[go: up one dir, main page]

JPS6228610B2 - - Google Patents

Info

Publication number
JPS6228610B2
JPS6228610B2 JP53092117A JP9211778A JPS6228610B2 JP S6228610 B2 JPS6228610 B2 JP S6228610B2 JP 53092117 A JP53092117 A JP 53092117A JP 9211778 A JP9211778 A JP 9211778A JP S6228610 B2 JPS6228610 B2 JP S6228610B2
Authority
JP
Japan
Prior art keywords
ceramic
electrode
piezoelectric ceramic
electrodes
energy trapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53092117A
Other languages
Japanese (ja)
Other versions
JPS5518189A (en
Inventor
Takeshi Inoe
Kazuaki Uchiumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP9211778A priority Critical patent/JPS5518189A/en
Publication of JPS5518189A publication Critical patent/JPS5518189A/en
Publication of JPS6228610B2 publication Critical patent/JPS6228610B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/562Monolithic crystal filters comprising a ceramic piezoelectric layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、セラミツクフイルタ及びその製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ceramic filter and a method for manufacturing the same.

周知のように、厚み振動等を利用したエネルギ
ー閉じ込め形圧電磁器振動子等々のセラミツクス
フイルタは、比較的周波数の高い例えばIMHz以
上の周波数帯域等でその高性能を評価されて多用
されている。
As is well known, ceramic filters such as energy-trapped piezoelectric ceramic resonators that utilize thickness vibration or the like are highly evaluated for their high performance in relatively high frequency bands, such as IMHz or higher, and are widely used.

第1図イに正面図を示したのは、セラミツクス
フイルタの一例である従来構造の共振子であり、
正面のエネルギー閉じ込め用電極10及び背面電
極11が共に圧電磁気素体15の表面に露出して
設けられている。第1図ロもやはり従来構造のセ
ラミツクスフイルタの例であり、正面のエネルギ
ー閉じ込め用電極12,13及び背面電極14の
全てが圧電磁気素体16の表面に露出して設けら
れている特徴を有する。
The front view shown in Figure 1A is a resonator with a conventional structure, which is an example of a ceramic filter.
Both the front energy trapping electrode 10 and the back electrode 11 are provided to be exposed on the surface of the piezomagnetic element 15. FIG. 1B is also an example of a ceramic filter with a conventional structure, and is characterized in that the front energy trapping electrodes 12, 13 and the back electrode 14 are all exposed on the surface of the piezomagnetic element 16. .

セラミツクスフイルタにおいては、その共振周
波数は固有の値を取る為その製造過程で所定の値
に調整する必要がある。前記第1図イ,ロに示し
たような従来構造のセラミツクフイルタにおいて
は、共振周波図を定める大きな要因となる圧電磁
気素体の形状寸法等を電極形成前に可能な限り経
験則に基づいて厳選しておき、更に電極を形成し
あるいは製品として完成した状態でその共振周波
数を実測して、所定の規格に適合するものを選定
していた。
Since the resonant frequency of a ceramic filter takes a specific value, it is necessary to adjust it to a predetermined value during the manufacturing process. In a ceramic filter with a conventional structure as shown in Fig. 1 A and B above, the shape and dimensions of the piezoelectric magnetic element, which are a major factor in determining the resonance frequency diagram, are determined based on empirical rules as much as possible before forming the electrodes. After carefully selecting the materials, electrodes were formed or the resonant frequencies of the completed products were measured to select those that met predetermined standards.

しかし、このような方法では周波数のばらつき
が大きく、歩留まりが非常に悪くなるのはむしろ
当然といえる。
However, in such a method, it is natural that the frequency variation is large and the yield is extremely poor.

一方、圧電磁器板を用いた場合とは異なり、狭
帯域用の高級な水晶フイルムでは、電極の厚さが
増すにつれて共振周波数が低下するので、その製
造過程において現物の共振周波数をモニターし、
所定の共振周波数になるように蒸着量を制御して
電極の厚さを調整する方法が採用されており、大
変良い成績を納めている。
On the other hand, unlike when piezoelectric ceramic plates are used, in the case of high-grade crystal films for narrow bands, the resonant frequency decreases as the electrode thickness increases, so the resonant frequency of the actual product is monitored during the manufacturing process.
A method has been adopted in which the thickness of the electrode is adjusted by controlling the amount of evaporation to achieve a predetermined resonance frequency, and very good results have been achieved.

したがつて、本発明の関するセラミツクスフイ
ルタにおいても、この水晶フイルタの如き方法が
採れると良いのであるが残念ながら困難である。
なぜならば、圧電磁器板は水晶に比べて本質的に
高結合であり、従つて圧電反作用がエネルギー閉
じ込めのかなりの部分を占め、電極の質量効果に
よるものはエネルギー閉じ込めにあまり寄与して
いないため、電極の厚さを少々変えてみても共振
反共振周波数差に対する共振周波数の変化はわず
かであり実用に即さない、また。水晶フイルタの
ように蒸着器の中で周波数をモニターしながらセ
ラミツクフイルタを製造したのでは、必然的に高
価なものにならざるを得ず、安価な割に特性が良
いことに特長を求めるセラミツクスフイルタとし
ての特質を生かせなくなる恐れがある。
Therefore, it would be great if a method similar to the one used for quartz filters could be applied to ceramic filters to which the present invention relates, but unfortunately, it is difficult.
This is because piezoelectric ceramic plates are inherently highly coupled compared to quartz crystals, so the piezoelectric reaction accounts for a significant portion of the energy trapping, and the mass effect of the electrodes does not contribute much to the energy trapping. Even if the thickness of the electrode is slightly changed, the change in the resonant frequency due to the difference between the resonant and anti-resonant frequencies is so small that it is not practical. If ceramic filters were manufactured while monitoring the frequency in an evaporator like quartz filters, they would inevitably be expensive. There is a risk that you will not be able to take advantage of your unique qualities.

本発明の目的は、これらの欠点を除去し、しか
も製造コストの低減化を容易にするセラミツクス
フイルタの新規な構造及びその製造方法を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a new structure of a ceramic filter and a method of manufacturing the same, which eliminates these drawbacks and facilitates reduction in manufacturing costs.

本発明が提案する新規な構造の特徴は、エネル
ギー閉じ込め用電極を圧電磁器素体内部に埋め込
んで形成する点にある。
The novel structure proposed by the present invention is characterized in that the energy trapping electrode is formed by being embedded inside the piezoelectric ceramic body.

以下、本発明のエネルギー閉じ込め形圧電磁器
振動子の一例について図面を用いて説明すると、
すなわち、第2図の斜視図に示したように圧電磁
器素子22の内部にエネルギー閉じ込め電極2
3,24,25を形成し、電極取り出し部分2
6,27,28以外の電極部分を圧電磁器素体の
表面に露出しないように構成される。
Hereinafter, an example of the energy trap type piezoelectric ceramic vibrator of the present invention will be explained using the drawings.
That is, as shown in the perspective view of FIG.
3, 24, 25 are formed, and the electrode extraction portion 2
The electrode portions other than 6, 27, and 28 are configured so as not to be exposed on the surface of the piezoelectric ceramic body.

本発明の構造によつて、周波数調整が容易にし
かも高精度に調整でき、しかもフイルターの機能
の本質であるエネルギー閉じ込めも充分に達し得
るようになる。
With the structure of the present invention, frequency adjustment can be made easily and with high precision, and energy confinement, which is the essence of the filter function, can also be achieved sufficiently.

すなわち本発明の構造では、エネルギー閉じ込
め用電極が圧電磁器素体の内部にあるため、電極
の外側を被つている部分の圧電磁器厚を研磨しな
がら現物合せで周波数を調整できるのである。し
かもこうした利点を得ながら何らの欠点も存しな
いすなわち、圧電磁器が高結合である結果、エネ
ルギー閉じ込め電極部の遮断周波数が無電極部に
比べてかなり低くなるので、本発明の如くエネル
ギー閉じ込め電極外側を圧電磁器で被つてしまう
ことにより本来のエネルギー閉じ込め効果に何ら
悪影響を与えることはない。
That is, in the structure of the present invention, since the energy trapping electrode is located inside the piezoelectric ceramic body, the frequency can be adjusted while polishing the thickness of the piezoelectric ceramic in the portion covering the outside of the electrode. Moreover, while obtaining these advantages, there are no disadvantages. In other words, as a result of the high coupling of piezoelectric ceramics, the cutoff frequency of the energy trapping electrode part is considerably lower than that of the non-electrode part. Covering the piezoelectric ceramic with a piezoelectric ceramic does not have any adverse effect on the original energy trapping effect.

次に以上説明した本発明の構造を得るには、圧
電磁器粉末と有機結合剤とからなるセラミツクス
生シート又はプレス成形体の表面にエネルギー閉
じ込め用電極を導電ペーストで印刷し、その上に
圧電磁器粉末からなるペースト印刷をするかもし
くはセラミツクス生シートを圧着し、しかるのち
全体を焼結する方法が適当である。
Next, in order to obtain the structure of the present invention as described above, an energy trapping electrode is printed with a conductive paste on the surface of a raw ceramic sheet or a press-molded body made of piezoelectric ceramic powder and an organic binder, and then the piezoelectric ceramic A suitable method is to print a powder paste or to press a raw ceramic sheet and then sinter the whole.

以下、本発明の製造方法について、典型的な実
施の一例をとり上げ、第3図に用いて具体的に説
明する。
Hereinafter, the manufacturing method of the present invention will be specifically explained using a typical example of implementation and using FIG. 3.

まず圧電磁器粉末を有機バインダーとともに溶
媒中に分散させ、スラリー状とする。
First, piezoelectric ceramic powder is dispersed in a solvent together with an organic binder to form a slurry.

これをドクターブレード法によつて、10μ〜
200μ程度の均一な生シートにする。
Using the doctor blade method, 10μ ~
Make a uniform raw sheet of about 200μ.

この生シートを第3図に31,32,33,3
4,35,36と示すように例えば60mm×40mmの
短形に打ちぬき、この上にスクリーン印刷法によ
つて金、白金、パラジウム、銀又はこれらのうち
の二つ以上からなる合金等からなる導電性ペース
トを用いてエネルギー閉じ込め用電極37,3
8,39を多数個印刷する。電極を印刷したセラ
ミツク生シート32及び36の間には所望の共振
周波数に合わせて電極を印刷していないセラミツ
ク生シート(この例では33,34,35)を所
定の枚数積み重ね圧着する。あるいはまたこうし
た積層体に代えてセラミツクス生シート32,3
3,34,35に相当するプレス成形体の表裏に
エネルギー閉じ込め用電極37,38,39を印
刷しても良いことは当然である。
This raw sheet is shown in Figure 3 as 31, 32, 33, 3.
4, 35, 36, for example, are punched out into rectangular shapes of 60 mm x 40 mm, and then printed with gold, platinum, palladium, silver, or an alloy of two or more of these by screen printing. Energy trapping electrodes 37, 3 using conductive paste
Print many numbers 8 and 39. Between the ceramic raw sheets 32 and 36 on which electrodes are printed, a predetermined number of raw ceramic sheets (33, 34, 35 in this example) on which no electrodes are printed are stacked and pressed to match a desired resonance frequency. Alternatively, instead of such a laminate, ceramic raw sheets 32, 3
It goes without saying that energy trapping electrodes 37, 38, and 39 may be printed on the front and back sides of the press-formed bodies corresponding to 3, 34, and 35.

次いでエネルギー閉じ込め用電極37,38,
39を覆つてセラミツクス生シート31,36を
圧着し、全体を焼結する。ここでセラミツクス生
シート31,36に代えて圧電磁器からなるペー
ストを印刷しても良いことは当然である。がいず
れにせよ、こうしてエネルギー閉じ込め用電極を
圧電磁気素体内部に埋め込んでしまう点に本発明
の特徴がある。このセラミツクス生シート31,
36相当分の厚さは共振周波数の調整に必要かつ
充分な厚さに設計し、研磨による調整工数を極力
削減するべきである。
Next, energy trapping electrodes 37, 38,
Ceramic raw sheets 31 and 36 are crimped to cover 39, and the whole is sintered. Of course, instead of the raw ceramic sheets 31 and 36, a paste made of piezoelectric ceramic may be printed. In any case, the present invention is characterized by embedding the energy trapping electrode inside the piezomagnetic element. This ceramic raw sheet 31,
The thickness equivalent to 36 mm should be designed to be necessary and sufficient for adjusting the resonance frequency, and the number of adjustment steps by polishing should be reduced as much as possible.

本発明の製造方法のうち薄いセラミツク生シー
トを第3図に32,33,34,35としたよう
に数枚重ねて所定の厚さにするようなわり方は、
設計仕様の変更にも即対処できる等々量産規模で
のメリツトもある。
Among the manufacturing methods of the present invention, the method of stacking several thin raw ceramic sheets to a predetermined thickness as shown at 32, 33, 34, and 35 in Fig. 3 is as follows:
There are also advantages on a mass production scale, such as the ability to immediately respond to changes in design specifications.

さて、こうして圧着した積層体を950℃〜1300
℃で1時間程度で焼結し、内部電極を側面等に露
出させたところに入出力用電極を、また積層体の
両面には分極用電極(図示せず)を塗布して、焼
付ける。
Now, heat the laminate thus crimped to 950℃ to 1300℃.
It is sintered at a temperature of about 1 hour at 0.degree. C., and input/output electrodes are applied to the areas where the internal electrodes are exposed on the side surfaces, and polarization electrodes (not shown) are applied to both surfaces of the laminate and then baked.

しかる後、分極用電極に直流電圧を加え120℃
で1時間かけて分極する。
After that, apply DC voltage to the polarization electrode at 120℃.
Polarize for 1 hour.

スクライバーで個々のフイルタに分断したの
ち、エネルギー閉じ込め用電極で周波数を測定し
ながら、積層体の上下面の一方または両方を研磨
して周波数を調整する。このとき先に形成した分
極用電極は研磨により一部もしくは全部がなくな
るが、一向に構わない。
After dividing into individual filters with a scriber, the frequency is adjusted by polishing one or both of the upper and lower surfaces of the laminate while measuring the frequency with an energy trapping electrode. At this time, some or all of the previously formed polarization electrodes will be lost due to polishing, but this does not matter at all.

こうして本発明によつて製造したセラミツクス
フイルタはいずれも良好なフイルタ特性を示し、
かつフイルタの中心周波数を目標値±0.1%以内
に調整することができた。
In this way, all the ceramic filters manufactured according to the present invention exhibit good filter characteristics,
Moreover, the center frequency of the filter could be adjusted to within ±0.1% of the target value.

以上のように、本発明を実施することにより、
特別な設備を必要とせずに、簡単でしかへも正確
な周波数調整が可能な、高性能のセラミツクスフ
イルタを安価に提供することができ、工業的価値
が多大である。
As described above, by implementing the present invention,
It is possible to provide a high-performance ceramic filter at a low cost that allows simple and accurate frequency adjustment without requiring special equipment, and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のセラミツクスフイルタの一例
について正面図を示したものである。イは共振子
の例であり、ロはフイルタの例である。図におい
て10,12,13は正面のエネルギー閉じ込め
用電極であり、点線で示された11,14は背面
の電極であり、15,16は圧電磁気素体であ
る。第2図は、本発明のセラミツクスフイルタの
構造の一例を示す斜視図であり、図において22
は圧電磁器素体を、23,24は入出力側の電極
を、25はアース電極を、26,27は入出力端
子を、28はアース端子を、それぞれ示してい
る。第3図は、本発明の製造方法の一例を説明す
るための分解斜視図である。図において31,3
3,34,35は電極を印加していないセラミツ
ク生シートを示し、32,36は斜線部で示され
ているようなエネルギー閉じ込め用電極37,3
8,39を印刷してあるセラミツクシートを示し
ている。
FIG. 1 shows a front view of an example of a conventional ceramic filter. A is an example of a resonator, and B is an example of a filter. In the figure, 10, 12, 13 are front energy trapping electrodes, 11, 14 indicated by dotted lines are back electrodes, and 15, 16 are piezomagnetic elements. FIG. 2 is a perspective view showing an example of the structure of the ceramic filter of the present invention.
2 shows a piezoelectric ceramic body, 23 and 24 electrodes on the input/output side, 25 a ground electrode, 26 and 27 an input/output terminal, and 28 a ground terminal, respectively. FIG. 3 is an exploded perspective view for explaining an example of the manufacturing method of the present invention. 31,3 in the figure
3, 34, and 35 indicate raw ceramic sheets to which no electrodes are applied, and 32, 36 indicate energy trapping electrodes 37, 3 as shown in the shaded area.
It shows a ceramic sheet with numbers 8 and 39 printed on it.

Claims (1)

【特許請求の範囲】 1 エネルギー閉じ込め用電極が圧電磁器素体の
内部に埋め込まれ、入出力電極とアース電極で三
端子構成になつており、該電極が圧電磁器素体の
中央部またはその近傍部に位置し、また該電極に
対応する圧電磁器素体の外表面が平行平面研磨可
能となつていることを特徴とするセラミツクスフ
イルタ。 2 圧電磁器粉末と有機結合剤とからなるセラミ
ツクス生シート又はプレス成形体の表面にエネル
ギー閉じ込め用電極を導電ペーストで印刷し、そ
の上に圧電磁器粉末からなるペーストを印刷する
かもしくはセラミツクス生シートを圧着し、しか
るのち全体を焼結することを特徴とするセラミツ
クスフイルタの製造方法。
[Claims] 1. An energy trapping electrode is embedded inside the piezoelectric ceramic body, and has a three-terminal configuration with an input/output electrode and a ground electrode, and the electrode is located at or near the center of the piezoelectric ceramic body. 1. A ceramic filter, wherein the outer surface of a piezoelectric ceramic body corresponding to the electrode can be polished into parallel planes. 2. Print an energy trapping electrode with a conductive paste on the surface of a raw ceramic sheet or press-molded body made of piezoelectric ceramic powder and an organic binder, and then print a paste made of piezoelectric ceramic powder on top of that, or print a raw ceramic sheet on top of that. A method for manufacturing a ceramic filter, which comprises crimping and then sintering the entire ceramic filter.
JP9211778A 1978-07-27 1978-07-27 Ceramic filter and its manufacture Granted JPS5518189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9211778A JPS5518189A (en) 1978-07-27 1978-07-27 Ceramic filter and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9211778A JPS5518189A (en) 1978-07-27 1978-07-27 Ceramic filter and its manufacture

Publications (2)

Publication Number Publication Date
JPS5518189A JPS5518189A (en) 1980-02-08
JPS6228610B2 true JPS6228610B2 (en) 1987-06-22

Family

ID=14045484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9211778A Granted JPS5518189A (en) 1978-07-27 1978-07-27 Ceramic filter and its manufacture

Country Status (1)

Country Link
JP (1) JPS5518189A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6062718A (en) * 1983-09-16 1985-04-10 Murata Mfg Co Ltd Piezoelectric element
JPS6066514A (en) * 1983-09-21 1985-04-16 Murata Mfg Co Ltd Piezoelectric device
CN109904581A (en) * 2019-03-22 2019-06-18 泉州佰桀智能制鞋设备研究院有限公司 A kind of base station automation 5G ceramic filter production line

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902102A (en) * 1974-04-01 1975-08-26 Sprague Electric Co Ceramic capacitor with base metal electrodes

Also Published As

Publication number Publication date
JPS5518189A (en) 1980-02-08

Similar Documents

Publication Publication Date Title
US5118982A (en) Thickness mode vibration piezoelectric transformer
US4652784A (en) Trapped-energy mode resonator and method of manufacturing the same
JP3733860B2 (en) Piezoelectric element and manufacturing method thereof
US5057801A (en) Filter device of piezo-electric type including divided co-planar electrodes
JPS6340491B2 (en)
JPS6228610B2 (en)
JPS5885613A (en) Monolithic piezoelectric porcelain filter
JPS6339958Y2 (en)
JPH0230594B2 (en)
JPH0519970B2 (en)
JPS6342744Y2 (en)
JPS63128618A (en) Variable capacitor
JP2000124764A (en) Strip-shaped piezoelectric resonator for frequency filter
JPH0666634B2 (en) Energy trapping piezoelectric filter
KR100552594B1 (en) Frequency adjustable vibration element and method of manufacturing the same
JPH0763129B2 (en) Method for manufacturing piezoelectric ceramic resonator
JP4794742B2 (en) Piezoelectric transformer
KR100675781B1 (en) Frequency-controlled vibration element and method for manufacturing same
JPH0158892B2 (en)
JPH05267744A (en) Polarization of piezoelectric ceramic
JPH02302017A (en) Variable capacitor
JPH0745336B2 (en) Piezoelectric porcelain composition
JPH10163008A (en) Ntc thermistor device
JPH0548378A (en) Piezoelectric element and manufacturing method thereof
JPH0211007A (en) Manufacture of piezoelectric ceramic resonator