a pressure reducing valve, 7 is a condenser tube, 8 is a hot water inlet pipe, 9 is a hot water outlet 10 is an evaporator tube, 11 is a heat source water inlet pipe, 12 is a heat source water outlet pipe, and 13 is a heat source water pump, which pumps up the heat obtained from the heat source water in the evaporator 4 and gives it to hot water in the condenser 3. It looks like this.
負荷の状態を温水出口温度で検出し、温度調節器14に
より、温水出口温度が所定の温度となるように容量制御
機構15を操作して容量制御を行なうようになっている
。The load condition is detected by the hot water outlet temperature, and the capacity control mechanism 15 is controlled by the temperature regulator 14 so that the hot water outlet temperature becomes a predetermined temperature.
16は熱源水ポンプ13を駆動する駆動機であり、回転
速度を変えて流量を調節せしめるもので、熱源水ポンプ
13と共に熱源水の取水量をgJR節する流量調節機構
を形成している。17は熱源水出口管12における熱源
水の放流温度を検出し、この放流温度がヒートポンプに
利用し得る最低の所定の温度になるよう上記の流量調節
機構を操作して取水量を調節する温度制御機構としての
温度調節器である。Reference numeral 16 denotes a drive machine for driving the heat source water pump 13, which adjusts the flow rate by changing the rotational speed, and together with the heat source water pump 13, forms a flow rate adjustment mechanism that adjusts the intake amount of heat source water by gJR. Temperature control 17 detects the discharge temperature of the heat source water in the heat source water outlet pipe 12, and adjusts the amount of water intake by operating the flow rate adjustment mechanism so that the discharge temperature becomes the lowest predetermined temperature that can be used by the heat pump. It is a temperature regulator as a mechanism.
運転状態を説明するに、全負荷時において、熱源水ポン
プ13は定格回転数で回転し、その流量がWoであると
する。このとき取水量もWoであり、1発器4の入口に
おける熱源水入口温度は取水温度と同じであり、これを
tlとする。蒸発器4の出口における熱源水出口温度は
放水温度と同じであり、この温度がヒートポンプが利用
し得る最低の所定の温度t0となるよう、負荷に対して
流量W0が選択されている。To explain the operating state, it is assumed that at full load, the heat source water pump 13 rotates at the rated rotation speed and its flow rate is Wo. At this time, the water intake amount is also Wo, and the heat source water inlet temperature at the inlet of one generator 4 is the same as the water intake temperature, and this is set as tl. The heat source water outlet temperature at the outlet of the evaporator 4 is the same as the discharge water temperature, and the flow rate W0 is selected for the load so that this temperature becomes the lowest predetermined temperature t0 that can be used by the heat pump.
このとき、蒸発器4において冷媒に与える熱量をQoと
すれば、
Qo =Wo (j+ to ) +
11となる。At this time, if the amount of heat given to the refrigerant in the evaporator 4 is Qo, then Qo = Wo (j+ to ) +
It becomes 11.
次に温水負荷が部分負荷になった場合、温度調節器14
の作用により容量制御機構15が作用して例えば圧縮機
1のサクションベーンの開度を小となしてヒートポンプ
容量を減少せしめる。すると蒸発器4における熱の移動
量が減少し、熱源水出口温度(放流温度と同じ)はto
よりも大なる(2となる。Next, when the hot water load becomes a partial load, the temperature controller 14
Due to this action, the capacity control mechanism 15 acts to reduce the opening degree of the suction vane of the compressor 1, for example, to reduce the heat pump capacity. Then, the amount of heat transferred in the evaporator 4 decreases, and the heat source water outlet temperature (same as the discharge temperature) becomes to
is greater than (2).
このとき熱源水が冷媒に与える熱量をQ、とすると、
Q+ −Wo (t+ t2) (
21となる。このとき放流温度【2を検出し、温度調節
器17が作動して駆動器16、熱源水ポンプ13を操作
して流量を、放流温度が再びtoにまで下がる程度の流
! w + とする。At this time, if the amount of heat given by the heat source water to the refrigerant is Q, then Q+ -Wo (t+ t2) (
It will be 21. At this time, the discharge temperature [2] is detected, and the temperature regulator 17 is activated to operate the driver 16 and the heat source water pump 13 to adjust the flow rate to such an extent that the discharge temperature drops to to again! Let w+.
このとき熱源水が冷媒に与える熱量は(2)の場合と同
じQ、であり、温度との関係は、
Q+ −W+ (t+ to) (3
1となる。即ち、:fL量Wlは、
1、 −1゜
となる。At this time, the amount of heat given by the heat source water to the refrigerant is Q, which is the same as in case (2), and the relationship with temperature is Q+ -W+ (t+ to) (3
It becomes 1. That is, the :fL amount Wl is 1.-1°.
このとき、熱源水の熱がヒートポンプが利用し得る範囲
の最大限まで有効に利用されると共に、流量が減少した
こと、及び流量減少に伴ない配管系の抵抗が減少したこ
とにより熱源水ポンプ13の駆動動力が減少し、省エネ
ルギをはかることができる。At this time, the heat of the heat source water is effectively used to the maximum extent that can be used by the heat pump, the flow rate is reduced, and the resistance of the piping system is reduced due to the decrease in the flow rate, so the heat source water pump 13 The driving power is reduced, which can save energy.
ヒートポンプ側の動力は、蒸発器4の出口温度に関係す
る熱源水の出口温度がL2から1゜に下がることにより
増大するが、熱源水移送用の動力の減少量が大きい場合
には、全体として動力は減少し省エネルギをはかること
ができる。The power on the heat pump side increases when the outlet temperature of the heat source water, which is related to the outlet temperature of the evaporator 4, decreases from L2 to 1°, but if the amount of decrease in the power for transferring the heat source water is large, the overall Power is reduced and energy can be saved.
第2図の上半分は熱源水ポンプ13の駆動動力、下半分
はヒートポンプ動力を示し、(a)は全負荷に対する設
計時の動力を示す、(b)は部分負荷における従来のも
のの動力を示し、ヒートポンプ動力が6M8だけ減少し
ているが、熱源水ポンプ動力は減少していない、同図の
(C)には本実施例における場合を示し、ヒートポンプ
動力は(b)に比べ6M0だけ増大しているが、熱源水
ポンプ動力はΔM、だけ減少しており、ΔM、>ΔM、
pなる場合は全体として従来のものよりも動力が減少し
省エネルギをはかることができる。The upper half of Figure 2 shows the driving power of the heat source water pump 13, and the lower half shows the heat pump power, where (a) shows the power at the time of design for full load, and (b) shows the power of the conventional one at partial load. , the heat pump power has decreased by 6M8, but the heat source water pump power has not decreased. (C) of the figure shows the case in this example, and the heat pump power has increased by 6M0 compared to (b) However, the heat source water pump power decreases by ΔM, and ΔM, > ΔM,
In the case of p, the power is reduced as a whole compared to the conventional one, and energy saving can be achieved.
第3図は熱源水ポンプの動力がヒートポンプの動力に比
べ、無視できる場合で、熱源水の消費量を最小限とする
場合の実施例を示し、熱源水入口管11と熱源水出口管
12との間にバイパス18を設け、蒸発器入口管19、
蒸発器チューブ10、蒸発器出口管20、三方弁21バ
イパス18、熱源水ポンプ13の流路を巡って、一部の
熱源水を循環せしめる。FIG. 3 shows an example in which the power of the heat source water pump is negligible compared to the power of the heat pump, and the consumption of heat source water is minimized. A bypass 18 is provided between the evaporator inlet pipe 19,
A portion of the heat source water is circulated through the flow paths of the evaporator tube 10, the evaporator outlet pipe 20, the three-way valve 21 bypass 18, and the heat source water pump 13.
22は、蒸発器出口管20の熱源水温度(放流温度と同
じ)を検出し、この熱源水温度がヒートポンプに利用し
得る最低の所定の温度t0になるよう2it量調節機構
である三方弁21を操作して取水量を調節する温度制御
機構としての温度調節器である。22 is a three-way valve 21 which is a 2IT quantity adjustment mechanism that detects the heat source water temperature (same as the discharge temperature) of the evaporator outlet pipe 20 and adjusts the heat source water temperature to the lowest predetermined temperature t0 that can be used in the heat pump. This is a temperature regulator as a temperature control mechanism that adjusts the amount of water intake by operating the water.
全負荷の場合はバイパス1日を遮断し、この場合の熱源
水取水量は熱源水ポンプ13の流量W0(この実施例に
おいては熱源水ポンプ13は定流量ポンプである)と同
じであり、熱源水の取水温度と蒸発器入口温度は同じく
tlである。熱源水の蒸発器出口温度と放流温度は同じ
(、ヒートポンプとして利用可能な最低の所定温度であ
るtoとなるように前記の熱源水ポンプ13の流量W0
が選択されている。In the case of full load, the bypass 1st is cut off, and the heat source water intake amount in this case is the same as the flow rate W0 of the heat source water pump 13 (in this embodiment, the heat source water pump 13 is a constant flow pump), The water intake temperature and the evaporator inlet temperature are both tl. The flow rate W0 of the heat source water pump 13 is adjusted so that the evaporator outlet temperature and discharge temperature of the heat source water are the same (to, which is the lowest predetermined temperature that can be used as a heat pump).
is selected.
このとき、蒸発器4の冷媒に熱源水が与える熱量Q0は
、
Q* =Wo (tl to ) +
51となる。At this time, the amount of heat Q0 given by the heat source water to the refrigerant in the evaporator 4 is Q* = Wo (tl to ) +
It will be 51.
部分負荷の場合は、蒸発器4の熱源水出口温度が上昇し
て1zとなる。このとき冷媒に与える熱量Q、は、
Q+ =Wo (tl Lx ) +
61となる。そこで、この熱源水出口温度(熱源水放流
温度と同じ)を検出して温度調節器22が作動し、三方
弁21を操作してバイパス18に成る流fi w wを
流して熱源水に混入して、取水量を減少せしめ、かつ蒸
発器4の熱源水入口温度を低下せしめて熱源水出口温度
即ち放流温度を再びtoになるようにする。このとき、
バイパス18の流量W、は、
1、 −10
となり、熱源水の取水量W、は、
1、 −1゜
Ws =Wo (81
1、−10
となる。In the case of partial load, the temperature at the heat source water outlet of the evaporator 4 rises to 1z. At this time, the amount of heat Q given to the refrigerant is: Q+ = Wo (tl Lx) +
It becomes 61. Therefore, by detecting this heat source water outlet temperature (same as the heat source water discharge temperature), the temperature regulator 22 is activated, and the three-way valve 21 is operated to flow the flow fi w w that becomes the bypass 18 and mix it into the heat source water. Then, the water intake amount is reduced, and the heat source water inlet temperature of the evaporator 4 is lowered, so that the heat source water outlet temperature, that is, the discharge temperature, becomes to again. At this time,
The flow rate W of the bypass 18 is 1, -10, and the intake amount W of heat source water is 1, -1°Ws = Wo (81 1, -10).
第3図において、tpはバイパス18を用いたときの熱
源水ポンプ13における熱源水温度であり、tpを用い
ればバイパス18の流量W8及び熱源水の取水量W、は
、
t、−tp
w、 = −we (911、−1゜
となる。In FIG. 3, tp is the heat source water temperature in the heat source water pump 13 when the bypass 18 is used, and if tp is used, the flow rate W8 of the bypass 18 and the intake amount W of the heat source water are: t, -tp w, = -we (911, -1°.
このように、この実施例においても部分負荷時には取水
量を減少せしめて、熱源水の存する熱を有効に利用する
ことができる。In this manner, also in this embodiment, the amount of water intake is reduced during partial load, and the heat present in the heat source water can be effectively utilized.
本発明により、冷温水の供給負荷量が減少したり、熱源
水温度が変化してヒートポンプの運転が部分負荷の場合
に熱源水ポンプ動力の低減をはかり、かつ熱源水である
自然水の有する熱を十分利用し尽して有効利用すること
ができ、特に有限の自然水の場合エネルギの有効利用を
はかって無駄な損失を防ぐことができるヒートポンプを
提供することができ、実用上極めて大なる効果を奏する
。According to the present invention, when the supply load of cold and hot water decreases or when the heat source water temperature changes and the heat pump is operated at partial load, the power of the heat source water pump can be reduced, and the heat contained in natural water, which is the heat source water, can be reduced. It is possible to provide a heat pump that can make full use of energy and use it effectively, and in particular, in the case of limited natural water, can effectively utilize energy and prevent wasteful loss, which has an extremely large practical effect. play.
図面は本発明の実施例に関するもので、第1図はフロー
図、第2図は従来のものの動力との差異を示すダイヤグ
ラム、第3図は別の実施例のフロー図である。
■・・・圧縮機、2・・・駆動機、3・・・凝縮器、4
・・・蒸発器、5・・・レシーバ、6・・・残圧弁、7
・・・凝縮器チューブ、8・・・温水入口管、9・・・
温水出口管、IO・・・蒸発器チューブ、11・・・熱
源水入口管、12・・・熱源水出口管、13・・・熱源
水ポンプ、14・・・温度調節器、15・・・容量制御
機構、16・・・駆動機、17・・・温度調節器、18
・・・バイパス、19・・・蒸発器入口管、20・・・
蒸発器出口管、21・・・三方弁、22・・・温度調節
器。The drawings relate to an embodiment of the present invention; FIG. 1 is a flow diagram, FIG. 2 is a diagram showing the difference from the conventional power, and FIG. 3 is a flow diagram of another embodiment. ■...Compressor, 2...Driver, 3...Condenser, 4
...Evaporator, 5...Receiver, 6...Residual pressure valve, 7
...Condenser tube, 8...Hot water inlet pipe, 9...
Hot water outlet pipe, IO... Evaporator tube, 11... Heat source water inlet pipe, 12... Heat source water outlet pipe, 13... Heat source water pump, 14... Temperature controller, 15... Capacity control mechanism, 16...Driver, 17...Temperature controller, 18
...Bypass, 19...Evaporator inlet pipe, 20...
Evaporator outlet pipe, 21... Three-way valve, 22... Temperature controller.
Claims (1)
ンプにおいて、 前記熱源水の取水量を調節する流量調節機 構と、前記熱源水の放流温度を検出し、該放流温度が前
記ヒートポンプに利用し得る所定の温度になるよう前記
流量調節機構を操作して取水量を調節する温度制御機構
を備えたことを特徴とするヒートポンプ。[Claims] 1. A heat pump that uses natural water as a heat source water for cooling and heating, comprising: a flow rate adjustment mechanism that adjusts the intake amount of the heat source water; and a flow rate adjustment mechanism that detects the discharge temperature of the heat source water, and detects the discharge temperature of the heat source water. 1. A heat pump comprising: a temperature control mechanism that adjusts the amount of water taken in by operating the flow rate adjustment mechanism so that the water reaches a predetermined temperature that can be used by the heat pump.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61131746A JPH0814437B2 (en) | 1986-06-09 | 1986-06-09 | Heat pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61131746A JPH0814437B2 (en) | 1986-06-09 | 1986-06-09 | Heat pump |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62288460A true JPS62288460A (en) | 1987-12-15 |
JPH0814437B2 JPH0814437B2 (en) | 1996-02-14 |
Family
ID=15065219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61131746A Expired - Lifetime JPH0814437B2 (en) | 1986-06-09 | 1986-06-09 | Heat pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0814437B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006292313A (en) * | 2005-04-13 | 2006-10-26 | Nippon Steel Engineering Co Ltd | Geothermal unit |
JP2008008595A (en) * | 2006-06-30 | 2008-01-17 | Kansai Electric Power Co Inc:The | Heat pump type heat recovering device |
JP2009063267A (en) * | 2007-09-07 | 2009-03-26 | Nippon Steel Engineering Co Ltd | Ground heat exchanger and its using method, and ground heat utilizing system and its operating method |
JP2010249468A (en) * | 2009-04-20 | 2010-11-04 | Corona Corp | Geothermal heat pump device |
WO2015114839A1 (en) * | 2014-02-03 | 2015-08-06 | 三菱電機株式会社 | Cooling device and heat source equipment |
WO2015162679A1 (en) * | 2014-04-21 | 2015-10-29 | 三菱電機株式会社 | Refrigeration cycle device |
JP2016056993A (en) * | 2014-09-09 | 2016-04-21 | 株式会社竹中工務店 | Cooling system |
JP2016161248A (en) * | 2015-03-04 | 2016-09-05 | 富士電機株式会社 | Heat pump type steam generator and operation method of heat pump type steam generator |
JP2017048972A (en) * | 2015-09-02 | 2017-03-09 | 荏原冷熱システム株式会社 | Earth thermal heat source machine system, command determination method, and operational method for the earth thermal heat source machine system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6589946B2 (en) * | 2017-07-20 | 2019-10-16 | ダイキン工業株式会社 | Refrigeration equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5015149A (en) * | 1973-06-12 | 1975-02-18 | ||
JPS60144567A (en) * | 1984-01-06 | 1985-07-30 | サンデン株式会社 | Water heat-source heat pump |
-
1986
- 1986-06-09 JP JP61131746A patent/JPH0814437B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5015149A (en) * | 1973-06-12 | 1975-02-18 | ||
JPS60144567A (en) * | 1984-01-06 | 1985-07-30 | サンデン株式会社 | Water heat-source heat pump |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006292313A (en) * | 2005-04-13 | 2006-10-26 | Nippon Steel Engineering Co Ltd | Geothermal unit |
JP2008008595A (en) * | 2006-06-30 | 2008-01-17 | Kansai Electric Power Co Inc:The | Heat pump type heat recovering device |
JP2009063267A (en) * | 2007-09-07 | 2009-03-26 | Nippon Steel Engineering Co Ltd | Ground heat exchanger and its using method, and ground heat utilizing system and its operating method |
JP2010249468A (en) * | 2009-04-20 | 2010-11-04 | Corona Corp | Geothermal heat pump device |
WO2015114839A1 (en) * | 2014-02-03 | 2015-08-06 | 三菱電機株式会社 | Cooling device and heat source equipment |
JPWO2015114839A1 (en) * | 2014-02-03 | 2017-03-23 | 三菱電機株式会社 | Cooling device and heat source machine |
WO2015162679A1 (en) * | 2014-04-21 | 2015-10-29 | 三菱電機株式会社 | Refrigeration cycle device |
JPWO2015162679A1 (en) * | 2014-04-21 | 2017-04-13 | 三菱電機株式会社 | Refrigeration cycle equipment |
US9964343B2 (en) | 2014-04-21 | 2018-05-08 | Mitsubishi Electric Corporation | Refrigeration cycle apparatus |
JP2016056993A (en) * | 2014-09-09 | 2016-04-21 | 株式会社竹中工務店 | Cooling system |
JP2016161248A (en) * | 2015-03-04 | 2016-09-05 | 富士電機株式会社 | Heat pump type steam generator and operation method of heat pump type steam generator |
JP2017048972A (en) * | 2015-09-02 | 2017-03-09 | 荏原冷熱システム株式会社 | Earth thermal heat source machine system, command determination method, and operational method for the earth thermal heat source machine system |
Also Published As
Publication number | Publication date |
---|---|
JPH0814437B2 (en) | 1996-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180372384A1 (en) | Pressure spike reduction for refrigerant systems incorporating a microchannel heat exchanger | |
KR100847619B1 (en) | Heat pump water heater | |
CN201152945Y (en) | Temperature control apparatus with wide temperature region and high precision | |
JPS62288460A (en) | Heat pump | |
JP2003121024A (en) | Integrated heat source system | |
JP4610688B2 (en) | Air-conditioning and hot-water supply system and control method thereof | |
CN111380258A (en) | Air source heat pump heating system with phase change heat storage function and logic control method thereof | |
JPS6256427B2 (en) | ||
CN114165868A (en) | Air conditioning system control method and device, air conditioning flow path system and air conditioning system | |
JP2850882B2 (en) | Heat pump system | |
JPH09138024A (en) | Air conditioner | |
JPS6256428B2 (en) | ||
JPS58123046A (en) | Heat pump type hot water supplier | |
JPS61291868A (en) | Control system of operation of refrigerator | |
JP2906507B2 (en) | Heat pump water heater | |
JP2554137B2 (en) | How to operate the heat storage device | |
JPH0225094Y2 (en) | ||
JPS6155556A (en) | air conditioner | |
JPS6152914B2 (en) | ||
JPH01210771A (en) | Heat pump hot water heating and cooling equipment | |
JPH0225106B2 (en) | ||
JPH0289941A (en) | Heat storage type air conditioning device | |
JPS5960155A (en) | Heat engine driving heat pump device | |
JPH01269836A (en) | Method of independently controlling individual load in central cooling and heating system | |
JPS6325265B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |