[go: up one dir, main page]

JPS62283559A - Nonaqueous electrolyte secondary cell - Google Patents

Nonaqueous electrolyte secondary cell

Info

Publication number
JPS62283559A
JPS62283559A JP61127547A JP12754786A JPS62283559A JP S62283559 A JPS62283559 A JP S62283559A JP 61127547 A JP61127547 A JP 61127547A JP 12754786 A JP12754786 A JP 12754786A JP S62283559 A JPS62283559 A JP S62283559A
Authority
JP
Japan
Prior art keywords
alloy
metal
electrode
group
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61127547A
Other languages
Japanese (ja)
Inventor
Junichi Yamaura
純一 山浦
Toru Matsui
徹 松井
Yoshinori Toyoguchi
豊口 吉徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61127547A priority Critical patent/JPS62283559A/en
Publication of JPS62283559A publication Critical patent/JPS62283559A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain high capacity and long life by specifying particle sizes of cadmium and/or zinc in the alloy organization. CONSTITUTION:A negative alloy electrode is used, that the particle sizes of cadmium and/or zinc of the alloy electrode containing the cadmium and/or zinc as necessary components and besides containing at least one kind chosen from the group composed of lead, tin, indium and bithmus are made 5mum or smaller in the alloy organization. The cadmium or zinc, a metal component of the second group in the metal organization carries out a role like binder and the finer the metal disperses in the alloy organization the greater its effect becomes. Thereby, high capacity is obtainable and besides the cyle-life can be elongated.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、アルカリ金属、特にリチウムを負極活物質と
する非水電解質2次電池に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to a non-aqueous electrolyte secondary battery using an alkali metal, particularly lithium, as a negative electrode active material.

従来の技術 現在、リチウム等のアルカリ金属を負極活物質とする非
水電解質2次電池の開発が活発に行なわれている。
BACKGROUND OF THE INVENTION Currently, non-aqueous electrolyte secondary batteries using an alkali metal such as lithium as a negative electrode active material are being actively developed.

しかし、現在のところまだ実用化には至っていない。そ
の主な理由は、充放電寿命が短く、また充放電の効率が
低いことである。この原因は負極によるところが大きい
。充放電を行なうこの種の電池は、−次電池に用いられ
ているのと同じように金属リチウムを負極に用いると、
放電によって電解質中へ溶解したリチウムを充電によっ
て元の板状のリチウムとして析出させることは困難であ
る。例えば、充電によってリチウムは不規則にデンドラ
イト状に析出し、これが極板よシ脱落したり、セパレー
タを貫通して正極と接して短絡したりする。
However, it has not yet been put into practical use. The main reason for this is that the charging/discharging life is short and the charging/discharging efficiency is low. This is largely due to the negative electrode. This type of battery, which charges and discharges, uses metallic lithium as the negative electrode in the same way as used in negative batteries.
It is difficult to deposit lithium dissolved into the electrolyte by discharging into the original plate-like lithium by charging. For example, upon charging, lithium is irregularly precipitated in the form of dendrites, which may fall off the electrode plate or penetrate the separator and come into contact with the positive electrode, causing a short circuit.

そのために充放電の効率が低く、寿命も短いものとなっ
てしまう。このようなリチウム負極の欠1点を改良する
ために、従来から様々な検討が行なわれてきた。
This results in low charge/discharge efficiency and short lifespan. In order to improve this one drawback of lithium negative electrodes, various studies have been carried out in the past.

その中で、充電により電解質中のリチウムイオンを吸蔵
してリチウムとの合金を形成し、放電によってリチウム
をイオンとして電解質中へ放出する機能を有するある種
の金属または合金を負極材料に用いる方法が最も有望と
考えられる。この種の負極材料としてアルミニウム(米
国特許第3.607,413号)、銀(特開昭66−7
386号米国特許第4,316,777号、同4,33
0,601号)、鉛(特開昭57−141869号)、
錫、錫−鉛合金などが知られている。これらの材料は、
充電によりリチウムの吸蔵量を増すと、負極材料の微粉
化が起こり、電極の形状を維持できなくなる欠点がある
Among these methods, there is a method of using a certain type of metal or alloy as the negative electrode material, which has the function of occluding lithium ions in the electrolyte during charging to form an alloy with lithium, and releasing lithium as ions into the electrolyte during discharge. considered the most promising. This type of negative electrode material includes aluminum (U.S. Pat. No. 3,607,413), silver (Japanese Patent Application Laid-open No.
No. 386 U.S. Pat. No. 4,316,777, U.S. Pat. No. 4,33
0,601), lead (Japanese Unexamined Patent Publication No. 57-141869),
Tin, tin-lead alloy, etc. are known. These materials are
If the amount of lithium absorbed by charging is increased, the negative electrode material becomes pulverized, which has the disadvantage that the electrode cannot maintain its shape.

一方、本発明者らが先に提案した合金、すなわち、力、
ドミウム(Cd)及び/又は亜鉛(Zn )を必須成分
とし、さらにこれに鉛(Pd)、錫(Sn)。
On the other hand, the alloy previously proposed by the present inventors, namely,
Domium (Cd) and/or zinc (Zn) are essential components, and in addition lead (Pd) and tin (Sn).

インジウム(In)及びビスマス(Ei)よりなる群か
ら選んだ少なくとも一種を含む合金は、リチウムの吸蔵
量が比較的大きく、しかも充放電の可逆性にもすぐれて
おり、再充電可能な負極として有望であることがわかっ
た。以下、本発明者らが提案した上記合金を可融合金と
呼ぶ。
Alloys containing at least one selected from the group consisting of indium (In) and bismuth (Ei) have a relatively large lithium storage capacity and excellent charge/discharge reversibility, making them promising as rechargeable negative electrodes. It turned out to be. Hereinafter, the above alloy proposed by the present inventors will be referred to as a fusible alloy.

可融合金は、本発明者らが、既に報告しているように、
一般に300゛C以下の比較的に低い温度で溶融する。
As the present inventors have already reported, the fusible metal is
It melts at a relatively low temperature, generally below 300°C.

そして、目的の合金組成に相当する所定量比の原料金属
(通常、粉体または粒状体を用いる)を混合し、それを
加熱すると、300’C以下で容易に溶融し、溶融状態
の合金となる。溶融合金から合金極を製造する方法はい
くつか考えられ、例えば、溶融している合金を自然冷却
してインゴットを作り、これを圧延して極板にする方法
、溶融合金中にニッケル等のスクリーン状の集電体を浸
漬し、それを引き上げることによって集電体上に合金を
付着させる方法、又は溶融合金を極板型に流し込む方法
等である。
When raw metals (usually powder or granules are used) in a predetermined ratio corresponding to the desired alloy composition are mixed and heated, they easily melt at 300'C or less, forming a molten alloy. Become. There are several methods of manufacturing alloy electrodes from molten alloy. For example, the molten alloy is naturally cooled to form an ingot, which is then rolled into an electrode plate. These methods include a method in which a shaped current collector is immersed and pulled up to deposit the alloy on the current collector, or a method in which molten alloy is poured into an electrode plate mold.

発明が解決しようとする問題点 この合金極の負極としての性能は、主に合金中に含まれ
る成分金属とその組成比によって決まる。
Problems to be Solved by the Invention The performance of this alloy electrode as a negative electrode is mainly determined by the component metals contained in the alloy and their composition ratios.

そして、負極中における成分金属は、その役割りから2
つの群に分けることができる。1つは、前述の鉛(pb
)、錫(Sn)、インジウム(In)、及びビスマス(
Bi)からなる群(第1群)で、これらは主にリチウム
(Li)の吸蔵及び放出に寄与する金属で、それ自身が
Liを吸蔵する母体となるものである。そして他の1つ
は、前述のカドミウム(Cd)及び亜鉛(Zn)からな
る群(第2群)で、これらは、Liの吸蔵及び放出には
ほとんど寄与せず、主に負極の充放電のくり返しくサイ
クル)に対する構造的な耐久性を維持するだめの結着剤
的な役割りを果すものである。すなわち、可融合金負極
の特徴は、上記2つの群の役割りを組み合わせて利用す
る所にある。しかし、その反面、互いの役割りを相殺し
ていることもわかった。
The component metals in the negative electrode have two different roles due to their roles.
It can be divided into two groups. One is the aforementioned lead (pb
), tin (Sn), indium (In), and bismuth (
These are metals that mainly contribute to occlusion and desorption of lithium (Li), and themselves serve as a matrix for occluding Li. The other one is the group (second group) consisting of the aforementioned cadmium (Cd) and zinc (Zn). It acts as a binder to maintain structural durability against repeated cycles. That is, the feature of the fusible metal negative electrode is that it utilizes the functions of the above two groups in combination. However, on the other hand, it was also found that they offset each other's roles.

例えば、Pb−Cdの2成分系の合金の場合、通常、第
1群のpbの含有比率が高くなるとLiの吸蔵−放出容
量は向上するがサイクルに対する耐久性が低下して寿命
が短くなる。
For example, in the case of a Pb-Cd binary alloy, normally, as the content ratio of Pb in the first group increases, the Li occlusion-desorption capacity improves, but the durability against cycles decreases and the life span becomes short.

また第2群のCd含有比率が高くなるとサイクルに対す
る耐久性は向上し、寿命は長くなるが、Liの吸蔵−放
出容量は低下する。これは、Pb−Cdの2成分系の合
金に限ったことではなく、上記第1群の金属と第2群の
金属のあらゆる組合せにおいても言えることであった。
Furthermore, when the Cd content ratio of the second group increases, the durability against cycles improves and the life span becomes longer, but the Li occlusion-desorption capacity decreases. This is true not only for the binary alloy of Pb-Cd, but also for all combinations of the metals of the first group and the metals of the second group.

すなわち、第1群の金属成分と第2群の金属成分の含有
比率をコントロールすることによって、高容量指向、又
は長寿命指向の負極を作りうるが、両方の特性を同時に
向上させる手段にはならない。
That is, by controlling the content ratio of the metal components of the first group and the metal components of the second group, it is possible to create a negative electrode oriented toward high capacity or long life, but this is not a means to improve both characteristics at the same time. .

従って、現行技術ではさらに高い性能要求には答えられ
ない。
Therefore, current technology cannot meet even higher performance requirements.

第1群の金属成分と第2群の金属成分を含む負極用合金
を作る場合、粉体又は粒状の金属原料を混合し、アルミ
ナルツボ又はステンレス容器中で加熱溶融すると容易に
融は合い合金化する。
When making a negative electrode alloy containing metal components of the first group and metal components of the second group, mixing powder or granular metal raw materials and heating and melting them in an alumina crucible or stainless steel container will easily fuse and form an alloy. do.

そしてこの合金を自然冷却して、凝固することによって
、負極用の合金極を製造してきた。
An alloy electrode for a negative electrode has been manufactured by naturally cooling and solidifying this alloy.

しかし、本発明者らがさらに検討を進めてきた結果、そ
の凝固する時の冷却速度によって、合金組織の形態が変
化することがわかった。さらに、合金極中の合金組織の
形態を検討した結果、第6図に示すように、第1群の金
属(図中白色部分)(イ)の中に第2群の金属粒(図中
斜線部分)(ロ)がほとんど同じ粒径でかつ均一に分散
しており、冷却速度は、その金属粒の粒径を変化させる
ことがわかった。また、冷却速度を上げるにつれて、上
記金属粒の粒径は、細かくなった。
However, as a result of further investigation by the present inventors, it was found that the morphology of the alloy structure changes depending on the cooling rate during solidification. Furthermore, as a result of examining the morphology of the alloy structure in the alloy electrode, as shown in Figure 6, metal grains of the second group (hatched areas in the figure) were found in the metals of the first group (white part in the figure) (A). It was found that the particles (part) and (b) had almost the same particle size and were uniformly dispersed, and that the cooling rate changed the particle size of the metal particles. Furthermore, as the cooling rate increased, the particle size of the metal particles became finer.

問題点を解決するだめの手段 そこで金属粒の粒径を変えた同じ組成の合金極について
、負極特性を検討した結果、充放電容量は変わらないが
粒径か細くなるほど、その負極としてのサイクル寿命は
向上し、特に金属粒の粒径が6μm以下の場合、その効
果は大きかった。
As a solution to the problem, we examined the negative electrode characteristics of alloy electrodes with the same composition with different metal grain sizes.We found that although the charge/discharge capacity remained the same, the smaller the grain size, the shorter the cycle life of the negative electrode. The effect was particularly great when the particle size of the metal particles was 6 μm or less.

従って、Cd及び/又はZnを必須成分とし、さらにP
b、Sn、In及びBi よりなる群から選んだ少なく
とも一種を含む合金極のCd及び/又はZnの合金組織
中での粒径を6μm以下にした合金負極を用いるとすぐ
れた非水電解質2次電池が達成できるものである。
Therefore, Cd and/or Zn are essential components, and P
An excellent non-aqueous electrolyte secondary can be obtained by using an alloy negative electrode containing at least one selected from the group consisting of B, Sn, In, and Bi, in which the grain size in the alloy structure of Cd and/or Zn is 6 μm or less. This is something that batteries can achieve.

作  用 合金組織中の第2群の金属成分であるCd又はZnは、
本来、結着剤的役割りを果している。これは、Llの吸
蔵放出に対して、構造的な耐久性を与えるもので、合金
組織中にこれらの金属が細く分散しているほど、その効
果は大きいと考えられる。ところが、従来の合金極では
、第6図のように分散した金属粒が大きすぎて、構造的
耐久性が不十分であったと思われる。
Cd or Zn, which is the second group metal component in the working alloy structure, is
Originally, it plays the role of a binder. This provides structural durability against intercalation and desorption of Ll, and it is thought that the more finely these metals are dispersed in the alloy structure, the greater the effect. However, in the conventional alloy electrode, the dispersed metal particles were too large, as shown in FIG. 6, and it seems that the structural durability was insufficient.

従って、第2群の金属粒を細く分散させ、結着剤的効果
を高めることにより、高容量でかつサイクル寿命にもす
ぐれた負極となりうる。
Therefore, by finely dispersing the metal particles of the second group and enhancing the binding effect, a negative electrode with high capacity and excellent cycle life can be obtained.

実施例 以下、本発明の実施例を示す。Example Examples of the present invention will be shown below.

可融・合金極の組成は、上記第1群(Pb、Sn、In
 、又はBi)と第2群(Cd又はZn)のそれぞれの
群の少なくとも1種以上を含むもので、例えばPb−C
d 、 5n−Cd等の2成分系から、Pb−3n−I
n−Bi−Cd−Znのような6成分系まで調整できる
。検討の結果、成分の多少にかかわらず、合金中の組織
は通常、第6図に示したように、第1群の金属中に、第
2群の金属口が粒状になって分散した形態を持つことが
わかった。そこで1例として、Pb−Cdの2成分系に
ついてその実施例を述べる。まず、Pb−Cdの含有量
比率を変化させいくつかのPb−Cd合金を調整した。
The composition of the fusible/alloy electrode is the above first group (Pb, Sn, In
or Bi) and the second group (Cd or Zn), for example, Pb-C
From two-component systems such as d and 5n-Cd, Pb-3n-I
Up to six component systems such as n-Bi-Cd-Zn can be adjusted. As a result of the study, it was found that the structure of the alloy usually has a structure in which the metal holes of the second group are dispersed in the form of particles in the metal of the first group, as shown in Figure 6, regardless of the amount of components. I found out that I have it. Therefore, as an example, an embodiment of a two-component system of Pb-Cd will be described. First, several Pb-Cd alloys were prepared by changing the content ratio of Pb-Cd.

所定量の粒状pb(粒径1〜2鵡)と粒状Cd(粒径1
〜21a)を混合し、ステンレス鋼製容器中に入れ、加
熱すると両者は、互いに融は合い、合金となった。そし
て十分に融は合った合金を予め加熱したステンレス製の
極板型に流し込み、形を整えて、冷却を行なった。第3
図A、Bは合金を流し込み、冷却をするだめの極板型の
装置図の外観ならびに断面図で、型上面の凹部1に合金
を流し込み、形を整えて、図中の矢印のように管内に水
等の冷媒を流し、冷却するものである。また、温度変化
を測定するために、熱電対を上記凹部1の近傍に設けた
穴2に設置した。従来のいわゆる自然冷却は、上記冷媒
を用いない場合に相当するもので、室温下でその時の冷
却速度を測定したところ、約1o″C〜20’C/秒で
あった。この極板型を用い、まず、自然冷却の場合の面
積1×1d2重量0.1gの合金極板を調整した。合金
は、pbとcdの含有量比率(重量比率)が90:10
(8)、ao:2o申)。
A predetermined amount of granular PB (particle size 1 to 2 mm) and granular Cd (particle size 1
- 21a) were mixed, placed in a stainless steel container, and heated to fuse the two to form an alloy. The fully fused alloy was then poured into a preheated stainless steel plate mold, shaped, and cooled. Third
Figures A and B show the external appearance and cross-sectional view of a plate-type device for pouring and cooling the alloy. A refrigerant such as water is passed through the tank to cool it. Further, in order to measure temperature changes, a thermocouple was installed in the hole 2 provided near the recess 1. Conventional so-called natural cooling corresponds to the case where the above-mentioned refrigerant is not used, and when the cooling rate at that time was measured at room temperature, it was about 1o''C to 20'C/sec. First, an alloy plate with an area of 1 x 1 d and a weight of 0.1 g was prepared in the case of natural cooling.The alloy had a content ratio (weight ratio) of PB and CD of 90:10.
(8), ao:2omon).

7o:3o(q、so:4o(D)、so:5o(E)
7o:3o(q, so:4o(D), so:5o(E)
.

40:60口、30ニア01Q、20:80(ハ)。40:60 mouth, 30 near 01Q, 20:80 (c).

10:90(I)の9種類について検討した。上記各種
合金は0.11用いて合金極(I X 1 、J )と
すると、いずれも約0.1 mの厚みとなった。これら
の合金極は、充放電試験に用いるために、第4図のよう
に、Niエキスバンドメタル3の間に合金極4をはさみ
、両側から圧着し、Niエキスバンドメタルの外周をス
ポット溶接し、Ni  IJボン6のリードをつけて集
電体した。この合金負極の充放電は、第5図に示したガ
ラスセル中で行なった。
Nine types of 10:90 (I) were studied. When the alloy electrodes (I X 1 , J ) were made using 0.11 of the above various alloys, the thickness of each of them was about 0.1 m. In order to use these alloy electrodes for the charge/discharge test, as shown in Figure 4, the alloy electrode 4 was sandwiched between Ni expanded metals 3, crimped from both sides, and the outer periphery of the Ni expanded metal was spot welded. , a Ni IJ bond 6 lead was attached to serve as a current collector. This alloy negative electrode was charged and discharged in a glass cell shown in FIG.

第5図において、合金負極6と対極の金属Ll極7はガ
ラスフィルターのセパレータ8を介して対向させてあり
、参照極の金属Ll極9とともに、ガラスセル10中に
1モル/2のLLC1○4を溶解したプロピレンカーボ
ネートからなる電解液11中に入れである。このセルを
用い充放電を続けた結果、対甑のLiiの容量を予め犬
きく(合金極の充放電容量の10倍以上)しておいても
、Liiの能力はプント乏イトの発生等でサイクルとと
もに失なわれた。従って、定期的に、対極と電解液を交
替しながら試験を行なった。また充放電は0.5mAの
定電流で行ない、充電を金属Li参照極9に対して0.
2■まで、放電を該参照極に対して0.6vまで行なう
電圧制御法、すなわち、参照極に対して、0.2V−o
、eV間でサイクルをくり返す方法を用いた。
In FIG. 5, an alloy negative electrode 6 and a metal Ll electrode 7 as a counter electrode are opposed to each other via a separator 8 of a glass filter, and together with a metal Ll electrode 9 as a reference electrode, 1 mol/2 of LLC1○ is placed in a glass cell 10. 4 was placed in an electrolytic solution 11 consisting of propylene carbonate dissolved therein. As a result of continuing charging and discharging using this cell, even if the capacity of the Lii of the electrode was increased in advance (more than 10 times the charging and discharging capacity of the alloy electrode), the capacity of the Lii was reduced due to the occurrence of punto-depletion etc. Lost with the cycle. Therefore, the test was conducted while periodically replacing the counter electrode and the electrolyte. Further, charging and discharging are performed at a constant current of 0.5 mA, and charging is performed at a constant current of 0.5 mA with respect to the metal Li reference electrode 9.
2■, a voltage control method in which the discharge is carried out to 0.6V with respect to the reference electrode, that is, 0.2V-o with respect to the reference electrode.
, eV was used.

第1図は、自然冷却(この場合、Cd粒径は約20μm
となる)により調整した各種P b−Cd合金極(0,
11>の平均充放電容量とサイクル寿命(初期の充放電
容量の60%容量に劣化するまでのサイクル数)との関
係を示す図である。第1図をみてもわかるように、Pb
−Cd含有量比率を変えた上記Pb−Cd 2成分系の
合金(図中衣で示したA−I)において、Pb含有量(
wt%)が増加するにつれて、充放電容量は向上するが
、サイクル寿命は低下した。
Figure 1 shows natural cooling (in this case, the Cd particle size is approximately 20 μm).
Various Pb-Cd alloy electrodes (0,
11> is a diagram showing the relationship between the average charge/discharge capacity and cycle life (the number of cycles until the capacity deteriorates to 60% of the initial charge/discharge capacity). As can be seen from Figure 1, Pb
- In the Pb-Cd binary alloy with different Cd content ratios (A-I shown in the figure), the Pb content (
wt%) increased, the charge/discharge capacity improved, but the cycle life decreased.

次に、第3図の装置を用い、上記各種Pb−Cd合金の
冷却速度によりCd粒の粒径を変えた合金極を調整し、
上記と同様の充放電試験を行なった。
Next, using the apparatus shown in FIG. 3, alloy electrodes were prepared in which the particle size of the Cd grains was changed depending on the cooling rate of the various Pb-Cd alloys mentioned above.
A charge/discharge test similar to that described above was conducted.

冷却は、第3図の予め加熱した極板型上の凹部1にpb
とCclを所定量混合溶融した合金を流しこみ、形を整
えた後、冷媒を管内に流し込み行なった。
Cooling is carried out using PB in the recess 1 on the preheated electrode plate mold shown in Fig. 3.
A predetermined amount of a molten alloy was poured into the tube and the shape was adjusted, after which a refrigerant was poured into the tube.

そして、冷却速度は、冷媒の熱容量及び流速に依存する
ため熱容量の異なる冷媒例えば水、メタノール、機械油
等を用い、流速を変えて調整した。
Since the cooling rate depends on the heat capacity and flow rate of the refrigerant, it was adjusted by using refrigerants with different heat capacities, such as water, methanol, machine oil, etc., and changing the flow rate.

Pb−Cd合金中のCd粒の粒径は、冷却速度を上げる
ほど小さくなるが、Pb−Cd含有比率にはほとんど影
響を受けなかった。例えば、上記各種合金のうち、Pb
含有量の最も多いPb:Cd=90:10の合金極と、
Cd含有量の最も多いPb:Cd=10:90の合金極
の合金組織を比較すると、第7図のように、同じ冷却速
度ではCd粒(図中斜線部分)の粒径はほとんど同じで
、ただCd粒の量が相対的に異なっているだけであった
。そこで、Cd粒の粒径が、20μm(自然冷却の合金
極に相当)、16μm、10μm 、 7μm、5μm
、3μm。
The particle size of Cd grains in the Pb-Cd alloy became smaller as the cooling rate increased, but it was hardly affected by the Pb-Cd content ratio. For example, among the various alloys mentioned above, Pb
An alloy electrode with the highest content of Pb:Cd=90:10,
Comparing the alloy structures of alloy electrodes with Pb:Cd=10:90, which has the highest Cd content, as shown in Figure 7, at the same cooling rate, the grain sizes of the Cd grains (shaded areas in the figure) are almost the same; The only difference was the relative amount of Cd grains. Therefore, the particle size of the Cd grains is 20 μm (corresponding to a naturally cooled alloy electrode), 16 μm, 10 μm, 7 μm, and 5 μm.
, 3 μm.

1μm、0.5μmの合金極について検討した。We investigated alloy electrodes of 1 μm and 0.5 μm.

第2図は、上記と同様の平均充放電容量とサイクル寿命
との関係を示す図であり、図中aは、第2図の自然冷却
の場合(Cd粒の粒径は20μm)の曲線に相当し、b
、C2d、e、f、q、hはそれぞれそのCd粒の粒径
が、15μm、10μm。
Figure 2 is a diagram showing the relationship between average charge/discharge capacity and cycle life similar to the above, and a in the diagram shows the curve for natural cooling (Cd grain size is 20 μm) in Figure 2. corresponds to b
, C2d, e, f, q, and h have Cd grain sizes of 15 μm and 10 μm, respectively.

7μm、 f5prn、 3prn、 1 μm、0.
5μmの合金極のものである。
7μm, f5prn, 3prn, 1μm, 0.
It has an alloy electrode of 5 μm.

第2図から明らかなように、06粒の粒径の小さい合金
極はど、サイクル寿命が向上する傾向があり、特に、充
放電容量の大きい合金(pb含有l比率の高い合金)は
どその効果が顕著であった。
As is clear from Figure 2, the cycle life of alloy electrodes with smaller 06 grains tends to improve; The effect was significant.

また、06粒の粒径に対するサイクル寿命の向上は、6
μmまでが著しく、それ以下では例えば0.6μmまで
その粒径を下げても向上は少なかった。従って、Cd粒
の粒径は少なくとも6μmまでは下げるべきであり、好
しくけ、6μm〜0.6μmとすべきである。
In addition, the improvement in cycle life for the particle size of 06 grains is 6
The particle size was remarkable up to .mu.m, and below that, even if the particle size was lowered to, for example, 0.6 .mu.m, there was little improvement. Therefore, the particle size of the Cd grains should be reduced to at least 6 μm, preferably 6 μm to 0.6 μm.

次に、他の合金系、例えば5n−Cd、Pb−In−C
d。
Next, other alloy systems such as 5n-Cd, Pb-In-C
d.

B 1−Cd等についても同様の検討を行なった結果、
本発明における合金極については、いずれもCd。
As a result of similar studies on B1-Cd, etc.,
All alloy electrodes in the present invention are Cd.

Zn等の第2群の金属成分の粒径を下げることによる効
果があることがわかった。そして、いずれの場合も、第
2群の金属成分の粒径を5μの以下にすると、すぐれた
サイクル寿命を有することがわかった。
It was found that there is an effect by lowering the particle size of the second group of metal components such as Zn. In both cases, it was found that when the particle size of the metal component of the second group was 5 μm or less, an excellent cycle life was obtained.

発明の効果 このように本発明の負極を用いることにより、負極のサ
イクル寿命が向上し、高エネルギー密度でかつ長寿命の
非水電解質2次電池を提供できるっ
Effects of the Invention As described above, by using the negative electrode of the present invention, the cycle life of the negative electrode is improved, and a non-aqueous electrolyte secondary battery with high energy density and long life can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の効果を比較するための、各種
合金極の平均放電容量とサイクル寿命との関係を示す図
、第3図は合金極を製造するための装置の略図、第4図
は実施例で用いた合金極の集電形状を示した略図、第6
図は充放電試験を行なうためのガラスセルの構成略図、
第6図及び第7図は、可融合金中の成分の分散状態を示
す形態模式図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名ブイ
7ル□−ノ1シ4P−(回ン 0         琶         ミ丈イフル
弄孝(回) 、:、         ミ        ミ/−[
!!]卸 ?−1へi対ったのの久 第 3 図 第4図 第5図 第6図
1 and 2 are diagrams showing the relationship between average discharge capacity and cycle life of various alloy electrodes for comparing the effects of the present invention, and FIG. 3 is a schematic diagram of an apparatus for manufacturing alloy electrodes. Figure 4 is a schematic diagram showing the current collecting shape of the alloy electrode used in the example, Figure 6
The figure is a schematic diagram of the structure of a glass cell for conducting charge/discharge tests.
FIGS. 6 and 7 are schematic diagrams showing the state of dispersion of components in the fusible metal. Agent's name: Patent attorney Toshi Nakao, and 1 other person
! ! ]Wholesale? Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] カドミウム及び/又は亜鉛を必須成分とし、さらに鉛、
錫、インジウム及びビスマスよりなる群から選んだ少な
くとも一種を含む合金を用いた負極を構成要素とする非
水電解質2次電池であって、上記必須成分である、カド
ミウム及び/又は亜鉛が、合金組織中で、5μm以下の
粒径をもつ粒子であることを特徴とする非水電解質2次
電池。
Contains cadmium and/or zinc as an essential component, and further includes lead,
A nonaqueous electrolyte secondary battery comprising a negative electrode using an alloy containing at least one selected from the group consisting of tin, indium, and bismuth, wherein the essential components cadmium and/or zinc have an alloy structure. Among them, a non-aqueous electrolyte secondary battery characterized by particles having a particle size of 5 μm or less.
JP61127547A 1986-06-02 1986-06-02 Nonaqueous electrolyte secondary cell Pending JPS62283559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61127547A JPS62283559A (en) 1986-06-02 1986-06-02 Nonaqueous electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61127547A JPS62283559A (en) 1986-06-02 1986-06-02 Nonaqueous electrolyte secondary cell

Publications (1)

Publication Number Publication Date
JPS62283559A true JPS62283559A (en) 1987-12-09

Family

ID=14962705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61127547A Pending JPS62283559A (en) 1986-06-02 1986-06-02 Nonaqueous electrolyte secondary cell

Country Status (1)

Country Link
JP (1) JPS62283559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture

Similar Documents

Publication Publication Date Title
JP4056183B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPS59186274A (en) Manufacture of nonaqueous electrolyte secondary battery
EP0867956A1 (en) Hydrogen storage alloy electrode
US4368167A (en) Method of making an electrode
US5122375A (en) Zinc electrode for alkaline batteries
JP2643344B2 (en) Lithium-based thermal battery
JPS62283559A (en) Nonaqueous electrolyte secondary cell
JP2968447B2 (en) Anode alloy for lithium secondary battery and lithium secondary battery
JP2001250541A (en) Nonaqueous electrolyte secondary battery
JPS62283556A (en) Manufacture of nonaqueous electrolyte secondary cell
JPS62283560A (en) Manufacture of negative electrode for nonaqueous electrolyte secondary cell
JPS6086760A (en) Nonaqueous electrolyte secondary battery
JPH04332472A (en) Negative pole for nonaqueous electrolyte secondary battery
JPS60124357A (en) Negative electrode of nonaqueous electrolyte secondary battery
JPH0636763A (en) Lithium alloy negative electrode for secondary battery
US20180034046A1 (en) Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery
JPS62145650A (en) Nonaqueous electrolyte secondary cell
JPH0210656A (en) Nonaqueous electrolyte secondary battery
JPH0441471B2 (en)
JPS63146355A (en) Nonaqueous electrolytic secondary cell
JPS6089069A (en) Nonaqueous electrolyte battery
JPS62259344A (en) Hydrogen absorbing electrode
JPS59163756A (en) Nonaqueous electrolyte secondary battery
JPH02189864A (en) Nonaqueous electrolyte secondary battery
JPH0364987B2 (en)