[go: up one dir, main page]

JP2968447B2 - Anode alloy for lithium secondary battery and lithium secondary battery - Google Patents

Anode alloy for lithium secondary battery and lithium secondary battery

Info

Publication number
JP2968447B2
JP2968447B2 JP7034126A JP3412695A JP2968447B2 JP 2968447 B2 JP2968447 B2 JP 2968447B2 JP 7034126 A JP7034126 A JP 7034126A JP 3412695 A JP3412695 A JP 3412695A JP 2968447 B2 JP2968447 B2 JP 2968447B2
Authority
JP
Japan
Prior art keywords
negative electrode
alloy
lithium secondary
secondary battery
atomic ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7034126A
Other languages
Japanese (ja)
Other versions
JPH07288130A (en
Inventor
善典 高田
孝蔵 佐々木
光弘 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP7034126A priority Critical patent/JP2968447B2/en
Publication of JPH07288130A publication Critical patent/JPH07288130A/en
Application granted granted Critical
Publication of JP2968447B2 publication Critical patent/JP2968447B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、充放電のサイクル寿命
に優れ、かつ高出力であるリチウム二次電池およびそれ
に用いられるリチウム二次電池用負極合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery having a high charge-discharge cycle life and a high output, and a negative electrode alloy used for the lithium secondary battery.

【0002】[0002]

【従来技術・発明が解決しようとする課題】従来、電解
液に有機溶媒等の非水電解液を用い、負極に純Liを用
いた非水電解液型のリチウム二次電池が知られていた。
これは、非水電解液と純Liの使用による高エネルギー
密度の電池出力および高起電力の達成を目的としたもの
である。しかしながら、充電時における負極とLiイオ
ン間での放電反応による電析に基づいて、純Li負極の
表面にデンドライト(樹枝状晶)が成長しやすく、その
成長で電池機能が著しく低下したり、デンドライトがセ
パレータ(電解液層)を貫通して正・負極間を短絡させ
たりして、充放電のサイクル寿命に劣るという問題点等
があった。
2. Description of the Related Art Conventionally, a non-aqueous electrolyte type lithium secondary battery using a non-aqueous electrolyte such as an organic solvent as an electrolyte and pure Li for a negative electrode has been known. .
This aims at achieving a high energy density battery output and a high electromotive force by using a non-aqueous electrolyte and pure Li. However, dendrites (dendrites) tend to grow on the surface of the pure Li negative electrode based on electrodeposition due to a discharge reaction between the negative electrode and Li ions during charging, and the growth significantly lowers the battery function or dendrites. However, there is a problem that the charge / discharge cycle life is inferior because the positive electrode and the negative electrode are short-circuited through the separator (electrolyte layer).

【0003】前記に鑑みて、Al、Bi、Pb、Sn、
In等とLiとの金属間化合物からなるLi合金で、負
極を形成する方式が提案されている。この方式は、Li
のかかる合金化により、純Liよりも電極電位を上げて
負極の活性度を低下させ、負極とLiイオン間での放電
反応の速度を低下させて、デンドライトの成長を抑制す
るようにしたものである。しかしながら、かかる合金化
による負極の活性度の低下が起電力や充放電容量をも低
下させ、また合金化による脆弱化のため、充放電時のL
iの吸収・放出に伴う体積の膨張・収縮により負極にク
ラックが発生し、最終的には粉体化して、電池寿命に乏
しいという問題点があった。
In view of the above, Al, Bi, Pb, Sn,
There has been proposed a method of forming a negative electrode with a Li alloy made of an intermetallic compound of In or the like and Li. This method uses Li
By such an alloying, the electrode potential is raised more than pure Li to lower the activity of the negative electrode, the speed of the discharge reaction between the negative electrode and Li ions is reduced, and the growth of dendrite is suppressed. is there. However, the lowering of the activity of the negative electrode due to the alloying also lowers the electromotive force and the charging / discharging capacity, and the brittleness due to the alloying causes the L during charging and discharging.
There has been a problem that cracks are generated in the negative electrode due to expansion and contraction of the volume due to absorption and release of i, and the negative electrode is eventually powdered, resulting in poor battery life.

【0004】一方、高起電力、高充放電容量を目的に、
Mg、Ag、Zn等をLiに添加してなる希薄固溶体合
金で負極を形成する方式も提案されている。しかしなが
ら、かかる希薄固溶体合金からなる負極では、前記合金
成分がLiの金属結晶マトリクス中に点在しているのみ
であり、純Li負極表面の電気化学的性質と大差なく、
充電時には純Li負極と同様にデンドライト成長が進行
しやすい。従って、リチウム二次電池の充放電サイクル
寿命が短命となる欠点があり、実用性に乏しいという難
点があった。
On the other hand, for the purpose of high electromotive force and high charge / discharge capacity,
A method of forming a negative electrode with a dilute solid solution alloy obtained by adding Mg, Ag, Zn, or the like to Li has also been proposed. However, in the negative electrode made of such a dilute solid solution alloy, the alloy components are only scattered in the metal crystal matrix of Li, and there is no great difference from the electrochemical properties of the surface of the pure Li negative electrode.
At the time of charging, dendrite growth tends to proceed as in the case of the pure Li negative electrode. Therefore, there is a disadvantage that the charge / discharge cycle life of the lithium secondary battery is short, and there is a disadvantage that the practicability is poor.

【0005】本発明は、充放電容量が大きく、高エネル
ギー密度を有し、充放電の繰返しによる劣化が少ないリ
チウム二次電池用負極に用いられる合金を提供するこ
と、および高起電力、高充放電容量、高エネルギー密度
の電池出力、充放電のサイクル寿命に優れるリチウム二
次電池を提供することを目的とする。
It is an object of the present invention to provide an alloy used for a negative electrode for a lithium secondary battery having a large charge / discharge capacity, a high energy density, and little deterioration due to repeated charge / discharge. An object of the present invention is to provide a lithium secondary battery having excellent discharge capacity, high energy density battery output, and excellent charge / discharge cycle life.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上述のL
i合金系負極についてさらなる検討を重ねた結果、特定
の組成範囲からなるLi合金で二次電池の負極を構成す
ることにより、上記目的が達成されることを見出し、本
発明を完成するに至った。
Means for Solving the Problems The present inventors have proposed the above-mentioned L
As a result of further study on the i-alloy-based negative electrode, it was found that the above object was achieved by forming the negative electrode of the secondary battery with a Li alloy having a specific composition range, and completed the present invention. .

【0007】即ち、本発明は、原子比に基づく組成がL
i:Ag:Te=15〜150:1〜20:0.001
〜2であるLi−Ag−Te系合金からなることを特徴
とするリチウム二次電池用負極合金に関する。また、原
子比に基づく組成がLi:Ag:Te=80〜150:
1〜20:0.001〜2未満であるLi−Ag−Te
系合金からなることを特徴とする上記リチウム二次電池
用負極合金に関する。さらに、原子比に基づく組成がL
i:Ag:Te=15〜120:1〜20:0.001
〜2であるLi−Ag−Te系合金からなることを特徴
とする上記リチウム二次電池用負極合金に関する。
That is, according to the present invention, the composition based on the atomic ratio is L
i: Ag: Te = 15 to 150: 1 to 20: 0.001
The present invention relates to a negative electrode alloy for a lithium secondary battery, comprising a Li-Ag-Te-based alloy of No. 1 to No. 2. The composition based on the atomic ratio is Li: Ag: Te = 80 to 150:
1-20: Li-Ag-Te less than 0.001-2
The present invention relates to the above negative electrode alloy for a lithium secondary battery, comprising a base alloy. Further, the composition based on the atomic ratio is L
i: Ag: Te = 15 to 120: 1 to 20: 0.001
The present invention relates to the above negative electrode alloy for a lithium secondary battery, comprising a Li-Ag-Te alloy.

【0008】また、本発明は、原子比に基づく組成がL
i:Ag:Te:M1:M2=15〜120:1〜2
0:0.001〜2:1〜50:1〜30〔但し、M1
は3B〜5B族金属を、M2は遷移金属(Agを除く)
を示す〕であるLi−Ag−Te−(M1−M2)系合
金からなることを特徴とするリチウム二次電池用負極合
金に関し、また、M1がAl、Si、In、Snより選
ばれる1種または2種以上である上記リチウム二次電池
用負極合金、M2がZn、Fe、Co、Ni、Mn、M
o、Wより選ばれる1種または2種以上である上記リチ
ウム二次電池用負極合金に関する。
In the present invention, the composition based on the atomic ratio is L
i: Ag: Te: M1: M2 = 15 to 120: 1 to 2
0: 0.001-2: 1-50: 1-30 [However, M1
Represents a 3B to 5B group metal, and M2 represents a transition metal (excluding Ag).
A negative electrode alloy for a lithium secondary battery, comprising a Li-Ag-Te- (M1-M2) -based alloy, wherein M1 is selected from Al, Si, In, and Sn. Or two or more of the above negative electrode alloys for a lithium secondary battery, wherein M2 is Zn, Fe, Co, Ni, Mn, M
The present invention relates to the negative electrode alloy for a lithium secondary battery, which is one or more selected from o and W.

【0009】さらに、本発明は、上記リチウム二次電池
用負極合金からなる負極を有することを特徴とするリチ
ウム二次電池に関する。
Further, the present invention relates to a lithium secondary battery having a negative electrode comprising the above negative electrode alloy for a lithium secondary battery.

【0010】本発明のリチウム二次電池用負極合金にお
けるLi−Ag−Te系合金は、充放電時にLiを吸収
・放出してLi吸放出を分担するLi−Ag系合金と、
LiおよびAgの拡散を促進するための結晶粒微細化を
実現するAg2 TeやLi2Te等の金属間化合物微粒
子を含有する合金である。
The Li-Ag-Te alloy in the negative electrode alloy for a lithium secondary battery according to the present invention is composed of a Li-Ag alloy which absorbs and releases Li during charge and discharge to share Li absorption and release,
An alloy containing fine particles of an intermetallic compound such as Ag 2 Te or Li 2 Te that realizes crystal grain refinement for promoting the diffusion of Li and Ag.

【0011】当該Li−Ag−Te系合金は、Li−A
g系合金に見られるγ1 相を含有しており、γ1 相をよ
り多く含有すると、長期にわたる放電容量維持特性、充
放電サイクル寿命も向上して好ましいことを、本発明者
らは究明した。即ち、γ1 相は欠陥構造に由来する空格
子点を多量に含むため、Li、Agの拡散をさらに促進
させることとなり、Li吸収・放出に伴う電極内の組成
変化をさらに迅速に緩和するため、Teの結晶粒微細化
効果に由来するLi、Agの拡散促進効果に相乗的に作
用し、充放電反応の可逆性をさらに改善する。その結
果、長期にわたる放電容量維持特性、充放電の長サイク
ル寿命が達成される。従って、本発明の合金において
は、γ1 相を多く含むことは特に好ましい。
The Li-Ag-Te alloy is Li-A
and containing gamma 1-phase found in g based alloy and contains more of the gamma 1-phase, long-term discharge capacity retention characteristics, the preferred and also improve the charge-discharge cycle life, the present inventors have investigated . That is, since the γ 1 phase contains a large amount of vacancies derived from the defect structure, the diffusion of Li and Ag is further promoted, and the composition change in the electrode due to the absorption and release of Li is more rapidly mitigated. , Te act synergistically on the diffusion promoting effect of Li and Ag derived from the crystal grain refining effect, and further improve the reversibility of the charge / discharge reaction. As a result, long-term discharge capacity maintenance characteristics and long cycle life of charge and discharge are achieved. Therefore, in the alloys of the present invention, it is particularly preferred to include a lot of gamma 1 phase.

【0012】Teは、前記のLiやAgとの反応物から
なる高融点の金属間化合物の形成過程、即ち、Li−A
g−Te系合金の溶製過程における凝固工程において、
多数の結晶核を形成して結晶粒を微細化し、粒界面積を
増大させる。その粒界でのLi拡散速度は、粒内でのそ
れよりも数十倍以上にも及ぶため、粒界面積の増大によ
りLiの拡散が促進されて、負極でのLi電析がLiの
拡散により律速されることが緩和され、またLiの吸収
・放出の効率が向上する。
Te is formed in the process of forming a high melting point intermetallic compound consisting of a reaction product with Li and Ag, that is, Li-A
In the solidification step in the melting process of the g-Te alloy,
A large number of crystal nuclei are formed to refine crystal grains and increase the grain boundary area. Since the diffusion rate of Li at the grain boundary is several tens times or more than that in the grain, the diffusion of Li is promoted by the increase of the grain boundary area, and the Li electrodeposition at the negative electrode causes the Li diffusion. Is reduced, and the efficiency of Li absorption / release is improved.

【0013】ここで、Te濃度を低下させたAg含有の
前記組成の負極合金からなる負極を用いることで、充放
電のサイクル寿命に優れるリチウム二次電池を得ること
ができる。なお、Te濃度を高くしたLi−Ag−Te
系合金でも、本発明における低Te濃度組成の合金の場
合と同様に、大きなLi吸収能、広い電流密度領域での
充電におけるデンドライトの成長の抑制、純Liに匹敵
する低い電極電位と、それによる高起電力等の有利な特
性を発現させうる。しかし、充放電サイクルの長期継続
による充放電容量の徐々の低下を防止する点、つまり、
充放電のサイクル寿命の長期性や初期の充放電容量の持
続性の点で、本発明における低Te濃度組成の合金が格
別に優れている。
Here, by using a negative electrode made of a negative electrode alloy having the above composition containing Ag and having a reduced Te concentration, a lithium secondary battery having excellent charge and discharge cycle life can be obtained. In addition, Li-Ag-Te with a high Te concentration was used.
As in the case of the alloy having a low Te concentration composition according to the present invention, a large Li absorption capacity, suppression of dendrite growth during charging in a wide current density region, a low electrode potential comparable to pure Li, and Advantageous characteristics such as high electromotive force can be exhibited. However, the point of preventing a gradual decrease in charge / discharge capacity due to long-term charge / discharge cycles, that is,
The alloy of the present invention having a low Te concentration composition is particularly excellent in terms of the long cycle life of charge / discharge and the continuity of the initial charge / discharge capacity.

【0014】上記現象の理由のひとつとして、高Te濃
度組成の合金における前記金属間化合物の偏析・凝集に
よる負極表面性状の低下等が考えられる。即ち、充放電
サイクルに伴い、負極合金中にてLi、Agの拡散が進
行するが、負極合金中のTe濃度が高い場合、長期の充
放電サイクルによりTe金属間化合物の偏析・凝集が進
行し、さらに負極表面でのマクロな集積が進行して、負
極表面の性状が悪化する。従って、Teが高濃度の場合
は、前記の金属間化合物の負極表面へのマクロ的な偏析
・凝集により負極表面付近のLi、Agの拡散が阻害さ
れたり、負極表面での電流密度分布の不均一化の進行等
により、充放電特性が低下するものと考えられる。一
方、Teが低濃度の場合は、前記偏析・凝集現象が抑制
され、また、Teを低濃度化してもLiの拡散性に優れ
る結晶構造が形成されるものと考えられる。
One of the reasons for the above phenomenon is considered to be a decrease in the surface properties of the negative electrode due to segregation and agglomeration of the intermetallic compound in an alloy having a high Te concentration composition. That is, with the charge / discharge cycle, the diffusion of Li and Ag progresses in the negative electrode alloy, but when the Te concentration in the negative electrode alloy is high, the segregation / aggregation of the Te intermetallic compound proceeds by a long charge / discharge cycle. Further, macro-accumulation on the negative electrode surface further progresses, and the properties of the negative electrode surface deteriorate. Therefore, when Te is at a high concentration, the diffusion of Li and Ag near the negative electrode surface is hindered by the macroscopic segregation and aggregation of the intermetallic compound on the negative electrode surface, and the current density distribution on the negative electrode surface is poor. It is considered that the charge / discharge characteristics are degraded due to the progress of uniformization and the like. On the other hand, when the concentration of Te is low, it is considered that the segregation / aggregation phenomenon is suppressed, and a crystal structure having excellent Li diffusivity is formed even when the concentration of Te is reduced.

【0015】なお、前記偏析物は、後述のようにシート
状等の負極形態とした場合にも、その捲回工程で負極に
クラックを発生させ易く、また、クラックの発生で破損
した部分は、セパレータを損壊させたりする原因となり
易い。従って、かかる偏析の抑制は、高性能のリチウム
二次電池およびその負極の形成に有利である。
[0015] Even when the segregated product is in the form of a negative electrode such as a sheet, as described later, cracks are easily generated in the negative electrode in the winding step. It is likely to cause damage to the separator. Therefore, suppression of such segregation is advantageous for forming a high-performance lithium secondary battery and its negative electrode.

【0016】本発明のリチウム二次電池用負極合金にお
いては、上記Li−Ag−Te系合金成分以外に、さら
に(M1−M2)系合金成分を含有させることもでき
る。Li−Ag−Te系合金成分は、上述のように、リ
チウムの拡散を促進し、充放電時において円滑にリチウ
ムを吸収・放出する機能等を果たす。一方、(M1−M
2)系合金成分は、それ自身安定な金属間化合物であっ
て、この金属間化合物のバインダー効果により、リチウ
ムの吸収・放出に伴う体積の膨張・収縮による負極劣化
をさらに抑制し、結果としてサイクル寿命の低下防止に
貢献する。
The negative electrode alloy for a lithium secondary battery of the present invention may further contain a (M1-M2) alloy component in addition to the above-mentioned Li-Ag-Te alloy component. As described above, the Li-Ag-Te alloy component promotes the diffusion of lithium and performs a function of smoothly absorbing and releasing lithium during charge and discharge. On the other hand, (M1-M
2) The system alloy component itself is a stable intermetallic compound, and the binder effect of this intermetallic compound further suppresses the deterioration of the negative electrode due to the expansion and contraction of the volume due to the absorption and release of lithium. It contributes to the prevention of shortening of service life.

【0017】M1は、長周期型周期表の3B、4B、5
B族金属であり、これは1種でも2種以上でも用いるこ
とができる。好ましくはAl、Si、In、Snより選
ばれる1種または2種以上であり、より好ましくはS
i、In、Snより選ばれる1種または2種以上であ
る。M2は、遷移金属(長周期型周期表の3A〜7A、
8、1B、2B族金属;但しAgを除く)であり、これ
は1種でも2種以上でも用いることができる。好ましく
はZn、Fe、Co、Ni、Mn、Mo、Wより選ばれ
る1種または2種以上であり、より好ましくはZn、F
e、Niより選ばれる1種または2種以上である。
M1 is 3B, 4B, 5 of the long period type periodic table.
Group B metal, which can be used alone or in combination of two or more. It is preferably at least one selected from Al, Si, In, and Sn, and more preferably S
One or more selected from i, In, and Sn. M2 is a transition metal (3A to 7A of the long period type periodic table,
8, 1B, and 2B metals; except for Ag), which may be used alone or in combination of two or more. It is preferably one or more selected from Zn, Fe, Co, Ni, Mn, Mo, and W, and more preferably Zn, F
e or one or more selected from Ni.

【0018】本発明のリチウム二次電池用負極合金は、
原子比に基づく組成がLi:Ag:Te=15〜15
0:1〜20:0.001〜2であるLi−Ag−Te
系合金からなるものである。また、原子比に基づく組成
がLi:Ag:Te=80〜150:1〜20:0.0
01〜2未満であるLi−Ag−Te系合金からなるも
の、原子比に基づく組成がLi:Ag:Te=15〜1
20:1〜20:0.001〜2であるLi−Ag−T
e系合金からなるものが好ましい。さらに、原子比に基
づく組成がLi:Ag:Te:M1:M2=15〜12
0:1〜20:0.001〜2:1〜50:1〜30で
あるLi−Ag−Te−(M1−M2)系合金からなる
ものがより好ましい。
The negative electrode alloy for a lithium secondary battery of the present invention comprises:
The composition based on the atomic ratio is Li: Ag: Te = 15 to 15.
Li-Ag-Te that is 0: 1 to 20: 0.001-2
It is made of a system alloy. Further, the composition based on the atomic ratio is Li: Ag: Te = 80 to 150: 1 to 20: 0.0
Li-Ag-Te alloys having an atomic ratio of Li: Ag: Te = 15-1
Li-Ag-T of 20: 1-20: 0.001-2
Those composed of an e-based alloy are preferred. Further, the composition based on the atomic ratio is Li: Ag: Te: M1: M2 = 15-12.
More preferably, it is made of a Li-Ag-Te- (M1-M2) alloy having a ratio of 0: 1 to 20: 0.001 to 2: 1 to 50: 1 to 30.

【0019】Liの原子比が15未満では、Liの拡散
が遅く、起電力低下や充放電容量低下が生じる。また、
Liの原子比が150を超えると、合金の電気化学的特
性が純Li電極に近づくため好ましくない。なお、Li
の原子比が120以下であると、充放電効率の点から有
利である。好ましいLiの原子比は、15〜120、よ
り好ましくは15〜100、就中15〜90、特に15
〜80である。
If the atomic ratio of Li is less than 15, the diffusion of Li is slow, resulting in a decrease in electromotive force and a decrease in charge / discharge capacity. Also,
If the atomic ratio of Li exceeds 150, the electrochemical properties of the alloy become closer to a pure Li electrode, which is not preferable. Note that Li
It is advantageous from the point of charge and discharge efficiency that the atomic ratio of is not more than 120. Preferred atomic ratios of Li are 15 to 120, more preferably 15 to 100, especially 15 to 90, especially 15
~ 80.

【0020】Agの原子比が1未満では、γ1 相が形成
されにくく、また負極表面の電気化学的性質が純Liに
近づくため好ましくない。また、Agの原子比が20を
超えると、Li、Agの拡散速度が低下し、合金のシー
ト加工等が困難になり、さらに起電力も低下する傾向を
示すので好ましくない。好ましいAgの原子比は、2〜
18、就中5〜18、特に6〜13である。
If the atomic ratio of Ag is less than 1 , the γ 1 phase is hardly formed, and the electrochemical properties of the negative electrode surface approach pure Li, which is not preferable. On the other hand, if the atomic ratio of Ag is more than 20, the diffusion rates of Li and Ag decrease, and it becomes difficult to work the sheet of the alloy, and the electromotive force tends to decrease. The preferred atomic ratio of Ag is 2 to
18, especially 5-18, especially 6-13.

【0021】Teの原子比が0.001未満では、L
i、Agの拡散を促進する結晶粒微細化効果に乏しくな
る。また、Teの原子比が2を越えると、上記したよう
に金属間化合物の偏析が進行しやすくなる。好ましいT
eの原子比は、0.001〜2未満、より好ましくは
0.002〜1.999、就中0.005〜1.0、特
に0.005〜0.05である。
If the atomic ratio of Te is less than 0.001, L
The crystal grain refining effect of promoting the diffusion of i and Ag is poor. On the other hand, when the atomic ratio of Te exceeds 2, segregation of the intermetallic compound easily proceeds as described above. Preferred T
The atomic ratio of e is less than 0.001-2, more preferably 0.002-1.999, especially 0.005-1.0, especially 0.005-0.05.

【0022】M1の原子比は1〜50であることが好ま
しく、M2の原子比は1〜30であることが好ましい。
M1、M2の原子比が上記範囲内であれば、十分なバイ
ンダー効果を発揮し、電池とした場合に、優れた充放電
のサイクル寿命、高充放電容量、高起電力および高エネ
ルギー密度を有する。M1の原子比は、より好ましくは
2〜30、特に好ましくは5〜20であり、M2の原子
比は、より好ましくは1〜20、特に好ましくは1〜1
0である。
The atomic ratio of M1 is preferably 1 to 50, and the atomic ratio of M2 is preferably 1 to 30.
When the atomic ratio of M1 and M2 is within the above range, a sufficient binder effect is exhibited, and when the battery is used, the battery has excellent charge / discharge cycle life, high charge / discharge capacity, high electromotive force, and high energy density. . The atomic ratio of M1 is more preferably 2 to 30, particularly preferably 5 to 20, and the atomic ratio of M2 is more preferably 1 to 20, particularly preferably 1 to 1.
0.

【0023】本発明のリチウム二次電池用負極合金(L
i−Ag−Te系合金またはLi−Ag−Te−(M1
−M2)系合金)の形成は、例えば所定割合の各合金成
分を溶融させて反応させる方法(溶融法)や、蒸着方式
で反応させる方法等、公知の適宜な合金化方法等で行う
ことができる。
The negative electrode alloy for lithium secondary batteries of the present invention (L
i-Ag-Te-based alloy or Li-Ag-Te- (M1
-M2) -based alloy) can be formed by a known appropriate alloying method such as a method of melting and reacting a predetermined ratio of each alloy component (melting method) or a method of reacting by a vapor deposition method. it can.

【0024】溶融法においては、合金成分を不活性ガス
雰囲気中で加熱・溶融させることにより合金化できる。
その場合、Liの融点以上の温度に加熱して溶融させる
方式が、速やかに合金化反応を進行させる点より好まし
い。蒸着による合金化方法は、合金成分を蒸発させて、
他種金属からなる導体の表面上で凝固させることにより
行われる。蒸着方式としては、例えばイオンビームスパ
ッタ等の各種のスパッタ方式、電子ビーム蒸着方式、各
種のイオンプレーティング方式、フラッシュプラズマ蒸
着方式、パルスプラズマ蒸着方式、CVD(化学蒸着)
方式等の適宜な方式を採用することができる。
In the melting method, alloying can be performed by heating and melting the alloy components in an inert gas atmosphere.
In this case, a method of heating and melting to a temperature equal to or higher than the melting point of Li is preferable from the viewpoint of promptly proceeding the alloying reaction. The alloying method by evaporation is to evaporate the alloy components,
This is performed by solidification on the surface of a conductor made of another metal. Examples of the vapor deposition method include various sputtering methods such as ion beam sputtering, an electron beam vapor deposition method, various ion plating methods, a flash plasma vapor deposition method, a pulse plasma vapor deposition method, and CVD (chemical vapor deposition).
An appropriate method such as a method can be adopted.

【0025】リチウム二次電池用の負極の形成方法は特
に限定されず、通常の方法で行うことができる。例え
ば、予め形成した負極合金を、公知の負極形態(シート
状、テープ状、薄膜状、基板状等;以下、これらを全部
まとめてシート状ともいう)に成形する等の適宜な方法
で行うことができる。
The method for forming the negative electrode for a lithium secondary battery is not particularly limited, and it can be performed by a usual method. For example, it is performed by an appropriate method such as forming a previously formed negative electrode alloy into a known negative electrode form (a sheet form, a tape form, a thin film form, a substrate form, etc .; hereinafter, these are collectively also referred to as a sheet form). Can be.

【0026】具体的には、熱間圧延法や熱間押出法によ
り負極合金をシート状等に成形する方法、または集電体
に溶融メッキ法や減圧プラズマ溶射法等により負極合金
層を設ける方法等が挙げられる。後者の集電体を用いる
方法は、シート状の負極を形成する場合に有利であり、
集電体の片面または両面に合金層を設けることができ
る。
Specifically, a method of forming the negative electrode alloy into a sheet or the like by hot rolling or hot extrusion, or a method of providing a negative electrode alloy layer on a current collector by a hot-dip plating method, a low pressure plasma spraying method, or the like. And the like. The latter method using a current collector is advantageous when a sheet-shaped negative electrode is formed,
An alloy layer can be provided on one side or both sides of the current collector.

【0027】なお、熱間圧延法とは、合金材料を昇温
し、易加工性にして圧延する加工方法であり、熱間押出
法とは、合金材料を昇温し、易加工性にして押し出す加
工方法である。また、溶融メッキ法とは、合金をアルゴ
ンガス中にて溶融させ、集電体を浸漬してメッキする方
法であり、減圧プラズマ溶射法とは、減圧アルゴン雰囲
気下(100mTorr等)で集電体に合金を溶射する方法であ
る。
The hot rolling method is a working method in which the temperature of an alloy material is raised to make it easy to work, and the hot extrusion method is a method in which the alloy material is heated to make it easy to work. This is an extruding method. In addition, the hot-dip plating method is a method in which an alloy is melted in an argon gas, and a current collector is immersed in plating. The low-pressure plasma spraying method is a method in which the current is collected in a low-pressure argon atmosphere (100 mTorr or the like). This is a method of spraying an alloy on the surface.

【0028】シート状の負極の形成は、例えば集電シー
トに、負極合金の形成成分を上述の蒸着方式で付設する
ことによっても行うことができる。また、シート状の負
極合金を、ろう付け、ハンダ付け、超音波溶接、スポッ
ト溶接等の適宜な方法で集電シートに接合することによ
っても、負極合金シートと集電シートとの積層体を形成
することができる。
The sheet-like negative electrode can also be formed by, for example, attaching a component for forming a negative electrode alloy to a current collecting sheet by the above-described vapor deposition method. Also, a laminate of the negative electrode alloy sheet and the current collecting sheet can be formed by joining the sheet-shaped negative electrode alloy to the current collecting sheet by an appropriate method such as brazing, soldering, ultrasonic welding, spot welding, or the like. can do.

【0029】さらに、Li−Ag−Te−(M1−M
2)系合金からなる負極の形成方法としては、上記方法
以外に、例えば(M1−M2)系合金粉末を、予め集電
シートに適量塗布または蒸着し、熱処理を施した後、L
i−Ag−Te系合金をスプレー塗布、含浸または浸漬
させる方法等が挙げられる。なお、これらの工程は、各
構成材の劣化を防止するため、不活性ガス雰囲気下で行
うことが好ましい。
Further, Li-Ag-Te- (M1-M
2) As a method of forming a negative electrode made of a system alloy, besides the above method, for example, an appropriate amount of (M1-M2) alloy powder is applied or vapor-deposited on a current collecting sheet in advance, heat-treated, and then L
A method of spraying, impregnating or dipping an i-Ag-Te alloy is exemplified. Note that these steps are preferably performed in an inert gas atmosphere in order to prevent deterioration of each constituent material.

【0030】なお、集電シートとは、例えばNi、A
l、Cu、Ag、Fe等の適宜な導体等からなるシート
状の集電体をいう。具体的な形態としては、シート状の
金属箔、金属メッシュ、金属の多孔体等が挙げられる。
The current collecting sheet is, for example, Ni, A
It refers to a sheet-like current collector made of an appropriate conductor such as l, Cu, Ag, and Fe. Specific examples include a sheet-like metal foil, a metal mesh, a metal porous body, and the like.

【0031】本発明のリチウム二次電池は、上記リチウ
ム二次電池用負極合金からなる負極を用いる点以外は、
その構成および製造方法等は従来に準じることができ
る。
The lithium secondary battery of the present invention has the following features except that a negative electrode made of the above negative electrode alloy for a lithium secondary battery is used.
The configuration, manufacturing method, and the like can be according to the related art.

【0032】図1に本発明のリチウム二次電池の一例で
あるコイン型のリチウム二次電池を示す。1,7が電池
缶、2,6が集電用Ni板、3が負極、4がセパレータ
(電解液層)、5が正極、8が絶縁封止材である。
FIG. 1 shows a coin-type lithium secondary battery which is an example of the lithium secondary battery of the present invention. 1, 7 is a battery can, 2, 6 are Ni plates for current collection, 3 is a negative electrode, 4 is a separator (electrolyte layer), 5 is a positive electrode, and 8 is an insulating sealing material.

【0033】リチウム二次電池における正極について
は、例えばMnO2 、LiCoO2 、Liw Co1-x-y
x y 2+z (但し、Mは1種または2種以上の遷移
金属、wは0<w≦2、xは0≦x<1、yは0<y<
1、zは−1≦z≦4である。)、あるいはLiのリン
酸塩、Li・Coのリン酸塩、Coの酸化物、Li・C
oの酸化物から選ばれる少なくとも1種を成分として1
モルのLiあたり0.1モル以上のCoと0.2モル以
上のPを含有するもの等を活物質とする正極材等からな
るものを用いることができる。
For the positive electrode of the lithium secondary battery, for example, MnO 2 , LiCoO 2 , Li w Co 1-xy
M x P y O 2 + z (where M is one or more transition metals, w is 0 <w ≦ 2, x is 0 ≦ x <1, y is 0 <y <
1, z is -1 ≦ z ≦ 4. ) Or Li phosphate, Li-Co phosphate, Co oxide, Li-C
at least one selected from oxides of o
A positive electrode material or the like having an active material containing 0.1 mol or more of Co and 0.2 mol or more of P per mol of Li can be used.

【0034】シート状の正極は、例えば上記活物質を、
必要に応じて導電性付与材(アセチレンブラック、ケッ
チェンブラック等)と結着剤(ポリテトラフルオロエチ
レン、ポリフッ化ビニリデン、ポリエチレン等)と共
に、キャスティング方式、圧縮成形方式、ロール成形方
式、ドクターブレード方式等の適宜な方式で成形するこ
と等により得ることができる。なお、結着剤の溶剤とし
て、N−メチルピロリドン、プロピレンカーボネート等
を使用することもできる。また、負極の場合と同様に、
正極材を集電シートに適宜に接着して用いることもでき
る。
The sheet-like positive electrode is formed by, for example,
A casting method, a compression molding method, a roll molding method, a doctor blade method together with a conductivity-imparting material (acetylene black, ketjen black, etc.) and a binder (polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, etc.) as required. It can be obtained by molding with an appropriate method such as. In addition, N-methylpyrrolidone, propylene carbonate, or the like can also be used as a solvent for the binder. Also, as in the case of the negative electrode,
The positive electrode material can be used by appropriately bonding it to the current collecting sheet.

【0035】また、リチウム二次電池における電解質と
しては、非水電解液や固体電解質等を用いることができ
る。
As the electrolyte in the lithium secondary battery, a non-aqueous electrolyte, a solid electrolyte, or the like can be used.

【0036】非水電解液としては、例えばプロピレンカ
ーボネート、エチレンカーボネート、ジメチルカーボネ
ート、ジエチルカーボネート、テトラヒドロフラン、2
−メチルテトラヒドロフラン、ジメチルスルホキシド、
スルホラン、γ−ブチロラクトン、1,2−ジメトキシ
エタン、ジエチルエーテル、1,3−ジオキソラン、蟻
酸メチル、酢酸メチル、N,N−ジメチルホルムアミ
ド、アセトニトリル、それらの混合物等の適宜な有機溶
媒に、Li塩等の塩類を溶解させ、必要に応じて、2−
メチルフラン、チオフェン、ピロール、クラウンエーテ
ル等の有機添加物を溶解させたもの等が挙げられる。
Examples of the non-aqueous electrolyte include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, tetrahydrofuran,
-Methyltetrahydrofuran, dimethylsulfoxide,
Li salt is added to a suitable organic solvent such as sulfolane, γ-butyrolactone, 1,2-dimethoxyethane, diethyl ether, 1,3-dioxolan, methyl formate, methyl acetate, N, N-dimethylformamide, acetonitrile, and a mixture thereof. Are dissolved, and if necessary, 2-
Examples thereof include those in which organic additives such as methylfuran, thiophene, pyrrole, and crown ether are dissolved.

【0037】なお、Li塩としては、例えばLiClO
4 、LiBF4 、LiPF4 、LiAsF3 、LiAl
Cl4 、Li(CF2 SO2 2 、LiI、LiCF3
SO 3 等の適宜なものを用いることができる。また、電
解液におけるLi塩濃度は、0.1〜3モル/リットル
が一般的であるが、これに限定されない。
As the Li salt, for example, LiClO
Four, LiBFFour, LiPFFour, LiAsFThree, LiAl
ClFour, Li (CFTwoSOTwo)Two, LiI, LiCFThree
SO ThreeAnd the like can be used. In addition,
The concentration of Li salt in the solution is 0.1 to 3 mol / liter.
Is common, but is not limited to this.

【0038】固体電解質としては、ポリエチレンオキシ
ド、ポリホスファゼン、ポリアジリジン、ポリエチレン
スルフィド、それらの誘導体や混合物、複合体等の塩類
電解性ポリマーに、前記Li塩等の塩類を混合したもの
等が挙げられる。
Examples of the solid electrolyte include those obtained by mixing salts such as the above-mentioned Li salt with a salt-electrolyzing polymer such as polyethylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, derivatives and mixtures thereof, and composites. .

【0039】上記非水電解液を電解質とした場合には、
正・負極間に介在させるセパレータの形成は、例えばポ
リプロピレン等からなる多孔性ポリマーフィルム、ガラ
スフィルター、不織布等に当該電解液を含浸させたり、
充填する方式等、従来に準じた適宜な方式で行うことが
できる。また、上記固体電解質を電解質とした場合に
は、それが正・負極間のセパレータを兼ねうるという利
点を有している。
When the non-aqueous electrolyte is an electrolyte,
The formation of the separator interposed between the positive and negative electrodes, for example, a porous polymer film made of polypropylene or the like, a glass filter, impregnating the electrolyte solution with a nonwoven fabric, or the like,
It can be performed by an appropriate method according to the related art, such as a filling method. Further, when the solid electrolyte is an electrolyte, it has an advantage that it can also serve as a separator between a positive electrode and a negative electrode.

【0040】電池缶としては、例えばNiメッキ鉄、C
rメッキ鉄、ステンレス等が挙げられ、Niメッキ鉄が
好ましい。絶縁封止材としては、例えばポリプロピレ
ン、ポリエチレン、ナイロン等が挙げられ、ポリプロピ
レンが好ましい。
As the battery can, for example, Ni-plated iron, C
Examples include r-plated iron and stainless steel, and Ni-plated iron is preferable. Examples of the insulating sealing material include polypropylene, polyethylene, nylon, and the like, and polypropylene is preferable.

【0041】リチウム二次電池の形態は、使用目的等に
応じて適宜に決定することができ、例えばコイン型、ボ
タン型、捲回体式等が挙げられる。なお、上記コイン
型、ボタン型、捲回体式の二次電池等では、通例、シー
ト状等の負極や正極等が好ましく用いられる。
The form of the lithium secondary battery can be appropriately determined according to the purpose of use and the like, and examples thereof include a coin type, a button type and a wound type. In the above-mentioned coin-type, button-type, and wound-type secondary batteries, a sheet-like negative electrode, positive electrode, or the like is usually preferably used.

【0042】リチウム二次電池の製造方法は特に限定さ
れず、公知の方法により製造することができる。例え
ば、捲回体式のリチウム二次電池は、上記負極と正極
を、セパレータを介在させた状態で捲回して電池缶に収
納し、電解液を注入し、さらに電池缶の端に絶縁封止材
を付けること等により製造することができる。また、コ
イン型、ボタン型のリチウム二次電池は、上記負極と正
極を、セパレータを介在させた状態で捲回せずに電池缶
に収納する以外は、上記と同様の方法にて製造すること
ができる。
The method for producing the lithium secondary battery is not particularly limited, and it can be produced by a known method. For example, in a wound lithium secondary battery, the above-described negative electrode and positive electrode are wound with a separator interposed therebetween, housed in a battery can, injected with an electrolytic solution, and further provided with an insulating sealing material at the end of the battery can. Can be produced by attaching In addition, coin-type and button-type lithium secondary batteries can be manufactured by the same method as described above, except that the negative electrode and the positive electrode are housed in a battery can without being wound with a separator interposed therebetween. it can.

【0043】得られたリチウム二次電池に対する充電
は、一定電流を連続して通電する方式、パルス電源を用
いてパルス電流を供給する方式等、適宜な方式にて行う
ことができる。パルス電流による充電方式では、通電・
停止が繰り返されるため濃度変化が抑制されて、デンド
ライトがより成長しにくいという利点がある。
The obtained lithium secondary battery can be charged by an appropriate method such as a method of continuously supplying a constant current or a method of supplying a pulse current using a pulse power supply. In the charging method using pulse current,
Since the stoppage is repeated, there is an advantage that the density change is suppressed, and the dendrite hardly grows.

【0044】[0044]

【実施例】以下に、実施例を挙げて、本発明をより詳細
に説明するが、本発明はこれらに限定されるものではな
い。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto.

【0045】実施例1 溶融法で形成した、原子比組成がLi:Ag:Te=9
0:10:1のLi−Ag−Te系合金を300℃で加
熱溶融させた。その溶融液中に、厚さ13μm、幅41
mm、長さ300mmの集電シートを浸漬した後、引き
上げて集電シートの両面に厚さ14μmのLi−Ag−
Te系合金層を有する負極テープを得た。なお、前記の
集電シートは、厚さ10μmのCuテープの両面に、厚
さ0.5μmのNiメッキ層、その上に厚さ1μmのA
gメッキ層を施したもので、耐熱性、前記合金の溶融液
との濡れ性に優れるものである。
Example 1 An atomic ratio composition of Li: Ag: Te = 9 formed by a melting method.
A 0: 10: 1 Li-Ag-Te alloy was heated and melted at 300 ° C. 13 μm in thickness and 41 in width in the melt
After immersing a current collector sheet having a thickness of 300 mm and a length of 300 mm, the current collector sheet is lifted up, and a 14 μm-thick Li-Ag-
A negative electrode tape having a Te-based alloy layer was obtained. The current collecting sheet was composed of a Ni plating layer having a thickness of 0.5 μm on both sides of a Cu tape having a thickness of 10 μm, and an A plating having a thickness of 1 μm
g It has a plating layer and has excellent heat resistance and wettability with the melt of the alloy.

【0046】一方、炭酸リチウム、塩基性炭酸コバル
ト、およびリン酸含有率85%のリン酸水溶液を、L
i:Co:P=2:1.5:0.5の原子比となるよう
に混合し、それをアルミナ製坩堝に入れて900℃で2
4時間加熱処理して、リチウムのリン酸塩とリチウム・
コバルトのリン酸塩とコバルト酸化物の混合物(活物
質)を形成した後、それをボールミルで粉砕して粒径2
0μm以下の粉末とした。次に、当該粉末46重量部、
アセチレンブラック4重量部、ポリフッ化ビニリデン2
重量部、およびN−メチルピロリドン50重量部を混合
し、それを幅38mm、長さ240mm、厚さ20μm
のアルミニウムテープの上にドクターブレード法で塗布
し、真空乾燥させて、厚さ150μmの塗布層(正極
層)を形成して正極テープを得た。
On the other hand, lithium carbonate, basic cobalt carbonate, and a phosphoric acid aqueous solution having a phosphoric acid content of 85% were added to L
i: Co: P = 2: 1.5: 0.5 was mixed at an atomic ratio, and the mixture was placed in an alumina crucible at 900 ° C. for 2 hours.
Heat treatment for 4 hours, lithium phosphate and lithium
After forming a mixture (active material) of cobalt phosphate and cobalt oxide, the mixture is pulverized with a ball mill to obtain a particle size of 2.
It was a powder of 0 μm or less. Next, 46 parts by weight of the powder,
Acetylene black 4 parts by weight, polyvinylidene fluoride 2
Parts by weight, and 50 parts by weight of N-methylpyrrolidone, and mixed them with a width of 38 mm, a length of 240 mm, and a thickness of 20 μm.
Was coated on the aluminum tape by a doctor blade method and dried under vacuum to form a coating layer (positive electrode layer) having a thickness of 150 μm to obtain a positive electrode tape.

【0047】次に、前記の負極テープと正極テープを、
厚さ30μmの多孔質ポリプロピレンフィルム(セパレ
ータ)を介在させた状態で捲回して電池缶に収納し、3
mlの電解液を注入して単3型の二次電池を形成した。
なお、前記の電解液は、1リットルのプロピレンカーボ
ネートに1モルのLiClO4 を溶解させたものであ
る。
Next, the negative electrode tape and the positive electrode tape are
It is wound in a state where a porous polypropylene film (separator) having a thickness of 30 μm is interposed and stored in a battery can.
The AA type secondary battery was formed by injecting ml of the electrolyte.
Incidentally, the electrolytic solution is obtained by dissolving 1 mole of LiClO 4 in 1 liter of propylene carbonate.

【0048】実施例2 原子比組成がLi:Ag:Te=90:10:0.1の
Li−Ag−Te系合金を用いた以外は実施例1に準じ
て、負極テープとリチウム二次電池を得た。
Example 2 A negative electrode tape and a lithium secondary battery were prepared in the same manner as in Example 1 except that a Li-Ag-Te alloy having an atomic ratio composition of Li: Ag: Te = 90: 10: 0.1 was used. I got

【0049】実施例3 原子比組成がLi:Ag:Te=90:10:0.01
のLi−Ag−Te系合金を用いた以外は実施例1に準
じて、負極テープとリチウム二次電池を得た。
Example 3 The atomic ratio composition was Li: Ag: Te = 90: 10: 0.01.
A negative electrode tape and a lithium secondary battery were obtained in the same manner as in Example 1 except that the Li-Ag-Te alloy was used.

【0050】実施例4 原子比組成がLi:Ag:Te=95:5:1のLi−
Ag−Te系合金を用いた以外は実施例1に準じて、負
極テープとリチウム二次電池を得た。
Example 4 Li—Ag having an atomic ratio composition of Li: Ag: Te = 95: 5: 1
A negative electrode tape and a lithium secondary battery were obtained according to Example 1, except that an Ag-Te alloy was used.

【0051】実施例5 原子比組成がLi:Ag:Te=95:5:0.1のL
i−Ag−Te系合金を用いた以外は実施例1に準じ
て、負極テープとリチウム二次電池を得た。
Example 5 L having an atomic ratio composition of Li: Ag: Te = 95: 5: 0.1
A negative electrode tape and a lithium secondary battery were obtained according to Example 1, except that the i-Ag-Te-based alloy was used.

【0052】実施例6 原子比組成がLi:Ag:Te=95:5:0.01の
Li−Ag−Te系合金を用いた以外は実施例1に準じ
て、負極テープとリチウム二次電池を得た。
Example 6 A negative electrode tape and a lithium secondary battery were prepared in the same manner as in Example 1 except that a Li-Ag-Te alloy having an atomic ratio composition of Li: Ag: Te = 95: 5: 0.01 was used. I got

【0053】実施例7 原子比組成がLi:Ag:Te=85:15:1のLi
−Ag−Te系合金を用いた以外は実施例1に準じて、
負極テープとリチウム二次電池を得た。
Example 7 Li having an atomic ratio composition of Li: Ag: Te = 85: 15: 1
According to Example 1, except that an Ag-Te alloy was used,
A negative electrode tape and a lithium secondary battery were obtained.

【0054】実施例8 原子比組成がLi:Ag:Te=85:15:0.01
のLi−Ag−Te系合金を用いた以外は実施例1に準
じて、負極テープとリチウム二次電池を得た。
Example 8 The atomic ratio composition was Li: Ag: Te = 85: 15: 0.01.
A negative electrode tape and a lithium secondary battery were obtained in the same manner as in Example 1 except that the Li-Ag-Te alloy was used.

【0055】実施例9 原子比組成がLi:Ag:Te=90:10:0.2の
Li−Ag−Te系合金を、減圧プラズマ溶射方式で集
電シートの両面に厚さ20μmの当該合金層を設けて負
極テープを得た以外は実施例1に準じて、リチウム二次
電池を得た。なお、減圧プラズマ溶射は、100mTorr
の高純度アルゴン雰囲気下で行った。
Example 9 A Li—Ag—Te alloy having an atomic ratio composition of Li: Ag: Te = 90: 10: 0.2 was applied to both surfaces of a current collecting sheet by a reduced pressure plasma spraying method so as to have a thickness of 20 μm. A lithium secondary battery was obtained in the same manner as in Example 1 except that a negative electrode tape was obtained by providing a layer. The reduced pressure plasma spraying is performed at 100 mTorr.
Under a high purity argon atmosphere.

【0056】比較例1 原子比組成がLi:Ag:Te=90:10:5のLi
−Ag−Te系合金を用いた以外は実施例1に準じて、
負極テープとリチウム二次電池を得た。
Comparative Example 1 Li having an atomic composition of Li: Ag: Te = 90: 10: 5
According to Example 1, except that an Ag-Te alloy was used,
A negative electrode tape and a lithium secondary battery were obtained.

【0057】比較例2 原子比組成がLi:Ag=95:10のLi−Ag合金
を用いた以外は実施例1に準じて、負極テープとリチウ
ム二次電池を得た。
Comparative Example 2 A negative electrode tape and a lithium secondary battery were obtained in the same manner as in Example 1 except that a Li—Ag alloy having an atomic ratio composition of Li: Ag = 95: 10 was used.

【0058】比較例3 原子比組成がLi:Ag:Te=95:5:5のLi−
Ag−Te系合金を用いた以外は実施例1に準じて、負
極テープとリチウム二次電池を得た。
Comparative Example 3 Li—Ag having an atomic ratio composition of Li: Ag: Te = 95: 5: 5
A negative electrode tape and a lithium secondary battery were obtained according to Example 1, except that an Ag-Te alloy was used.

【0059】比較例4 原子比組成がLi:Ag=95:5のLi−Ag合金を
用いた以外は実施例1に準じて、負極テープとリチウム
二次電池を得た。
Comparative Example 4 A negative electrode tape and a lithium secondary battery were obtained in the same manner as in Example 1 except that a Li—Ag alloy having an atomic ratio composition of Li: Ag = 95: 5 was used.

【0060】比較例5 原子比組成がLi:Ag:Te=85:15:5のLi
−Ag−Te系合金を用いた以外は実施例1に準じて、
負極テープとリチウム二次電池を得た。
Comparative Example 5 Li having an atomic composition of Li: Ag: Te = 85: 15: 5
According to Example 1, except that an Ag-Te alloy was used,
A negative electrode tape and a lithium secondary battery were obtained.

【0061】比較例6 原子比組成がLi:Ag=85:15のLi−Ag合金
を用いた以外は実施例1に準じて、負極テープとリチウ
ム二次電池を得た。
Comparative Example 6 A negative electrode tape and a lithium secondary battery were obtained in the same manner as in Example 1 except that a Li—Ag alloy having an atomic ratio composition of Li: Ag = 85: 15 was used.

【0062】比較例7 原子比組成がLi:Ag:Te=90:10:10のL
i−Ag−Te系合金を用いた以外は実施例9に準じ
て、負極テープとリチウム二次電池を得た。
Comparative Example 7 L having an atomic ratio composition of Li: Ag: Te = 90: 10: 10
A negative electrode tape and a lithium secondary battery were obtained according to Example 9, except that an i-Ag-Te-based alloy was used.

【0063】実験例1 上記実施例1〜9および比較例1〜7で得られたリチウ
ム二次電池について、0.6mA/cm2 の充電および
放電の電流密度にて、4.2V(充電)〜2.5V(放
電:充電後1時間放置)の間で充放電サイクルを200
回繰返した後の放電容量維持率を調べた。その結果を表
1に示す。
Experimental Example 1 For the lithium secondary batteries obtained in Examples 1 to 9 and Comparative Examples 1 to 7, 4.2 V (charge) at a charge and discharge current density of 0.6 mA / cm 2. Charge-discharge cycles of 200 to 2.5 V (discharge: left for 1 hour after charging)
The discharge capacity retention rate after the repetition was examined. Table 1 shows the results.

【0064】[0064]

【表1】 [Table 1]

【0065】実施例10 高純度Ar雰囲気(露点度−60℃以下)において、原
子比でLi:Ag:Te=90:10:0.5となるよ
うに秤量したものを500℃に加熱し、これを溶融させ
て合金化した。また、原子比でSi:Fe=10:20
(前記のLi:Ag:Teに対する比)となるように秤
量したものを、同様の雰囲気において1400℃に加熱
して合金化した。得られたSi−Fe系合金を200メ
ッシュに粉砕し、これを銅製の長尺集電体(幅42m
m、厚さ10μm)にロールにて圧着した後、800℃
で3時間加熱し、負極用基板とした。次いで、前記で得
たLi−Ag−Te系合金の溶湯を250℃に保温し、
これに上記負極用基板を浸漬し、基板の両面にLi−A
g−Te系合金層の厚さが片面あたり50〜200μm
になるように絞りを与え、長さ330mmに切断して負
極板を作成した。
Example 10 In a high-purity Ar atmosphere (dew point: −60 ° C. or lower), a sample weighed so that the atomic ratio of Li: Ag: Te = 90: 10: 0.5 was heated to 500 ° C. This was melted and alloyed. Further, in atomic ratio, Si: Fe = 10: 20
What was weighed so that it may become (the ratio with respect to Li: Ag: Te) was heated to 1400 ° C. in the same atmosphere to form an alloy. The obtained Si—Fe-based alloy was pulverized to a mesh of 200, and this was pulverized into a long current collector made of copper (width 42 m
m, thickness of 10 μm) with a roll and then 800 ° C.
For 3 hours to obtain a negative electrode substrate. Next, the molten Li-Ag-Te alloy obtained above was kept at 250 ° C,
The negative electrode substrate is immersed in this, and Li-A
The thickness of the g-Te alloy layer is 50 to 200 μm per side.
And a negative electrode plate was prepared by cutting to a length of 330 mm.

【0066】正極活物質としてのLiCoO2 46重量
部、導電性付与材としてのアセチレンブラック4重量
部、結着剤としてのポリフッ化ビニリデン1重量部、お
よびN−メチルピロリドン49重量部を十分に混合した
ペーストを、長尺のアルミニウム箔(幅42mm、厚さ
10μm)へドクターブレード法にて片面厚さが100
μmになるように両面塗布し、200℃で1分間仮乾燥
を行った後、圧延した。これを長さ300mmに切断
し、真空中において120℃で3時間の本乾燥を行い、
正極板を作成した。
46 parts by weight of LiCoO 2 as a positive electrode active material, 4 parts by weight of acetylene black as a conductivity-imparting material, 1 part by weight of polyvinylidene fluoride as a binder, and 49 parts by weight of N-methylpyrrolidone were thoroughly mixed. The paste obtained was applied to a long aluminum foil (width 42 mm, thickness 10 μm) by a doctor blade method to have a thickness of 100 per side.
It was coated on both sides so as to have a thickness of μm, temporarily dried at 200 ° C. for 1 minute, and then rolled. This is cut into a length of 300 mm and subjected to main drying at 120 ° C. for 3 hours in a vacuum.
A positive electrode plate was prepared.

【0067】含水量が20ppm 以下のプロピレンカーボ
ネートと、1,2−ジメトキシエタンとを、体積比で
1:1として混合し、当該混合物に1mol/l の過塩素酸
リチウムを溶解させ、電解液とした。これを空孔率43
%、厚さが25μmのポリプロピレンフィルムに含浸さ
せ、セパレータを作成した。上記で得た負極板と正極板
との間に当該セパレータを介在させた状態で巻き回し、
これをニッケルメッキを施した鉄製の電池缶に収納し、
単3型のリチウム二次電池を作成した。
Propylene carbonate having a water content of 20 ppm or less and 1,2-dimethoxyethane are mixed at a volume ratio of 1: 1. 1 mol / l of lithium perchlorate is dissolved in the mixture, and did. The porosity is 43
%, A polypropylene film having a thickness of 25 μm was impregnated to prepare a separator. Wound with the separator interposed between the negative electrode plate and the positive electrode plate obtained above,
This is stored in a nickel-plated iron battery can,
AA type lithium secondary batteries were produced.

【0068】実施例11 実施例10の負極で用いたSi−Fe系合金に代えて、
原子比でIn:Zn:Ni=5:10:10(Li:A
g:Teに対する比)となるように秤量したものを、同
様の雰囲気において1000℃に加熱し、合金化したも
のを用いる以外は、全て実施例10と同様にして負極板
およびリチウム二次電池を得た。
Example 11 Instead of the Si—Fe alloy used in the negative electrode of Example 10,
In atomic ratio, In: Zn: Ni = 5: 10: 10 (Li: A
g: ratio to Te), heated to 1000 ° C. in the same atmosphere, and alloyed, except that a negative electrode plate and a lithium secondary battery were prepared in the same manner as in Example 10. Obtained.

【0069】実施例12 実施例10の負極で用いたSi−Fe系合金に代えて、
原子比でSi:Ni=20:10(Li:Ag:Teに
対する比)となるように秤量したものを、同様の雰囲気
において1200℃に加熱し、合金化したものを用いる
以外は、全て実施例10と同様にして負極板およびリチ
ウム二次電池を得た。
Example 12 Instead of the Si—Fe alloy used in the negative electrode of Example 10,
All the examples were weighed such that the atomic ratio was Si: Ni = 20: 10 (ratio to Li: Ag: Te), heated to 1200 ° C. in the same atmosphere, and alloyed to be used. In the same manner as in No. 10, a negative electrode plate and a lithium secondary battery were obtained.

【0070】比較例8 高純度Ar雰囲気において、原子比でLi:Ag=9
0:10となるように秤量し、500℃に加熱・融解
し、合金化したものを負極として用いる以外は、全て実
施例10と同様にして負極板およびリチウム二次電池を
得た。
Comparative Example 8 In a high purity Ar atmosphere, Li: Ag = 9 in atomic ratio.
A negative electrode plate and a lithium secondary battery were obtained in the same manner as in Example 10 except that the mixture was weighed so as to be 0:10, heated and melted at 500 ° C., and used as a negative electrode.

【0071】実験例2 上記実施例10〜12および比較例8で得られたリチウ
ム二次電池を用い、その起電力を二端子法で測定した。
また、上記リチウム二次電池を用いて、上限電圧4.2
V、下限電圧2.7Vに設定して、充放電を繰り返し
た。そして50サイクル時点でのエネルギー密度、放電
容量維持率を測定した。その結果を表2に示す。
Experimental Example 2 Using the lithium secondary batteries obtained in Examples 10 to 12 and Comparative Example 8, the electromotive force was measured by a two-terminal method.
The upper limit voltage of 4.2 using the above-mentioned lithium secondary battery.
V and the lower limit voltage of 2.7 V, and charging and discharging were repeated. Then, the energy density and the discharge capacity retention rate at the time of 50 cycles were measured. Table 2 shows the results.

【0072】[0072]

【表2】 [Table 2]

【0073】[0073]

【発明の効果】本発明のリチウム二次電池用負極合金を
用いると、デンドライトの成長が抑制され、充放電容量
が大きく、高エネルギー密度を有し、充放電の繰返しに
よる劣化が少ない負極を得ることができる。また、当該
負極を用いると、充放電のサイクル寿命に優れ、長期間
実用できる高エネルギー密度、高起電力、高充放電容量
を有するリチウム二次電池を得ることができる。
When the negative electrode alloy for a lithium secondary battery of the present invention is used, the growth of dendrite is suppressed, a charge / discharge capacity is large, a high energy density is obtained, and a negative electrode with little deterioration due to repeated charge / discharge is obtained. be able to. In addition, when the negative electrode is used, a lithium secondary battery having excellent charge / discharge cycle life and high energy density, high electromotive force, and high charge / discharge capacity that can be used for a long time can be obtained.

【0074】[0074]

【図面の簡単な説明】[Brief description of the drawings]

【図1】リチウム二次電池の一例(コイン型)を示す図
である。
FIG. 1 is a diagram illustrating an example (coin type) of a lithium secondary battery.

【符号の説明】[Explanation of symbols]

1,7 電池缶 2,6 集電用Ni板 3 負極 4 セパレータ(電解液層) 5 正極 8 絶縁封止材 1,7 Battery can 2,6 Ni plate for current collection 3 Negative electrode 4 Separator (electrolyte layer) 5 Positive electrode 8 Insulating sealing material

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−176053(JP,A) 特開 昭61−140068(JP,A) 特開 昭61−140067(JP,A) 特開 昭48−89342(JP,A) 特開 昭62−90860(JP,A) 特開 昭62−90859(JP,A) 特開 昭62−90858(JP,A) 特開 昭62−90857(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/40 C22C 24/00 H01M 4/02 H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-62-176053 (JP, A) JP-A-61-100686 (JP, A) JP-A-61-140067 (JP, A) JP-A-48-16 89342 (JP, A) JP-A-62-90860 (JP, A) JP-A-62-90859 (JP, A) JP-A-62-90858 (JP, A) JP-A-62-90857 (JP, A) (58) Field surveyed (Int.Cl. 6 , DB name) H01M 4/40 C22C 24/00 H01M 4/02 H01M 10/40

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原子比に基づく組成がLi:Ag:Te
=15〜150:1〜20:0.001〜2であるLi
−Ag−Te系合金からなることを特徴とするリチウム
二次電池用負極合金。
The composition based on the atomic ratio is Li: Ag: Te.
= 15 to 150: 1 to 20: Li which is 0.001 to 2
A negative electrode alloy for a lithium secondary battery, comprising an Ag-Te alloy.
【請求項2】 原子比に基づく組成がLi:Ag:Te
=80〜150:1〜20:0.001〜2未満である
Li−Ag−Te系合金からなることを特徴とする請求
項1記載のリチウム二次電池用負極合金。
2. The composition based on the atomic ratio is Li: Ag: Te.
2. The negative electrode alloy for a lithium secondary battery according to claim 1, wherein the negative electrode alloy is made of a Li—Ag—Te-based alloy having a ratio of 80 to 150: 1 to 20: less than 0.001 to 2. 2.
【請求項3】 原子比に基づく組成がLi:Ag:Te
=15〜120:1〜20:0.001〜2であるLi
−Ag−Te系合金からなることを特徴とする請求項1
記載のリチウム二次電池用負極合金。
3. The composition based on the atomic ratio is Li: Ag: Te.
= 15 to 120: 1 to 20: Li which is 0.001 to 2
2. An alloy comprising an Ag-Te alloy.
The negative electrode alloy for a lithium secondary battery according to the above.
【請求項4】 原子比に基づく組成がLi:Ag:T
e:M1:M2=15〜120:1〜20:0.001
〜2:1〜50:1〜30〔但し、M1は3B〜5B族
金属を、M2は遷移金属(Agを除く)を示す〕である
Li−Ag−Te−(M1−M2)系合金からなること
を特徴とするリチウム二次電池用負極合金。
4. The composition based on the atomic ratio is Li: Ag: T.
e: M1: M2 = 15 to 120: 1 to 20: 0.001
From 2: 1 to 50: 1 to 30 [where M1 represents a 3B to 5B group metal and M2 represents a transition metal (excluding Ag)]-based Li-Ag-Te- (M1-M2) -based alloy A negative electrode alloy for a lithium secondary battery, comprising:
【請求項5】 M1がAl、Si、In、Snより選ば
れる1種または2種以上である請求項4記載のリチウム
二次電池用負極合金。
5. The negative electrode alloy for a lithium secondary battery according to claim 4, wherein M1 is one or more selected from Al, Si, In, and Sn.
【請求項6】 M2がZn、Fe、Co、Ni、Mn、
Mo、Wより選ばれる1種または2種以上である請求項
4記載のリチウム二次電池用負極合金。
6. M2 is Zn, Fe, Co, Ni, Mn,
The negative electrode alloy for a lithium secondary battery according to claim 4, wherein the negative electrode alloy is one or more selected from Mo and W.
【請求項7】 請求項1〜6のいずれかに記載のリチウ
ム二次電池用負極合金からなる負極を有することを特徴
とするリチウム二次電池。
7. A lithium secondary battery comprising a negative electrode comprising the negative electrode alloy for a lithium secondary battery according to claim 1.
JP7034126A 1994-02-22 1995-02-22 Anode alloy for lithium secondary battery and lithium secondary battery Expired - Lifetime JP2968447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7034126A JP2968447B2 (en) 1994-02-22 1995-02-22 Anode alloy for lithium secondary battery and lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-49869 1994-02-22
JP4986994 1994-02-22
JP7034126A JP2968447B2 (en) 1994-02-22 1995-02-22 Anode alloy for lithium secondary battery and lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH07288130A JPH07288130A (en) 1995-10-31
JP2968447B2 true JP2968447B2 (en) 1999-10-25

Family

ID=26372918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7034126A Expired - Lifetime JP2968447B2 (en) 1994-02-22 1995-02-22 Anode alloy for lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2968447B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4135074B2 (en) 2002-10-25 2008-08-20 ソニー株式会社 Negative electrode manufacturing method and battery manufacturing method
JP4270109B2 (en) 2004-11-05 2009-05-27 ソニー株式会社 battery
JP4264567B2 (en) 2004-11-05 2009-05-20 ソニー株式会社 Secondary battery
TWI291778B (en) 2004-11-08 2007-12-21 Sony Corp Secondary battery
JP2007128767A (en) * 2005-11-04 2007-05-24 Sony Corp Method for manufacturing active material and battery
CN110265654B (en) * 2019-05-16 2022-04-08 同济大学 Ultra-thin lithium-silver alloy belt for lithium ion battery cathode and preparation method thereof
US20230290937A1 (en) * 2020-08-03 2023-09-14 University Public Corporation Osaka Negative electrode composite and secondary battery

Also Published As

Publication number Publication date
JPH07288130A (en) 1995-10-31

Similar Documents

Publication Publication Date Title
US5989745A (en) Lithium secondary battery
JP7275106B2 (en) Electrode material in the form of a lithium-based alloy and method for producing the same
KR100458098B1 (en) Electrode Material for Negative Pole of Lithium Secondary Cell, Electrode Structure Using Said Electrode Material, Lithium Secondary Cell Using Said Electrode Structure, and Method for Manufacturing Said Electrode Structure and Said Lithium Secondary Cell
JP3846661B2 (en) Lithium secondary battery
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
JP3895932B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JPH07240201A (en) Negative electrode and lithium secondary battery
JP2010262862A (en) Negative electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
KR102324692B1 (en) Negative electrode for lithium secondary battery, method of preparing the saem, and lithium secondary battery using the same
JP2002270156A (en) Lithium secondary battery electrode and lithium secondary battery
JPH07326342A (en) Negative electrode for lithium secondary battery, and lithium secondary battery using the same
US5498495A (en) Alloy for negative electrode of lithium secondary battery and lithium secondary battery
JPH07296812A (en) Negative electrode and li secondary battery
JP2002075351A (en) Alloy powder for negative electrode of non-aqueous electrolyte secondary battery and method for producing the same
JP2001297766A (en) Non-aqueous electrolyte secondary battery, negative electrode material thereof and method for producing the material
JP2968447B2 (en) Anode alloy for lithium secondary battery and lithium secondary battery
JP2001102052A (en) Secondary cell of non-aqueous electrolyte
JPH08180853A (en) Separator and lithium secondary battery
JPH07245099A (en) Negative electrode for nonaqueous electrolyte type lithium secondary battery
JP2004079463A (en) Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPH08130006A (en) Negative electrode, its manufacture and lithium secondary battery
EP2854205A1 (en) Negative electrode for lithium-ion secondary battery
JP3567843B2 (en) Anode materials for non-aqueous electrolyte secondary batteries
CN114865073A (en) Metal lithium battery
JPH09171829A (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery