[go: up one dir, main page]

JP2009063267A - Ground heat exchanger and its using method, and ground heat utilizing system and its operating method - Google Patents

Ground heat exchanger and its using method, and ground heat utilizing system and its operating method Download PDF

Info

Publication number
JP2009063267A
JP2009063267A JP2007233283A JP2007233283A JP2009063267A JP 2009063267 A JP2009063267 A JP 2009063267A JP 2007233283 A JP2007233283 A JP 2007233283A JP 2007233283 A JP2007233283 A JP 2007233283A JP 2009063267 A JP2009063267 A JP 2009063267A
Authority
JP
Japan
Prior art keywords
heat
flow rate
heat exchanger
flow
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007233283A
Other languages
Japanese (ja)
Inventor
Yasushi Nakamura
靖 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2007233283A priority Critical patent/JP2009063267A/en
Publication of JP2009063267A publication Critical patent/JP2009063267A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/15Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using bent tubes; using tubes assembled with connectors or with return headers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T2010/50Component parts, details or accessories
    • F24T2010/56Control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve comprehensive efficiency in a ground heat utilizing system. <P>SOLUTION: The ground heat utilizing system is provided with a plurality of the ground heat exchangers 100 buried in the ground, a heat pump 200 for carrying out heat collection and radiation via a heating medium circulated in each ground heat exchanger 100, an air conditioner 300 heating or cooling a room via a load side heating medium heated or cooled by the heat pump 200, a circulating pump 400 for circulating the heating medium in each ground heat exchanger 100, and a control panel 500 carrying out current transformation amount control of the circulating pump 400. The ground heat exchanger 100 is composed of a hollow pipe body 1, and plural sets of U-tubes 2 housed in the hollow pipe body 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、大地の地中熱を熱源として利用し、地中熱交換器に熱媒を循環させて採放熱することにより、負荷側に温熱又は冷熱を供給する地中熱交換器及びその使用方法、並びに、地中熱利用システム及びその運転方法に関する。   The present invention uses ground heat of the earth as a heat source, circulates a heat medium in the ground heat exchanger and collects and dissipates the heat, and a ground heat exchanger that supplies hot or cold to the load side and use thereof The present invention relates to a method, a geothermal heat utilization system, and an operation method thereof.

地中に埋設された複数本の地中熱交換器と、各地中熱交換器に循環させる熱媒を介して採放熱するためのヒートポンプと、ヒートポンプに接続された負荷機とを備えた地中熱利用システムが知られている(特許文献1〜3等を参照)。   Underground equipped with multiple underground heat exchangers buried in the ground, a heat pump for collecting and radiating heat through a heat medium that is circulated through the various regional heat exchangers, and a load machine connected to the heat pump A heat utilization system is known (see Patent Documents 1 to 3).

このような地中熱利用システムは、安定した温度を有する大地の地中熱を熱源として利用し、この熱源に対して採放熱するものであり、外気に対して採放熱する空気熱源方式のシステムと比較しても、年間を通して変化が小さく安定した地中温度を利用することで、冷房及び暖房の両方について高効率に運転することができる。したがって、地中熱利用システムでは、省エネルギー化、低ランニングコスト化、二酸化炭素(CO2)の排出抑制等の効果に加えて、大気に排熱しないことでヒートアイランド現象の抑制効果も期待されている。 Such a geothermal heat utilization system uses the ground heat of the earth having a stable temperature as a heat source, collects and radiates heat from this heat source, and uses an air heat source system that collects and radiates heat from outside air. Compared with, it is possible to operate with high efficiency for both cooling and heating by using a stable underground temperature with little change throughout the year. Therefore, in the geothermal heat utilization system, in addition to effects such as energy saving, lower running cost, and carbon dioxide (CO 2 ) emission suppression, the heat island phenomenon is also expected to be suppressed by not exhausting heat to the atmosphere. .

特開2004−233031号公報JP 2004-233031 A 特開2006−292313号公報JP 2006-292313 A 特開2007−85675号公報JP 2007-85675 A

この種の地中熱利用システムにおいて、例えば特許文献1、3にもあるように、地中熱交換器に建築物や土木構造物の基礎杭を利用することが提案されている。基礎杭として用いられる鋼管杭等の中空管体に、U字管等の採放熱管を挿入するものである。この地中熱交換器では、U字管を流れる熱媒(例えばエチレングリコールを含む不凍液)が管壁を介して土壌と熱交換し、その熱を運ぶ役割を果たす。このときの熱交換量は、地盤や地中熱交換器の熱特性によるが、熱媒の流れの状態にも大きな影響を受ける。   In this type of geothermal heat utilization system, as disclosed in Patent Documents 1 and 3, for example, it is proposed to use a foundation pile of a building or a civil engineering structure for a geothermal heat exchanger. A heat collecting and radiating pipe such as a U-shaped pipe is inserted into a hollow pipe body such as a steel pipe pile used as a foundation pile. In this underground heat exchanger, a heat medium (for example, an antifreeze containing ethylene glycol) flowing through the U-shaped tube exchanges heat with the soil via the tube wall and carries the heat. The amount of heat exchange at this time depends on the thermal characteristics of the ground and the underground heat exchanger, but is also greatly affected by the state of the heat medium flow.

ここで、管内を流れる流体の流れの状態には、規則的で整然とした流れ(層流)と、時間空間的に不規則な流れ(乱流)とがある。乱流は流速が大きい場合や粘性が低い場合に発生し、層流はその逆である。管内の流れが層流から乱流に遷移する限界は、円管の内径d、断面平均流速U(=流量/断面積)、動粘性係数νを用いたレイノルズ数Re=Ud/νで与えられることが知られている。円管内の流れの場合、例えばレイノズル数Re≦2300であれば層流、レイノルズ数Re>2300であれば乱流と判断されることがあるが、実際の層流状態から乱流状態への遷移はレイノズル数Reのある幅の中で起こり、管路の入口形状等に強く依存する。管路壁が滑らかで、しかも入口に絞り部を設け、徐々に流路を狭めて滑らかに流れを管路に導くような場合には層流を維持するレイノルズ数Reは高くなるが、管入口を直角に切ったような通常の入口形状では、レイノズル数Re=2000程度から乱れが発生し始め、流路形状により、レイノズル数Re=2700程度から3000程度を超えると略連続した乱流状態となる。即ち、円管内の流れの場合、理論上、Re<2000程度で層流、2000程度≦Re<2700程度から3000程度で遷移流、Re≧2700程度から3000程度で乱流として扱うのが一般的である。   Here, there are a regular and orderly flow (laminar flow) and a temporally and spatially irregular flow (turbulent flow) in the state of the flow of fluid flowing in the pipe. Turbulent flow occurs when the flow velocity is high or the viscosity is low, and laminar flow is the opposite. The limit of transition of the flow in the tube from laminar flow to turbulent flow is given by the inner diameter d of the circular tube, the cross-sectional average flow velocity U (= flow rate / cross-sectional area), and the Reynolds number Re = Ud / ν using the kinematic viscosity coefficient ν. It is known. In the case of a flow in a circular pipe, for example, if the Ray nozzle number Re ≦ 2300, it may be determined as laminar flow, and if the Reynolds number Re> 2300, it may be determined as turbulent flow, but the transition from the actual laminar flow state to the turbulent flow state may occur. Occurs within a certain width of the number of lay nozzles Re and strongly depends on the shape of the inlet of the pipeline. When the pipe wall is smooth and a constriction is provided at the inlet and the flow path is gradually narrowed to smoothly guide the flow to the pipe, the Reynolds number Re for maintaining laminar flow increases, but the pipe inlet In a normal inlet shape where the angle is cut at a right angle, turbulence starts to occur from the number of lay nozzles Re = 2000, and depending on the flow path shape, a turbulent flow state substantially continuous when the number of lay nozzles Re = 2about 3,000 is exceeded. Become. That is, in the case of a flow in a circular pipe, in theory, it is generally handled as a laminar flow when Re <2000, a transition flow when 2000 ≦ Re <2700 to 3000, and a turbulent flow when Re ≧ 2700 to 3000. It is.

地中熱交換器における管壁と熱媒との熱伝達は、流体である熱媒の流れ状態が乱流から層流に遷移すると低下し、地中熱交換器の熱交換性能が著しく低下することが知られている。そのため、U字管を流れる熱媒の流速は、乱流状態を維持できる流速であることが必要とされており、理論上乱流状態を維持できる定流速(定流量)とすることが標準的である。   Heat transfer between the tube wall and the heat medium in the underground heat exchanger decreases when the flow state of the fluid heat medium transitions from turbulent flow to laminar flow, and the heat exchange performance of the underground heat exchanger decreases significantly. It is known. Therefore, the flow rate of the heat medium flowing through the U-shaped tube is required to be a flow rate that can maintain a turbulent state, and is theoretically set to a constant flow rate (constant flow rate) that can maintain a turbulent state. It is.

一方、ヒートポンプ及びヒートポンプに接続された負荷機、例えばヒートポンプにより加熱又は冷却された負荷側熱媒を介して室内を暖房又は冷房する空調機と地中熱交換器と循環ポンプにより構成される地中熱利用システムの能力は、夏冬のピーク時の最大負荷に合わせて設定される。しかしながら、最大負荷が発生するのはピーク時及びその前後のある程度の期間に過ぎず、全期間を通して考えると、部分負荷で運転される期間の方が圧倒的に長い。地中熱利用システムにおいても、部分負荷時にはヒートポンプのコンプレッサ運転台数の低減等、省エネルギーのため抑制運転を行うことはあるが、上述したように流速が小さくなると層流に遷移して熱交換性能が低下するため、熱媒を搬送、循環させる循環ポンプだけは流速を維持するように定格流量で運転される(常に100%の能力で運転される)ことが一般的である。   On the other hand, a heat pump and a load machine connected to the heat pump, such as an air conditioner that heats or cools a room via a load-side heat medium heated or cooled by the heat pump, a ground heat exchanger, and a circulation pump The capacity of the heat utilization system is set according to the maximum load at the peak of summer and winter. However, the maximum load is generated only during a certain period of time before and after the peak, and considering the entire period, the period of operation with partial load is overwhelmingly longer. Even in a geothermal heat utilization system, there are cases where a restraint operation is performed for energy saving, such as a reduction in the number of compressor operation of a heat pump at a partial load, but as described above, when the flow velocity becomes small, the flow transitions to a laminar flow and the heat exchange performance is reduced. Therefore, it is general that only the circulation pump that conveys and circulates the heat medium is operated at the rated flow rate (always operated at a capacity of 100%) so as to maintain the flow rate.

このように部分負荷時にも循環ポンプは定格流量で運転されるため、地中熱利用システムの長所である熱源効率の良さを循環ポンプの余分な搬送動力で損ない、総合効率を損なっているのが現状である。循環ポンプを変流量制御し、地中熱交換器の台数や配管系統数を切り替える構成とすることも考えられるが、そのためのバルブ開閉等の制御が複雑となり、また、特定の地中熱交換器への偏りを防ぐために均等利用制御等も考慮しなければならない。   In this way, the circulation pump is operated at the rated flow rate even at partial loads, so the good heat source efficiency, which is an advantage of the geothermal heat utilization system, is lost due to the extra conveyance power of the circulation pump, and the overall efficiency is impaired. Currently. It is conceivable to control the circulation pump to change the flow rate and switch the number of underground heat exchangers and the number of piping systems. However, the control for opening and closing the valves is complicated, and a specific underground heat exchanger is also required. In order to prevent the bias toward equality, it is necessary to consider equal usage control.

本発明は、上記のような点に鑑みてなされたものであり、地中利用システムにおける総合効率を向上させることを目的とする。   This invention is made | formed in view of the above points, and it aims at improving the total efficiency in an underground use system.

本発明の地中熱交換器は、採放熱管に熱媒を循環させる地中熱交換器であって、前記採放熱管に熱媒を循環させるに際して、理論上乱流状態を維持できる流速以下、即ち理論上層流状態にある低流速においても、層流状態にあるべき熱交換性能の著しい低下がないこと、及び、その領域における流量又は流速と熱交換性能との相関関係を把握した上で、理論上乱流状態を維持できる流速以下の低流速とすることを特徴とする。
本発明の地中熱利用システムは、地中に埋設された地中熱交換器と、前記地中熱交換器に循環させる熱媒を介して採放熱するためのヒートポンプと、前記ヒートポンプに接続された負荷機と、前記地中熱交換器に熱媒を循環させるための循環ポンプと、前記循環ポンプを変流量制御する制御手段とを備えたことを特徴とする。
本発明の地中熱交換器の使用方法は、採放熱管に熱媒を循環させる地中熱交換器の使用方法であって、前記採放熱管に熱媒を循環させるに際して、理論上乱流状態を維持できる流速以下、即ち理論上層流状態にある低流速においても、層流状態にあるべき熱交換性能の著しい低下がないこと、及び、その領域における流量と熱交換性能との相関関係を把握した上で、理論上乱流状態を維持できる流速以下の低流速とすることを特徴とする。
本発明の地中熱利用システムの運転方法は、地中に埋設された地中熱交換器と、前記地中熱交換器に循環させる熱媒を介して採放熱するためのヒートポンプと、前記ヒートポンプに接続された負荷機と、前記地中熱交換器に熱媒を循環させるための循環ポンプとを備えた地中熱利用システムの運転方法であって、前記循環ポンプを変流量制御することを特徴とする。
The underground heat exchanger of the present invention is a underground heat exchanger that circulates a heat medium in a heat collecting and radiating pipe, and has a flow velocity that can maintain a turbulent state theoretically when the heat medium is circulated in the heat collecting and radiating pipe. In other words, even at low flow rates that are theoretically in a laminar flow state, there is no significant decrease in heat exchange performance that should be in a laminar flow state, and the correlation between the flow rate or flow rate in that region and the heat exchange performance It is characterized by a low flow rate that is lower than the flow rate that can theoretically maintain a turbulent state.
The ground heat utilization system of the present invention is connected to a ground heat exchanger buried in the ground, a heat pump for collecting and radiating heat through a heat medium circulated in the ground heat exchanger, and the heat pump. A load pump, a circulation pump for circulating a heat medium in the underground heat exchanger, and a control means for controlling the flow rate of the circulation pump.
The use method of the underground heat exchanger of the present invention is a use method of the underground heat exchanger in which the heat medium is circulated in the heat collecting / radiating pipe, and theoretically turbulent when circulating the heat medium in the heat collecting / radiating pipe. There is no significant decrease in the heat exchange performance that should be in a laminar flow state even at a flow rate that is lower than the flow rate at which the state can be maintained, that is, in a theoretical laminar flow state, and It is characterized by a low flow velocity that is lower than the flow velocity that can theoretically maintain a turbulent state after grasping.
The operation method of the ground heat utilization system of the present invention includes a ground heat exchanger embedded in the ground, a heat pump for collecting and radiating heat through a heat medium circulated in the ground heat exchanger, and the heat pump. A ground heat utilization system comprising a load machine connected to the ground heat exchanger and a circulation pump for circulating a heat medium in the underground heat exchanger, wherein the circulation pump is subjected to variable flow rate control. Features.

本発明によれば、地中熱利用システムの長所である熱源効率の良さを循環ポンプの余分な搬送動力で損なわないようにして、地中利用システムにおける総合効率を向上させることができる。   According to the present invention, it is possible to improve the overall efficiency of the underground use system by not damaging the good heat source efficiency, which is an advantage of the underground heat use system, with the extra conveyance power of the circulation pump.

以下、添付図面を参照して、本発明の好適な実施形態を説明する。
まず、本発明の基本的な考え方について説明する。循環ポンプによる搬送動力の低減のためには熱媒の流量を少なくすることが考えられるが、その場合、少流量化しても熱交換性能が低下しない(熱交換性能を維持できる)地中熱交換器が必要となる。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
First, the basic concept of the present invention will be described. It is conceivable to reduce the flow rate of the heat medium in order to reduce the conveyance power by the circulation pump, but in that case, the heat exchange performance does not deteriorate even if the flow rate is reduced (the heat exchange performance can be maintained). A vessel is required.

一般的に用いられる地中熱交換器は、直径100mm程度、深さ50〜100m程度の孔(ボアホール)を地盤に設け、口径(直径)25mm程度の管をU字継手を介して接続してなる採放熱管を1組或いは2組、ボアホールに挿入したものである。土壌掘削費用を抑えるためボアホールの孔径は100mm程度より極端に大きくすることは好ましくなく、採放熱管との空間的な取合い上、採放熱管の形状に工夫を加えたり、組数を増やしたりする工夫の余地がない。そのため、熱交換性能の維持のためには、上述したように理論上乱流状態を維持できる流量を維持しなければならず、少流量化は困難である。   Generally used underground heat exchangers have holes (bore holes) with a diameter of about 100 mm and a depth of about 50-100 m in the ground, and pipes with a diameter (diameter) of about 25 mm are connected via a U-shaped joint. One set or two sets of heat collecting and radiating pipes are inserted into the borehole. In order to reduce soil excavation costs, it is not preferable to make the hole diameter of the borehole extremely larger than about 100 mm. For spatial connection with the heat extraction / radiation tube, the shape of the heat extraction / radiation tube is modified or the number of groups is increased. There is no room for ingenuity. Therefore, in order to maintain heat exchange performance, it is necessary to maintain a flow rate that can theoretically maintain a turbulent state as described above, and it is difficult to reduce the flow rate.

それに対して、地中熱交換器に建築物や土木構造物の基礎杭を利用する場合、杭工法には様々なものがあるが、杭径は2m程度のものもあり、一般的にボアホールの孔径よりも大きくなる。したがって、基礎杭として用いられる鋼管杭等の中空管体に採放熱管を挿入する場合、その採放熱管には形状、組数ともに工夫の余地がある。   On the other hand, when using foundation piles of buildings and civil engineering structures for underground heat exchangers, there are various pile construction methods, but there are also pile diameters of about 2 m, and generally there are boreholes. It becomes larger than the hole diameter. Therefore, when inserting a heat-dissipating pipe into a hollow pipe body such as a steel pipe pile used as a foundation pile, there is room for improvement in both the shape and the number of sets of the heat-dissipating pipe.

以下に、建築物や土木構造物の基礎杭を利用した地中熱交換器の少流量化の対応例を説明する。図1(a)、(b)に示すように、地中熱交換器100は、基礎杭として用いられる鋼管杭等の中空管体1に、可撓性のある細径管、例えば架橋ポリエチレン管をそれ自体U字状に折り曲げてなる採放熱管(Uチューブ)2を3組以上(図示例は5組)収容する(以下、「細径多数管方式」と称する)。   Below, the correspondence example of the flow reduction of the underground heat exchanger using the foundation pile of a building or a civil engineering structure is demonstrated. As shown in FIGS. 1 (a) and 1 (b), the underground heat exchanger 100 has a flexible thin-diameter tube such as a cross-linked polyethylene in a hollow tube 1 such as a steel pipe pile used as a foundation pile. Three or more sets (5 sets in the illustrated example) of heat-dissipating tubes (U-tubes) 2 formed by bending the tube itself into a U shape are accommodated (hereinafter referred to as “small multiple tube system”).

比較例として、図示は省略するが、同中空管体に、口径(直径)25mmの管をU字継手を介して接続してなる採放熱管を2組に収容した地中熱交換器を考える(以下、「標準方式」と称する)。   As a comparative example, although not shown in the drawings, an underground heat exchanger that accommodates two sets of heat-dissipating tubes formed by connecting a tube with a diameter (diameter) of 25 mm via a U-shaped joint to the hollow tube body. Think (hereinafter referred to as “standard method”).

まずは、細径多数管方式にて、標準方式の採放熱管と同等の単位長さ当たりの表面積を確保できる組数を準備して、少流量にて同等の熱交換性能を得ることを考える。例えば口径16mmのUチューブ2であれば3組、口径13mmのUチューブ2であれば4組で、標準方式の採放熱管と同等の単位長さ当たりの表面積を確保することができる。その上で、合計断面積を50〜60%程度に減ずることができるので、同流量であれば流速を大きくすることができる。これにより、理論上の乱流限界を少流量化することができ、少流量にて標準方式と同等の熱交換性能が得られることになる。なお、流量[L/min]は、中空管体1の1組当たり流量、或いは、採放熱管の単管流量である。   First, consider preparing a number of sets that can secure the same surface area per unit length as the standard-type heat collecting and radiating pipes in the small-diameter multi-tube system, and obtain the same heat exchange performance with a small flow rate. For example, if the U tube 2 has a diameter of 16 mm, the surface area per unit length can be ensured by three sets, and if the U tube 2 has a diameter of 13 mm, the number of sets is four. In addition, since the total cross-sectional area can be reduced to about 50 to 60%, the flow rate can be increased with the same flow rate. Thereby, the theoretical turbulent limit can be reduced, and the heat exchange performance equivalent to that of the standard system can be obtained at a low flow rate. The flow rate [L / min] is a flow rate per set of the hollow tube 1 or a single tube flow rate of the heat collecting and radiating tube.

図2には、口径16mmのUチューブ2を3組とした場合の地中熱交換器流量と熱交換性能の相関関係を示す。特性線101が細径多数管方式の実験結果(実験値)であり、特性線102が細径多数管方式で理論的に(レイノルズ数により)求められる理論値である。流量R3が理論上の乱流限界であり、理論的には熱交換性能はここに至るまでは僅かにしか低下しないが、ここを超えると著しく低下する。 FIG. 2 shows the correlation between the flow rate of the underground heat exchanger and the heat exchange performance when three sets of U tubes 2 having a diameter of 16 mm are used. The characteristic line 101 is an experimental result (experimental value) of the small-diameter multi-tube method, and the characteristic line 102 is a theoretical value that is theoretically obtained (by Reynolds number) in the small-diameter multi-tube method. The flow rate R 3 is a theoretical turbulent limit, and theoretically, the heat exchange performance decreases only slightly until reaching this point, but if it exceeds this point, it significantly decreases.

しかしながら、細径多数管方式においては、実際の乱流限界は少なくとも流量R1までは見られない。したがって、理論上の乱流限界以下であっても、実験により熱交換性能を把握した流量R1まで少流量化を図ることが可能である。なお、図2における理論上の乱流限界値はレイノルズ数Re=3000にて求めた値であるが、流量R1におけるレイノルズ数はRe=2700よりも小さなものとなっており、Re=2700にて理論上の乱流限界値を求めた場合でも同様の結果となる。 However, in the small-diameter multi-tube system, the actual turbulent flow limit is not observed until at least the flow rate R 1 . Therefore, even if it is below the theoretical turbulent limit, it is possible to reduce the flow rate to the flow rate R 1 whose heat exchange performance has been grasped through experiments. Note that the theoretical turbulent limit value in FIG. 2 is a value obtained when the Reynolds number Re = 3000, but the Reynolds number at the flow rate R 1 is smaller than Re = 2700, and Re = 2700. Even when the theoretical turbulent limit value is obtained, the same result is obtained.

特性線103は標準方式で理論的に(レイノルズ数により)求められる理論値である。これまでは理論上の乱流限界となる流量(限界流量)R4に、調整誤差や性能劣化、能力的余裕等(即ち、安全率)を見込んだ流量(標準流量)R5以上の流量を確保するようにしていたが、細径多数管方式では、標準流量R5よりも少ない流量R2で同等の熱交換性能が得られることが分かる。 A characteristic line 103 is a theoretical value that is theoretically obtained (by the Reynolds number) by a standard method. Up to now, the flow rate (standard flow rate) R 5 or more that allows for adjustment error, performance degradation, capability margin (ie, safety factor) to the theoretical flow rate limit flow rate (limit flow rate) R 4 Although it was ensured, it can be seen that the heat exchange performance equivalent to the flow rate R 2 smaller than the standard flow rate R 5 can be obtained with the small-diameter multi-tube method.

なお、図示例では、流量R1までしか熱交換性能との相関関係を把握していないが、それ以下の流量であっても、理論値ほど熱交換性能が著しく低下しないのであれば(実質的な乱流状態が維持できる限りにおいては)、その領域において更なる少流量化が可能である。 In the illustrated example, the correlation with the heat exchange performance is grasped only up to the flow rate R 1 , but even if the flow rate is less than that, if the heat exchange performance does not decrease as much as the theoretical value (substantially) (As long as a stable turbulent state can be maintained), it is possible to further reduce the flow rate in that region.

以上の表面積確保型の細径多数管方式は、多数とはいえ、組数を抑え、理論上の乱流状態を維持した上で少流量化が可能な前提で考えたものであったが、実験値においては理論上の乱流限界を大きく超えても実際には層流状態に遷移せず、大幅な少流量化対応が可能である。換言すれば、更に組数を増やし、標準方式の採放熱管よりも単位長さ当たりの表面積を増大させても、実質的な乱流状態が維持できる限りにおいては、熱交換性能が向上し、更なる少流量化が可能であると考えられる。   The above-mentioned surface area securing type small-diameter multi-tube system was thought of on the premise that the flow rate could be reduced while maintaining the theoretical turbulent state, although the number of groups was limited, although many. In the experimental values, even if the theoretical turbulent limit is greatly exceeded, it does not actually transition to the laminar flow state, and it is possible to cope with a significant reduction in the flow rate. In other words, even if the number of sets is further increased and the surface area per unit length is increased as compared to the standard type heat collecting and radiating tube, as long as a substantial turbulent state can be maintained, the heat exchange performance is improved. It is considered that the flow rate can be further reduced.

図3には、口径16mmのUチューブ2を5組とした場合の地中熱交換器流量と熱交換性能の相関関係を示す。この場合、標準方式の採放熱管と比較して、単位長さ当たりの表面積を60%程度増大させるとともに、合計断面積を同等とすることができるので、同流量であれば流速は同等となる。特性線201が細径多数管方式の実験結果(実験値)であり、特性線202が細径多数管方式で理論的に(レイノルズ数により)求められる理論値である。また、特性線203が標準方式で理論的に(レイノルズ数により)求められる理論値である。   FIG. 3 shows the correlation between the flow rate of the underground heat exchanger and the heat exchange performance when the number of U tubes 2 having a diameter of 16 mm is five. In this case, the surface area per unit length is increased by about 60% and the total cross-sectional area can be made equal as compared with the standard type heat collecting and radiating tube, so that the flow rate is equivalent if the flow rate is the same. . The characteristic line 201 is an experimental result (experimental value) of the small-diameter multi-tube method, and the characteristic line 202 is a theoretical value theoretically obtained (by the Reynolds number) in the small-diameter multi-tube method. Further, the characteristic line 203 is a theoretical value that is theoretically obtained (by the Reynolds number) by the standard method.

この場合、理論的には、細径多数管方式の乱流限界R15は標準方式の乱流限界R13よりも大きくなるが、図2に示した表面積確保型と同様に、実際の乱流限界は少なくとも流量R11までは見られない。したがって、理論上の乱流限界以下であっても、実験により熱交換性能を把握した流量R11まで少流量化を図ることが可能である。 In this case, theoretically, the turbulent flow limit R 15 of the small-diameter multi-tube system is larger than the turbulent flow limit R 13 of the standard system, but the actual turbulent flow is the same as the surface area securing type shown in FIG. No limit is seen at least until flow rate R 11 . Therefore, even if it is below the theoretical turbulent limit, it is possible to reduce the flow rate up to the flow rate R 11 whose heat exchange performance has been grasped by experiments.

なお、特性線201は、図2に示した表面積確保型の特性線101に比べて緩やかになっている。したがって、特性線101での流量R2よりも更に少ない流量R12で、理論上の乱流限界となる流量(限界流量)R13に安全率を見込んだ流量(標準流量)R14と同等の熱交換性能が得られる。即ち、更なる低流速化、少流量化が可能であることが分かる。標準流量と同等の熱交換性能が得られる流量とする場合、図2に示した表面積確保型では標準流量R5に対して60〜70%程度の少流量となるのに対して、図3に示した表面積増大型では、標準流量R14に対して50%程度の少流量とすることができる。 It should be noted that the characteristic line 201 is gentler than the surface area ensuring type characteristic line 101 shown in FIG. Accordingly, the flow rate R 12 is smaller than the flow rate R 2 on the characteristic line 101, and is equivalent to the flow rate (standard flow rate) R 14 that allows for a safety factor in the flow rate (limit flow rate) R 13 that is the theoretical turbulent limit. Heat exchange performance is obtained. That is, it can be seen that further lower flow rate and lower flow rate are possible. When the flow rate at which heat exchange performance equivalent to the standard flow rate is obtained, the surface area securing type shown in FIG. 2 has a small flow rate of about 60 to 70% with respect to the standard flow rate R 5, whereas FIG. the surface area increasing type shown, can be a low flow rate of about 50% relative to the standard flow rate R 14.

なお、流量R12におけるレイノルズ数はRe=1400以下であり、完全な層流に至るまでの遷移流領域の理論上の限界Re=2000も大きく下回っている。 Note that the Reynolds number at the flow rate R 12 is Re = 1400 or less, which is much lower than the theoretical limit Re = 2000 in the transition flow region until reaching a complete laminar flow.

このように、地中熱交換器流量と熱交換性能との相関関係は、地中熱交換器の仕様により異なるものである。地中熱交換器の仕様が異なるたびに実験を行ってもよいが、ある仕様における実験に基づく解析により、他の仕様の地中熱交換器における地中熱交換器流量と熱交換性能との相関関係を把握するようにしてもよい。解析手法として、例えば特許文献3に実験結果に基づく解析手法が開示されているので、それを利用すればよい。   Thus, the correlation between the underground heat exchanger flow rate and the heat exchange performance differs depending on the specifications of the underground heat exchanger. Experiments may be performed each time the specifications of the underground heat exchanger are different, but the analysis based on the experiment in one specification shows that the flow rate and heat exchange performance of the underground heat exchanger in another specification You may make it grasp | ascertain a correlation. As an analysis method, for example, Patent Document 3 discloses an analysis method based on an experimental result, and it may be used.

以上述べたように、Uチューブ2に熱媒を循環させるに際して、理論上乱流状態を維持できる流速以下、即ち理論上層流状態にある低流速においても、層流状態にあるべき熱交換性能の著しい低下がないこと、及び、その領域における流量と熱交換性能との相関関係を把握した上で、理論上乱流状態を維持できる流速以下の低流速とするものである。   As described above, when the heat medium is circulated through the U tube 2, the heat exchange performance should be in a laminar flow state even at a flow rate that is theoretically less than the flow rate at which a turbulent state can be maintained, that is, at a low flow rate in a theoretical laminar state. After grasping the fact that there is no significant decrease and the correlation between the flow rate and the heat exchange performance in that region, the flow rate is set to a low flow rate that is lower than the flow rate that can theoretically maintain the turbulent state.

上述した細径多数管方式により少流量化、即ち標準方式に対して少流量で同等の熱交換性能を維持することが可能になる。しかしながら、地中熱交換器で汲み上げた熱を熱利用機器であるヒートポンプに運び込んだときに、ヒートポンプ自体の運転性能が少流量ゆえに低下するという問題がある。   The above-described multi-tube method with small diameters makes it possible to reduce the flow rate, that is, maintain the same heat exchange performance with a small flow rate compared to the standard method. However, when the heat pumped up by the underground heat exchanger is carried into a heat pump that is a heat utilization device, there is a problem that the operation performance of the heat pump itself is lowered due to a small flow rate.

表1には、あるヒートポンプの標準(定格)流量のおよそ半分の流量の定流量で循環ポンプを運転した場合の暖房負荷率毎のヒートポンプの消費電力(熱源消費電力)及び循環ポンプの消費電力(ポンプ消費電力)の試算例を示す。   Table 1 shows heat pump power consumption (heat source power consumption) and circulation pump power consumption (heating source power consumption) for each heating load factor when the circulation pump is operated at a constant flow rate that is approximately half the standard (rated) flow rate of a heat pump. An example of calculation of pump power consumption) is shown below.

Figure 2009063267
Figure 2009063267

定格時には、少流量化による循環ポンプの消費電力(即ち搬送動力)の削減分を、ヒートポンプの効率悪化(即ち熱源動力)の増加が食いつぶしてしまい、合計消費電力が変わらず、効果が得られないことが分かる。この場合は、熱媒定流量運転における少流量化、即ちフルタイムでの少流量化は効果が薄いことが分かる。   At the time of rating, the reduction in the power consumption (ie, conveyance power) of the circulation pump due to the reduction in flow rate is eroded by the increase in the efficiency of the heat pump (ie, heat source power), the total power consumption does not change, and the effect cannot be obtained. I understand that. In this case, it can be seen that reducing the flow rate in the heat medium constant flow operation, that is, reducing the flow rate in the full time, is less effective.

しかしながら、30%、50%の部分負荷時には、熱源動力の増加に負荷率が乗ぜられるため悪化率が低減されるのに対して、循環ポンプの消費電力の削減効果はそのまま得られるので、部分負荷運転になるほど効果が上がることが分かる。既述したように、室内を暖房又は冷房する空調機は、全期間を通して考えると、部分負荷で運転される期間が圧倒的に長いので、この効果は大きなものとなる。   However, when the partial load is 30% or 50%, the load factor is multiplied by the increase in the heat source power, and the deterioration rate is reduced. On the other hand, the reduction effect of the power consumption of the circulation pump can be obtained as it is. It can be seen that the more effective the driving. As described above, an air conditioner that heats or cools a room has an extremely large effect because the period of operation with a partial load is overwhelmingly long-term.

更に、表2に逐次ヒートポンプの運転している負荷率に見合う流量で循環ポンプをインバータ制御した場合の計算例を示す。定格(標準)流量に見合う能力の循環ポンプを選定し、部分負荷時に見合う流量に絞った場合の消費電力は回転数及び流量の3乗に比例するため、表2に示すように、ポンプ動力の低減を更に図ることができることがわかる。即ち、変流量制御を加えることにより、少流量化の効果は非常に大きなものとなる。   Furthermore, Table 2 shows a calculation example when the circulation pump is inverter-controlled at a flow rate corresponding to the load factor at which the heat pump is operated sequentially. When a circulation pump with a capacity that matches the rated (standard) flow rate is selected and the flow rate is reduced to a flow rate that is suitable for partial load, the power consumption is proportional to the number of revolutions and the cube of the flow rate. It can be seen that the reduction can be further achieved. That is, by adding variable flow control, the effect of reducing the flow rate becomes very large.

Figure 2009063267
Figure 2009063267

図4は、冷房期間6ヶ月における空調負荷変動パターンの一例を示すグラフである。これは、財団法人ヒートポンプ・蓄熱センターホームページで公開されている空調熱源簡易検討型プログラムにて示された温暖地事務所ビルにおける月別負荷分配率、時刻別分配率に基づいて、1冷房期間における1時間毎のピーク負荷に対する負荷率を表わしたものである。初期の2ヶ月、末期の1ヶ月においてはピーク時においても50〜70%の部分負荷運転になっていることが分かる。なお、本例は同一月においては月別の代表日の繰り返しデータとなっているが、実際には1日1日の負荷パターンも徐々に上昇、下降することになる。   FIG. 4 is a graph showing an example of an air conditioning load fluctuation pattern in the cooling period of 6 months. This is based on the monthly load distribution ratio and the distribution ratio by time in the warm district office building shown in the simple air conditioning heat source study program published on the website of the heat pump and heat storage center website. It represents the load factor with respect to the peak load for each hour. It can be seen that in the initial two months and the final one month, the partial load operation is 50 to 70% even at the peak time. In this example, the data is representative data for each month in the same month, but in reality, the daily load pattern gradually increases and decreases.

図5は、図4の1時間毎のデータを更に降順に並べ替えたものである。40〜60%の部分負荷運転の時間が最も長く、60%以下の部分負荷運転が運転時間の半分以上を占めていることが分かる。   FIG. 5 shows the hourly data of FIG. 4 further rearranged in descending order. It can be seen that the time of partial load operation of 40 to 60% is the longest, and the partial load operation of 60% or less accounts for more than half of the operation time.

これら図4、5のグラフや表1から、部分負荷時においては、その負荷に見合った循環流量に合わせて循環ポンプを運転することが、非常に効果的であることが分かる。   From the graphs of FIGS. 4 and 5 and Table 1, it can be seen that at the time of partial load, it is very effective to operate the circulation pump in accordance with the circulation flow rate corresponding to the load.

表3は、図5の降順並べ替えデータにおける運転負荷率毎の負荷率平均値、運転時間、全負荷相当時間をまとめたものである。   Table 3 summarizes the load factor average value, the operation time, and the total load equivalent time for each operation load factor in the descending order rearrangement data of FIG.

Figure 2009063267
Figure 2009063267

このデータを用いて変流量制御の効果を試算する。試算モデルにおけるヒートポンプの定格能力を560kW、冷房期間COP(成績係数=「ヒートポンプ出力÷ヒートポンプ消費電力」)=6.0、循環ポンプ定格消費電力を15kWとする。表3より、冷房期間ヒートポンプ出力は、560kW×958h=536,480kWhとなる。   This data is used to estimate the effect of variable flow rate control. The rated capacity of the heat pump in the trial calculation model is 560 kW, the cooling period COP (performance coefficient = “heat pump output ÷ heat pump power consumption”) = 6.0, and the circulation pump rated power consumption is 15 kW. From Table 3, the cooling pump output during the cooling period is 560 kW × 958 h = 536,480 kWh.

まず、従来通り、熱媒循環流量が定流量で運転される場合の総合効率、即ちシステム成績係数SCOP(=「ヒートポンプ出力÷(ヒートポンプ消費電力+循環ポンプ消費電力」とする)を求める。ヒートポンプ消費電力は、COP=6.0であるので、536,480kWh÷6.0=89,413kWhとなる。循環ポンプ消費電力は、定格消費電力を消費し続けるので、15kW×1,722h=25,830kWhとなる。よって、総電力消費量が89,413kWh+25,830kWh=115,243kWhとなり、定流量運転におけるSCOPは、536,480kWh÷115,243kWh=4.7となる。   First, as in the past, the overall efficiency when the heat medium circulation flow rate is operated at a constant flow rate, that is, the system performance coefficient SCOP (= “heat pump output / (heat pump power consumption + circulation pump power consumption)”) is obtained. Since COP = 6.0, the power is 536,480 kWh ÷ 6.0 = 89,413 kWh The circulation pump power consumption continues to consume the rated power consumption, so 15 kW × 1,722 h = 25,830 kWh Therefore, the total power consumption is 89,413 kWh + 25,830 kWh = 115,243 kWh, and the SCOP in the constant flow operation is 536,480 kWh ÷ 115,243 kWh = 4.7.

次に、熱媒循環流量が負荷に見合う流量(変流量制御)で運転される場合の総合効率、即ちシステム成績係数SCOPを求める。循環ポンプ消費電力は、運転時間中、定格消費電力を消費し続けるのではなく、表4に示すように、負荷率相当の流量に見合う電力を消費する。一方、表4に示すように、ヒートポンプのCOPは循環流量の低下により悪化し、熱源消費電力は定流量運転時よりも増加するが、この増加よりも循環ポンプ消費電力低減の方が勝り、総電力消費量は表4に示すように105,478kWhとなり、標準流量で定流量で運転する場合に比べ10%程度低減させることができる。そして、変流量運転におけるSCOPは、536,480kWh÷105,478kWh=5.1まで向上させることができる。   Next, the total efficiency, that is, the system performance coefficient SCOP when the heat medium circulation flow rate is operated at a flow rate (variable flow rate control) commensurate with the load is obtained. The circulation pump power consumption does not continue to consume the rated power consumption during the operation time, but consumes power corresponding to the flow rate corresponding to the load factor, as shown in Table 4. On the other hand, as shown in Table 4, the COP of the heat pump deteriorates due to a decrease in the circulation flow rate, and the heat source power consumption increases compared to the constant flow operation, but the circulation pump power consumption reduction is superior to this increase. As shown in Table 4, the power consumption is 105,478 kWh, which can be reduced by about 10% compared to the case of operating at a standard flow rate and a constant flow rate. And SCOP in variable flow operation can be improved to 536,480 kWh ÷ 105,478 kWh = 5.1.

Figure 2009063267
Figure 2009063267

図6には、本発明を適用した地中熱利用システムの概略構成を示す。地中に埋設された複数本の地中熱交換器100と、各地中熱交換器100に循環させる熱媒を介して採放熱するためのヒートポンプ200と、ヒートポンプ200により加熱又は冷却された負荷側熱媒を介して室内を暖房又は冷房する空調機300と、各地中熱交換器100に熱媒を循環させるための循環ポンプ400とを備える。図6では簡単に図示しているが、地中熱交換器100は、既述した細径多数管方式によるものであり、中空管体1、及び、中空管体1に収容された、好ましくは3組以上のUチューブ2により構成される。   FIG. 6 shows a schematic configuration of a ground heat utilization system to which the present invention is applied. A plurality of underground heat exchangers 100 buried in the ground, a heat pump 200 for extracting and radiating heat through a heat medium that is circulated through the various local heat exchangers 100, and a load side heated or cooled by the heat pump 200 An air conditioner 300 that heats or cools the room via a heat medium, and a circulation pump 400 that circulates the heat medium in the heat exchangers 100 in various places are provided. Although simply illustrated in FIG. 6, the underground heat exchanger 100 is based on the above-described small-diameter multi-tube system, and is accommodated in the hollow tube 1 and the hollow tube 1. Preferably, three or more sets of U tubes 2 are used.

制御盤500は、ヒートポンプ200の負荷出力に基づいて循環ポンプ400を変流量制御する。負荷出力は、ヒートポンプ200が実際に処理している負荷出力信号である。例えばヒートポンプ200は、負荷側個別空調機300毎の運転状況(負荷率)信号を制御配線を介して受け取り、その集積値により運転している。したがって、ヒートポンプ300が稼動している負荷出力を電気信号として受け取り、これに合わせて循環ポンプ400を変流量制御する。   The control panel 500 controls the flow rate of the circulation pump 400 based on the load output of the heat pump 200. The load output is a load output signal that is actually processed by the heat pump 200. For example, the heat pump 200 receives an operation status (load factor) signal for each load-side individual air conditioner 300 via the control wiring, and operates with the integrated value. Therefore, the load output at which the heat pump 300 is operating is received as an electrical signal, and the circulation pump 400 is controlled to change the flow rate accordingly.

また、循環ポンプ400を変流量制御するに際して、熱媒循環流量の下限値を設定しておく。この下限値は、既述したように、理論上乱流状態を維持できる流量であるか否かにかかわらず、実験又は実験に基づく解析により把握された流量と熱交換性能との相関関係に基づいて設定されたものであり、例えば図2、3の流量R1、R11がこれに相当する。 In addition, when the circulation pump 400 is subjected to variable flow control, a lower limit value of the heat medium circulation flow rate is set. As described above, this lower limit value is based on the correlation between the flow rate obtained through experiments or analysis based on experiments and the heat exchange performance regardless of whether or not the flow rate can theoretically maintain a turbulent state. For example, the flow rates R 1 and R 11 in FIGS. 2 and 3 correspond to this.

図7の例は、空調機300に循環させる負荷側熱媒(冷温水)の温度を温度センサ700で測定する。制御盤500は、温度センサ700で測定された負荷側熱媒の温度に基づいて循環ポンプ400を変流量制御する。負荷が増えれば暖房時には負荷側熱媒の温度が下がる(冷房時は逆)ことから、負荷判断の簡易的な手法として利用される。   In the example of FIG. 7, the temperature of the load-side heat medium (cold / warm water) circulated in the air conditioner 300 is measured by the temperature sensor 700. The control panel 500 controls the flow rate of the circulation pump 400 based on the temperature of the load-side heat medium measured by the temperature sensor 700. If the load increases, the temperature of the load-side heat medium decreases during heating (the reverse occurs during cooling), which is used as a simple method for determining the load.

図8の例は、空調機300の出側及び入側での負荷側熱媒(冷温水)の温度を温度センサ700で測定するとともに、循環量を流量センサ800で測定する。制御盤500は、温度センサ700で測定された負荷側熱媒の温度及び流量センサ800で測定された循環量を用いて負荷出力(流量×温度差)を算出し、その負荷に基づいて循環ポンプ400を変流量制御する。   In the example of FIG. 8, the temperature of the load-side heat medium (cold / warm water) on the outlet side and the inlet side of the air conditioner 300 is measured by the temperature sensor 700 and the circulation amount is measured by the flow sensor 800. The control panel 500 calculates a load output (flow rate × temperature difference) using the temperature of the load-side heat medium measured by the temperature sensor 700 and the circulation amount measured by the flow sensor 800, and the circulation pump based on the load. 400 is subjected to variable flow control.

図9の例は、ヒートポンプ200の熱源側の出側及び入側での熱媒の温度を温度センサ900で測定する。制御盤500は、温度センサ900で測定されたヒートポンプ200の熱源側の出側及び入側での熱媒の温度差に基づいて、その温度差が一定となるように循環ポンプ400を変流量制御する。   In the example of FIG. 9, the temperature of the heat medium on the outlet side and the inlet side on the heat source side of the heat pump 200 is measured by the temperature sensor 900. The control panel 500 controls the flow rate of the circulation pump 400 so that the temperature difference becomes constant based on the temperature difference of the heat medium on the outlet side and the inlet side of the heat source 200 measured by the temperature sensor 900. To do.

なお、図6、9では負荷側の循環ポンプ600を仮想線で示しているが、これは循環ポンプ600が不要な場合もあるからである。例えば特許文献2に開示されているように、負荷側熱媒として冷媒(ガス)を使用し、ヒートポンプ200と空調機300とを冷媒配管で接続するとともに、二次凝縮・蒸発器を空調機300に設けることにより、負荷側の循環ポンプ600を不要にすることができる。   6 and 9, the load-side circulation pump 600 is indicated by phantom lines because the circulation pump 600 may be unnecessary. For example, as disclosed in Patent Document 2, a refrigerant (gas) is used as a load-side heat medium, the heat pump 200 and the air conditioner 300 are connected by a refrigerant pipe, and the secondary condenser / evaporator is connected to the air conditioner 300. By providing in, the circulation pump 600 by the side of a load can be made unnecessary.

図10、11には、細径多数管方式の地中熱交換器の他の例を示す。図1では、3組以上のUチューブ2を略並行に並べて中空管体1に収容したが、図10に示すように、3組以上(図示例は4組)のUチューブ2それぞれの最底部が同軸上に配置されるように重ね合わせて収容してもよい。   10 and 11 show another example of a small-diameter multi-tube type underground heat exchanger. In FIG. 1, three or more sets of U tubes 2 are arranged in parallel and accommodated in the hollow tube 1. However, as shown in FIG. The bottoms may be stacked and accommodated so that they are coaxially arranged.

また、図11に示すように、可撓性のある細径管を螺旋状にしたものを採放熱管(螺旋状チューブ)3とし、3組以上(図示例は3組)の螺旋状チューブ3を上下に並べてもよい。図示のままでは、採放熱管は中空管体の底部に行き放しになるが、実際には底部より折り返して螺旋の内側又は外側で中空管体上部まで立ち上げる。これは省略している。   Further, as shown in FIG. 11, a heat-radiating tube (spiral tube) 3 is formed by spiraling a flexible small-diameter tube, and three or more sets (three sets in the illustrated example) of the spiral tubes 3 are used. May be arranged one above the other. As shown in the figure, the heat-dissipating tube goes all the way to the bottom of the hollow tube, but actually it is folded back from the bottom and rises up to the top of the hollow tube inside or outside the spiral. This is omitted.

また、図12に示すように、上下に延伸する一対以上の(本例では一対の)ヘッダパイプ4a間に、多数の細径管4bを適宜なピッチで並べて架設してなる梯子型の採放熱管4を用いてもよい。この場合に、単に一対のヘッダパイプ4aのうち一方を供給管とし、他方を排出管とするのでは、並列する細径管4bの数が多すぎて、層流が発生しやすくなる。そこで、ヘッダパイプ4aに仕切り4cを適宜設置し、図中矢印に示すように、熱媒が一方のヘッダパイプ4aから複数本の細径管4bを介して他方のヘッダパイプ4aに流れ、その下方では他方のヘッダパイプ4aから複数本の細径管4bを介して一方のヘッダパイプ4aに流れる、といったように複数本の細径管4b単位で交互に流れるようにする(S字流とする)のが望ましい。なお、図12(b)、(c)に示すように、中空管体1に1組の採放熱管4だけ収容してもよいし、中空管体1の口径が大きいような場合には、図12(d)に示すように、2組の採放熱管4を対向させるように配置して収容してもよい。   Also, as shown in FIG. 12, a ladder-type heat collecting / dissipating structure in which a large number of small-diameter tubes 4b are arranged at an appropriate pitch between a pair of header pipes 4a (a pair in this example) extending vertically. A tube 4 may be used. In this case, if only one of the pair of header pipes 4a is used as a supply pipe and the other is used as a discharge pipe, the number of the small-diameter pipes 4b arranged in parallel is so large that laminar flow is likely to occur. Therefore, a partition 4c is appropriately installed in the header pipe 4a, and as shown by an arrow in the figure, the heat medium flows from one header pipe 4a to the other header pipe 4a via the plurality of small diameter tubes 4b, and below that Then, it is made to flow alternately in units of a plurality of small diameter pipes 4b such as flowing from the other header pipe 4a to one header pipe 4a via a plurality of small diameter pipes 4b (referred to as S-shaped flow). Is desirable. In addition, as shown in FIGS. 12B and 12C, only one set of the heat-radiating tubes 4 may be accommodated in the hollow tube 1 or when the diameter of the hollow tube 1 is large. As shown in FIG. 12 (d), two sets of heat collecting and radiating tubes 4 may be arranged and accommodated so as to face each other.

なお、ここまで説明した細径多数管方式とは考え方が異なるが、図13(a)、(b)に示すように、採放熱管51に、例えば耐食性を有する樹脂製のチェーン、ねじり棒やネジ棒等の乱流誘発材52を挿入し、採放熱管51内で強制的に乱流を誘発する方式も有効である。   Although the concept is different from the small-diameter multi-tube method described so far, as shown in FIGS. 13A and 13B, for example, a corrosion-resistant resin chain, a torsion bar, It is also effective to insert a turbulent flow inducing material 52 such as a screw rod and forcibly induce turbulent flow in the heat collecting and radiating pipe 51.

以上、本発明を実施形態とともに説明したが、本発明はこれらの実施形態にのみ限定されるものではなく、本発明の範囲内で変更等が可能である。例えば上記実施形態では、地中熱交換器として中空管体1に採放熱管を収容する構造のものを説明したが、例えばコンクリート杭に採放熱管(Uチューブ2、螺旋状チューブ3、梯子型の採放熱管4等)を埋設させた構造のものであってもよい。   As mentioned above, although this invention was demonstrated with embodiment, this invention is not limited only to these embodiment, A change etc. are possible within the scope of the present invention. For example, in the above-described embodiment, the underground heat exchanger has been described as having a structure in which the heat-dissipating tube is accommodated in the hollow tube 1. However, for example, a heat-dissipating tube (U tube 2, spiral tube 3, ladder in concrete piles). It may have a structure in which a mold heat-radiating pipe 4 or the like is embedded.

細径多数管方式の地中熱交換器の構成を示す図である。It is a figure which shows the structure of an underground heat exchanger of a small diameter multi-tube system. 地中熱交換器流量と熱交換性能の相関関係を示す特性図である。It is a characteristic view which shows the correlation of a underground heat exchanger flow volume and heat exchange performance. 地中熱交換器流量と熱交換性能の相関関係を示す特性図である。It is a characteristic view which shows the correlation of a underground heat exchanger flow volume and heat exchange performance. 空調負荷変動パターンの一例を示すグラフである。It is a graph which shows an example of an air-conditioning load fluctuation pattern. 図4の特性図を並び替えたグラフである。It is the graph which rearranged the characteristic view of FIG. 本発明を適用した地中熱利用システムの概略構成を示す図である。It is a figure which shows schematic structure of the underground heat utilization system to which this invention is applied. 本発明を適用した他の例の地中熱利用システムの概略構成を示す図である。It is a figure which shows schematic structure of the geothermal heat utilization system of the other example to which this invention is applied. 本発明を適用した他の例の地中熱利用システムの概略構成を示す図である。It is a figure which shows schematic structure of the geothermal heat utilization system of the other example to which this invention is applied. 本発明を適用した他の例の地中熱利用システムの概略構成を示す図である。It is a figure which shows schematic structure of the geothermal heat utilization system of the other example to which this invention is applied. 細径多数管方式の他の例の地中熱交換器の構成を示す図である。It is a figure which shows the structure of the underground heat exchanger of the other example of a small diameter multi-tube system. 細径多数管方式の他の例の地中熱交換器の構成を示す図である。It is a figure which shows the structure of the underground heat exchanger of the other example of a small diameter multi-tube system. 細径多数管方式の他の例の地中熱交換器の構成を示す図である。It is a figure which shows the structure of the underground heat exchanger of the other example of a small diameter multi-tube system. 乱流を誘発する方式の地中熱交換器の構成を示す図である。It is a figure which shows the structure of the underground heat exchanger of the system which induces a turbulent flow.

符号の説明Explanation of symbols

1 中空管体
2 Uチューブ
3 螺旋状チューブ
4 梯子型の採放熱管
4a ヘッダパイプ
4b チューブ
4c 仕切り
100 地中熱交換器
200 ヒートポンプ
300 空調機
400 循環ポンプ
500 制御盤
600 循環ポンプ
700 温度センサ
800 流量センサ
900 温度センサ
DESCRIPTION OF SYMBOLS 1 Hollow tube 2 U tube 3 Spiral tube 4 Ladder type heat-radiating pipe 4a Header pipe 4b Tube 4c Partition 100 Underground heat exchanger 200 Heat pump 300 Air conditioner 400 Circulation pump 500 Control panel 600 Circulation pump 700 Temperature sensor 800 Flow sensor 900 Temperature sensor

Claims (16)

採放熱管に熱媒を循環させる地中熱交換器であって、
前記採放熱管に熱媒を循環させるに際して、理論上乱流状態を維持できる流速以下、即ち理論上層流状態にある低流速においても、層流状態にあるべき熱交換性能の著しい低下がないこと、及び、その領域における流量又は流速と熱交換性能との相関関係を把握した上で、理論上乱流状態を維持できる流速以下の低流速とすることを特徴とする地中熱交換器。
An underground heat exchanger that circulates a heat medium in the heat collection and radiating pipe,
When the heat medium is circulated through the heat collecting and radiating pipe, the heat exchange performance that should be in a laminar flow state should not be significantly reduced even at a low flow rate that can theoretically maintain a turbulent state, that is, at a low flow rate that is theoretically in a laminar flow state. A ground heat exchanger characterized by having a low flow velocity equal to or lower than the flow velocity that can theoretically maintain a turbulent state after grasping the correlation between the flow rate or flow velocity in that region and the heat exchange performance.
流量又は流速と熱交換性能との相関関係を実験又は実験に基づく解析により把握することを特徴とする請求項1に記載の地中熱交換器。   The underground heat exchanger according to claim 1, wherein a correlation between the flow rate or the flow velocity and the heat exchange performance is grasped by an experiment or an analysis based on the experiment. 中空管体、及び、該中空管体に収容された複数組の採放熱管により構成されることを特徴とする請求項1又は2に記載の地中熱交換器。   The underground heat exchanger according to claim 1 or 2, comprising a hollow tube body and a plurality of sets of heat collecting and radiating tubes housed in the hollow tube body. 前記採放熱管は3組以上であることを特徴とする請求項3に記載の地中熱交換器。   The underground heat exchanger according to claim 3, wherein the heat collecting and radiating pipes are three or more sets. 中空管体、及び、該中空管体に収容された、一対以上のヘッダパイプ間に複数本の細径管を架設してなる梯子型の採放熱管により構成されることを特徴とする請求項1又は2に記載の地中熱交換器。   It is constituted by a hollow tube body and a ladder-type heat collecting / radiating tube housed in the hollow tube body and constructed by laying a plurality of small-diameter tubes between a pair of header pipes. The underground heat exchanger according to claim 1 or 2. 前記採放熱管に強制的に乱流を誘発する乱流誘発材を挿入したことを特徴とする請求項1〜5のいずれか1項に記載の地中熱交換器。   The underground heat exchanger according to any one of claims 1 to 5, wherein a turbulent flow inducing material forcibly inducing turbulent flow is inserted into the heat collecting and radiating pipe. 地中に埋設された地中熱交換器と、
前記地中熱交換器に循環させる熱媒を介して採放熱するためのヒートポンプと、
前記ヒートポンプに接続された負荷機と、
前記地中熱交換器に熱媒を循環させるための循環ポンプと、
前記循環ポンプを変流量制御する制御手段とを備えたことを特徴とする地中熱利用システム。
An underground heat exchanger buried in the ground,
A heat pump for collecting and radiating heat through a heat medium circulating in the underground heat exchanger;
A load machine connected to the heat pump;
A circulation pump for circulating a heat medium in the underground heat exchanger;
A ground heat utilization system comprising control means for controlling the flow rate of the circulation pump.
前記制御手段は、前記ヒートポンプの負荷出力に基づいて前記循環ポンプを変流量制御することを特徴とする請求項7に記載の地中熱利用システム。   The geothermal heat utilization system according to claim 7, wherein the control means controls the flow rate of the circulating pump based on a load output of the heat pump. 前記負荷出力は、前記ヒートポンプが実際に処理している負荷出力信号であることを特徴とする請求項8に記載の地中熱利用システム。   The geothermal heat utilization system according to claim 8, wherein the load output is a load output signal that is actually processed by the heat pump. 前記負荷出力は、前記負荷側熱媒の温度及び循環流量を用いて算出される負荷出力であることを特徴とする請求項8に記載の地中熱利用システム。   The geothermal heat utilization system according to claim 8, wherein the load output is a load output calculated using a temperature and a circulation flow rate of the load-side heat medium. 前記制御手段は、前記負荷機に循環させる負荷側熱媒の温度に基づいて前記循環ポンプを変流量制御することを特徴とする請求項7に記載の地中熱利用システム。   The geothermal heat utilization system according to claim 7, wherein the control means controls the flow rate of the circulation pump based on the temperature of a load-side heat medium circulated through the load machine. 前記制御手段は、前記ヒートポンプの熱源側の出側及び入側での前記熱媒の温度差に基づいて前記循環ポンプを変流量制御することを特徴とする請求項7に記載の地中熱利用システム。   The geothermal heat utilization according to claim 7, wherein the control means controls the flow rate of the circulation pump based on a temperature difference between the heat medium on the outlet side and the inlet side on the heat source side of the heat pump. system. 請求項1〜6のいずれか1項に記載の地中熱交換器を用い、前記制御手段は、理論上乱流状態を維持できる流速以下の低流速となる流量域まで循環ポンプを変流量制御することを特徴とする請求項7〜12のいずれか1項に記載の地中熱利用システム。   The underground heat exchanger according to any one of claims 1 to 6, wherein the control means controls the flow rate of the circulation pump to a flow rate range where the flow velocity is low or lower than a flow velocity that can theoretically maintain a turbulent state. The geothermal heat utilization system according to any one of claims 7 to 12, wherein: 流量又は流速と熱交換性能との相関関係を把握した領域内にて熱媒循環流量に下限値を設定していることを特徴とする請求項7〜13のいずれか1項に記載の地中熱利用システム。   14. The underground according to claim 7, wherein a lower limit value is set for the heat medium circulation flow rate in a region in which the correlation between the flow rate or the flow velocity and the heat exchange performance is grasped. Heat utilization system. 採放熱管に熱媒を循環させる地中熱交換器の使用方法であって、
前記採放熱管に熱媒を循環させるに際して、理論上乱流状態を維持できる流速以下、即ち理論上層流状態にある低流速においても、層流状態にあるべき熱交換性能の著しい低下がないこと、及び、その領域における流量と熱交換性能との相関関係を把握した上で、理論上乱流状態を維持できる流速以下の低流速とすることを特徴とする地中熱交換器の使用方法。
It is a method of using an underground heat exchanger that circulates a heat medium in a heat-dissipating pipe,
When the heat medium is circulated through the heat collecting and radiating pipe, the heat exchange performance that should be in a laminar flow state should not be significantly reduced even at a low flow rate that can theoretically maintain a turbulent state, that is, at a low flow rate that is theoretically in a laminar flow state. And the use method of the underground heat exchanger characterized by setting it as the low flow velocity below the flow velocity which can maintain a turbulent flow state theoretically, after grasping | ascertaining the correlation between the flow volume and the heat exchange performance in the area | region.
地中に埋設された地中熱交換器と、
前記地中熱交換器に循環させる熱媒を介して採放熱するためのヒートポンプと、
前記ヒートポンプに接続された負荷機と、
前記地中熱交換器に熱媒を循環させるための循環ポンプとを備えた地中熱利用システムの運転方法であって、
前記循環ポンプを変流量制御することを特徴とする地中熱利用システムの運転方法。
An underground heat exchanger buried in the ground,
A heat pump for collecting and radiating heat through a heat medium circulating in the underground heat exchanger;
A load machine connected to the heat pump;
A method for operating a geothermal heat utilization system comprising a circulation pump for circulating a heat medium in the geothermal heat exchanger,
A method for operating a geothermal heat utilization system, wherein the circulation pump is subjected to variable flow control.
JP2007233283A 2007-09-07 2007-09-07 Ground heat exchanger and its using method, and ground heat utilizing system and its operating method Pending JP2009063267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007233283A JP2009063267A (en) 2007-09-07 2007-09-07 Ground heat exchanger and its using method, and ground heat utilizing system and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007233283A JP2009063267A (en) 2007-09-07 2007-09-07 Ground heat exchanger and its using method, and ground heat utilizing system and its operating method

Publications (1)

Publication Number Publication Date
JP2009063267A true JP2009063267A (en) 2009-03-26

Family

ID=40557991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007233283A Pending JP2009063267A (en) 2007-09-07 2007-09-07 Ground heat exchanger and its using method, and ground heat utilizing system and its operating method

Country Status (1)

Country Link
JP (1) JP2009063267A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100969985B1 (en) 2010-02-09 2010-07-15 주식회사 지지케이 Device of freezing of the road surface using earth heat
JP2011094840A (en) * 2009-10-28 2011-05-12 Corona Corp Heat pump device
WO2012057263A1 (en) * 2010-10-29 2012-05-03 三菱重工業株式会社 Heat source apparatus
JP2012137200A (en) * 2010-12-24 2012-07-19 Miura Co Ltd Water supply system
JP2012167902A (en) * 2011-02-16 2012-09-06 Corona Corp Geothermal heat pump device
JP2014163554A (en) * 2013-02-22 2014-09-08 Kubota-C. I Co Ltd Construction method of heat exchange equipment of geothermal heat utilization system and geothermal heat utilization system
JP2014185822A (en) * 2013-03-25 2014-10-02 Mitsui Kagaku Sanshi Kk Geothermal heat utilization heat exchanger and heat pump system using the same
JP2015017445A (en) * 2013-07-11 2015-01-29 大成建設株式会社 Pile structure
WO2015114839A1 (en) * 2014-02-03 2015-08-06 三菱電機株式会社 Cooling device and heat source equipment
JP2015212593A (en) * 2014-05-02 2015-11-26 国立大学法人山形大学 Groundwater heat utilization system
JP2017048972A (en) * 2015-09-02 2017-03-09 荏原冷熱システム株式会社 Earth thermal heat source machine system, command determination method, and operational method for the earth thermal heat source machine system
JP2018112359A (en) * 2017-01-12 2018-07-19 株式会社デンソー Magnetocaloric effect type heat pump system
WO2019017370A1 (en) * 2017-07-20 2019-01-24 ダイキン工業株式会社 Freezer
EP3591298A1 (en) * 2018-07-03 2020-01-08 E.ON Sverige AB Thermal heating system and a controller for the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185995A (en) * 1983-04-04 1984-10-22 モダイン・マニュファクチャリング・カンパニー Hybrid spiral type turbulence inducing body for heat exchanger
JPS62288460A (en) * 1986-06-09 1987-12-15 東京都 Heat pump
JPH02169966A (en) * 1988-12-22 1990-06-29 Sanki Eng Co Ltd Number-of-operating refrigerator controller for air-cooled refrigerator
JP2005188865A (en) * 2003-12-26 2005-07-14 Jfe Steel Kk Steel pipe pile utilizing ground heat
JP2006292313A (en) * 2005-04-13 2006-10-26 Nippon Steel Engineering Co Ltd Geothermal unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185995A (en) * 1983-04-04 1984-10-22 モダイン・マニュファクチャリング・カンパニー Hybrid spiral type turbulence inducing body for heat exchanger
JPS62288460A (en) * 1986-06-09 1987-12-15 東京都 Heat pump
JPH02169966A (en) * 1988-12-22 1990-06-29 Sanki Eng Co Ltd Number-of-operating refrigerator controller for air-cooled refrigerator
JP2005188865A (en) * 2003-12-26 2005-07-14 Jfe Steel Kk Steel pipe pile utilizing ground heat
JP2006292313A (en) * 2005-04-13 2006-10-26 Nippon Steel Engineering Co Ltd Geothermal unit

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094840A (en) * 2009-10-28 2011-05-12 Corona Corp Heat pump device
KR100969985B1 (en) 2010-02-09 2010-07-15 주식회사 지지케이 Device of freezing of the road surface using earth heat
WO2012057263A1 (en) * 2010-10-29 2012-05-03 三菱重工業株式会社 Heat source apparatus
JP2012097923A (en) * 2010-10-29 2012-05-24 Mitsubishi Heavy Ind Ltd Heat source apparatus
US9605893B2 (en) 2010-10-29 2017-03-28 Mitsubishi Heavy Industries, Ltd. Heat source device
JP2012137200A (en) * 2010-12-24 2012-07-19 Miura Co Ltd Water supply system
JP2012167902A (en) * 2011-02-16 2012-09-06 Corona Corp Geothermal heat pump device
JP2014163554A (en) * 2013-02-22 2014-09-08 Kubota-C. I Co Ltd Construction method of heat exchange equipment of geothermal heat utilization system and geothermal heat utilization system
JP2014185822A (en) * 2013-03-25 2014-10-02 Mitsui Kagaku Sanshi Kk Geothermal heat utilization heat exchanger and heat pump system using the same
JP2015017445A (en) * 2013-07-11 2015-01-29 大成建設株式会社 Pile structure
JPWO2015114839A1 (en) * 2014-02-03 2017-03-23 三菱電機株式会社 Cooling device and heat source machine
WO2015114839A1 (en) * 2014-02-03 2015-08-06 三菱電機株式会社 Cooling device and heat source equipment
JP2015212593A (en) * 2014-05-02 2015-11-26 国立大学法人山形大学 Groundwater heat utilization system
JP2017048972A (en) * 2015-09-02 2017-03-09 荏原冷熱システム株式会社 Earth thermal heat source machine system, command determination method, and operational method for the earth thermal heat source machine system
JP2018112359A (en) * 2017-01-12 2018-07-19 株式会社デンソー Magnetocaloric effect type heat pump system
WO2019017370A1 (en) * 2017-07-20 2019-01-24 ダイキン工業株式会社 Freezer
JP2019020090A (en) * 2017-07-20 2019-02-07 ダイキン工業株式会社 Freezing unit
EP3591298A1 (en) * 2018-07-03 2020-01-08 E.ON Sverige AB Thermal heating system and a controller for the same
WO2020007608A1 (en) * 2018-07-03 2020-01-09 E.On Sverige Ab Thermal heating system and a controller for the same
US12130040B2 (en) 2018-07-03 2024-10-29 E.On Sverige Ab Thermal heating system and a controller for the same

Similar Documents

Publication Publication Date Title
JP2009063267A (en) Ground heat exchanger and its using method, and ground heat utilizing system and its operating method
Li et al. An integrated predictive model of the long-term performance of ground source heat pump (GSHP) systems
Hwang et al. Cooling performance of a vertical ground-coupled heat pump system installed in a school building
Li et al. Soil temperature distribution around a U-tube heat exchanger in a multi-function ground source heat pump system
Zarrella et al. A simulation-based analysis of variable flow pumping in ground source heat pump systems with different types of borehole heat exchangers: A case study
Xia et al. Experimental investigation and control optimization of a ground source heat pump system
Ramamoorthy et al. Optimal sizing of hybrid ground-source heat pump systems that use a cooling pond as a supplemental heat rejecter-A system simulation approach
US8756943B2 (en) Refrigerant charge management in a heat pump water heater
AU2011100257A4 (en) Heat exchanger and heat pump device using same
US20070295477A1 (en) Geothermal Exchange System Using A Thermally Superconducting Medium With A Refrigerant Loop
KR101219315B1 (en) Hybrid geothermal system for geotherm restoration and efficiency enhancement and operation method thereof
CN101588701B (en) Temperature control method and temperature control system of machine cabinet
WO2012151477A1 (en) System and method of managing cooling elements to provide high volumes of cooling
JP5953161B2 (en) Heat utilization system
JP2007010275A (en) Geothermal heat pump type air-conditioner
JP2008070004A (en) Heat source system
JP2006145059A (en) Hybrid type underground heat utilization heat pump device and its operating method
Sarbu et al. Solar-assisted heat pump systems
WO2008096157A1 (en) A method of changing the temperature of a thermal load
CN102901270A (en) Direct refrigerant evaporating type buried pipe heat exchange system
Gehlin et al. Effects of ground heat exchanger design flow velocities on system performance of ground source heat pump systems in cold climates
Ohga et al. Energy performance of borehole thermal energy storage systems
KR101655664B1 (en) Geothermal system for heatsource compensation using water storage tank and geothermal source
Duman et al. Exergy Analysis of a Ground Source Heat Pump System for Cold Climatic Condition of Sivas, Turkey
JP5584052B2 (en) High efficiency heat transfer device in air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120702

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120709

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120810